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Studies on molecular aberrations of cancer patients have increased unprecedentedly in
scale and accessibility, allowing large-scale integrative cross-cancer analysis. Pan-cancer
study is becoming a valuable paradigm for cancer genomics. Here, we review recent
advances in this field and highlight the potential challenges and directions especially from
the computational angle.
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INTRODUCTION
Cancers have been believed as complex genomic diseases nowa-
days. They are largely caused by molecular aberrations includ-
ing somatic mutations, copy number alterations, transcriptional
expression changes, epigenetic variations, and so on. Great
advances in high-throughput techniques and comprehensive
efforts have revealed a systematic investigation of the genomic
landscapes of human cancer.

The Cancer Genome Atlas (TCGA) project started in 2005
with the goal of profiling and analyzing more than 10,000 tumor
samples from about 20 tumor types, provides an unprecedented
opportunity to systematically analyze molecular aberrations of
cancer through the application of genomic technologies. For each
individual cancer type, the rich molecular data from six types of
omics platforms were analyzed and integrated to identify novel
oncogenic drivers, establish molecular subtypes and discover new
biomarkers (McLendon et al., 2008; Bell et al., 2011; Muzny et al.,
2012; Hammerman et al., 2012; Koboldt et al., 2012; Creighton
et al., 2013; Kandoth et al., 2013b). These comprehensive analy-
ses have identified many important genomic similarities among
tumor types and subtypes, which present an opportunity to
design tumor treatment strategies and enable therapeutic discov-
eries among tumors regardless of tissue or organ of origin. This
suggests the potential importance of developing a comprehen-
sive analysis across cancers to find the pan-cancer similarities and
tumor-specific characteristics.

To this end, TCGA launched the Pan-Cancer analysis project
to compare the molecular data of 12 tumor types (Figure 1). The
pan-cancer study aims to examine the similarities and differences
among the genomic and cellular alterations across diverse tumor
types by analyzing multiple profiles of large number of human
tumors. The first batch of research achievements of this promis-
ing project have been released very recently (Ciriello et al., 2013;

Kandoth et al., 2013a; Lawrence et al., 2013; Weinstein et al., 2013;
Zack et al., 2013). The recently published studies based on these
comprehensive datasets provide more systematic understanding
of human cancer on genomic, epigenomic, transcriptomic, pro-
teomic, and clinical levels. The majority of these findings focus
on cancer genomic variations such as somatic mutation, copy
number alteration, and chromosomal aberrations. Although the
pan-cancer project has made great advances, deciphering the
complicated data in meaningful terms is still in its early stage. In
this paper, we mainly review the progresses of Pan-cancer project,
discuss high-related “pan-cancer” studies and highlight potential
challenges and directions (Table 1).

SOMATIC MUTATIONS
Somatic mutations are essential for tumorigenesis and most
human cancers are caused by a small number of driver gene
mutations that develop over the course of about two decades
(Vogelstein et al., 2013). Therefore, a comprehensive investiga-
tion of the mutational landscape of multiple cancer types would
definitely be a critical basis for cancer diagnostics, therapeutics,
and selection of rational combination of therapies. Finding the
driver mutations from passengers will still be the major challenge
in cancer genomics. Large-scale genomic analysis and approaches
that use cross-tumor principles definitely enable the identification
of validated and novel driver genes while dramatically improving
the sensitivity and efficiency compared to the traditional calls by
individual-tumor-type research (Lawrence et al., 2013).

Kandoth et al. reported 127 significantly mutated genes from
diverse cellular processes across different tumor types, and identi-
fied cancer type-specific signatures of driver mutations in several
dominant cancer types (Kandoth et al., 2013a). They found
that kidney renal clear cell carcinoma (KIRC) has the strongest
exclusivity from the other 11 cancer types with high mutation
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FIGURE 1 | Multiple omics datasets from diverse tumor types enable

comprehensive analyses on numerous aspects of cancer genomics. The
pan-cancer data includes rich biomolecular profiles on six types of platforms
(mutation, copy number, methylation, gene expression, microRNA and
reverse phase protein arrays) from tumors occurring in different sites of the

body (glioblastoma, lymphoblastic acute myeloid leukemia, head, and neck
squamous carcinoma, lung adenocarcinoma, lung squamous carcinoma,
breast cancer, kidney renal, clear-cell carcinoma, ovarian carcinoma, bladder
carcinoma, colon adenocarcinoma, uterine cervical and endometrial
carcinoma, and rectal adenocarcinoma).

frequency of VHL and PBRM1. However, besides TP53, there was
hardly any common mutation shared by multiple cancer types
based on the observation of the reported genes, disenabling the
discovery of potential extending of shared effective treatments
among tumors. They pointed that the combination of drivers
varies for individual patients in each cancer type and it was cru-
cial for optimizing the treatment. Lawrence et al. conducted a
large-scale genomic analysis of somatic point mutations in exome
sequences from 4742 human cancers and identified nearly all
known cancer driver genes and 33 novel candidates (Lawrence
et al., 2014). However, more validations on these new drivers are
required with experimentally follow-up studies.

Phosphorylation has been considered as an important factor
in cancer which is involved in key processes such as the control of
proliferation, oncogenic kinase signaling. It was recently reported
that cancer may be driven by statistically significant and spatially
specific mutations in protein sites involved in cellular phospho-
rylation signaling (Reimand and Bader, 2013). More recently,
Reimand et al. extended their study to detect such mutations to
3185 tumor genomes across 12 cancer types, and predicted 54
additional cancer-specific drivers and 82 genes only seen in pan-
cancer analysis (Reimand et al., 2013). However, this analysis only
restricted known signaling alterations to protein-coding muta-
tions which only comprise a minority of all cancer mutations,
limiting the extent of mutated signaling in tumor cells caused by
other mechanisms.

It has been demonstrated that computational analyses of
sequence data for identifying driver mutations from large cohorts
of tumor samples are not trivial due to the heterogeneous
nature of cancer and all existing methods for the identification
of genes exhibiting signals of positive selection show particular

shortcomings and specific biases (Gonzalez-Perez et al., 2013a).
Recently, Tamborero et al. proposed an integrative strategy to
combine five complementary methods which enables the identifi-
cation of a comprehensive and high-confident pan-cancer driver
gene list (Tamborero et al., 2013). This analysis have shown that
the combination of complementary methods are effective than
individual methods. However, there is no gold-standard dataset
of driver and passenger genes to assess the quality of such com-
bination. Thus, it naturally introduces a computational issue that
what the reasonable or optimal combination of different meth-
ods is. Practical exploration on the composition and structure
of the investigated genomic dataset and detailed learning on the
principle of each method would help to form a better combina-
tion analysis than traditional intuitive operation, e.g., combining
the output p-values, or overlapping the top-ranking genes from
diverse algorithms.

The investigation of temporal relationship of somatic genetic
events would provide new insights into the discovery of driver
oncogenes. It is reported that the timing of vital mutation is likely
to be related to metastasis, which is responsible for the death of
most patients with cancer. The genetic changes that occur early
during malignant transformation may represent promising tar-
gets for therapeutic intervention (Vogelstein et al., 2013). Thus, a
comprehensive analysis of determining the temporal sequence of
somatic genetic events would help the identification of important
mutations across 12 cancer types, which was untouched exten-
sively by previous studies. This is probably because the lack of
effective computational algorithms (Attolini et al., 2010). More
efforts and techniques are needed in developing fast and accu-
rate models to resolve this issue. Moreover, the identification of
genetic alterations that leads to cancer metastasis is remarkably
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Table 1 | Brief summary of recent pan-cancer studies.

p/t Resources dt Summary References

1 3281/12 TCGA S Describe variable mutation frequencies and contexts and their links
to environmental factors and defects in DNA repair, and identify 127
significantly mutated genes.

Kandoth et al., 2013a

2 7042/30 TCGA, ICGC,
and others

S Extract 21 distinct mutational signatures, find some present in many
cancers and certain ones are associated with phenotypic features,
and discover localized hypermutation “kataegis” in many cancers.

Alexandrov et al.,
2013

3 3185/12 TCGA S Analyze known phosphorylation sites mutated by single nucleotide
variants, predict signaling-specific cancer driver genes, and create a
high-confidence collection of cellular signaling-related cancer
mutations.

Reimand et al., 2013

4 4632/13 TCGA, ICGC,
and others

S Propose a platform for summarizing somatic mutations, genes and
pathways involved in tumorigenesis, and identifying, ranking, and
visualizing cancer drivers.

Gonzalez-Perez et al.,
2013b

5 5277/19 TCGA SE APOBEC3B is the most likely cause of a large fraction of both
dispersed and clustered cytosine mutations in six distinct cancers.

Burns et al., 2013

6 3205/12 TCGA S(C) Employ five complementary methods to search for mutational driver
genes, demonstrate its advantage, and provide a list of 291
high-confidence cancer driver genes.

Tamborero et al.,
2013

7 3083/27 TCGA S Demonstrate the false-positive cancer gene identification issue,
provide a methodology MutSigCV to eliminate the artifactual
findings and enable the identification of true cancer associated
genes.

Lawrence et al., 2013

8 2680/14 TCGA, dbGaP,
and others

S Demonstrate a significant presence of the APOBEC mutation
pattern in certain cancers.

Roberts et al., 2013

9 4742/21 TCGA, dbGaP S Find that large-scale genomic analysis can identify nearly all known
cancer genes, report 33 novel genes, conduct down-sampling
analysis and estimate the tumor number of samples for
near-saturation.

Lawrence et al., 2014

10 4934/11 TCGA C Compare patterns of copy number change across cancer types,
determine individual SCNA events and their temporal ordering from
these profiles and identify functionally relevant correlations between
SCNAs.

Zack et al., 2013

11 8227/19 GEO C Discover similarity of chromosomal arm-level alterations and
co-occurring pairs of arm-level alterations, identify cancer-related
gene enriched recurrent focal alterations, and tumor type-specific
alterations with enriched functional categories.

Kim et al., 2013

12 3290/11 TCGA RE(CM) Infer recurrent cancer-associated miRNA-target relationships across
multiple cancer types, which were highly consistent with published
data from miRNA perturbation experiments and predictions based
on sequencing technology.

Jacobsen et al., 2013

13 4186/11 TCGA,
AGO-CLIP

MCRE Describe a pan-cancer co-regulated oncogenic microRNA
“superfamily,” define mutations in microRNA target sites, and
identify pan-cancer oncogenic co-targeting pathways by the
miR-17-19-130 superfamily members.

Hamilton et al., 2013

14 82 cell lines ENCODE ME Provide an atlas of DNA methylation across diverse samples, enable
new discoveries about DNA methylation and its role in gene
regulation and disease.

Varley et al., 2013

(Continued)
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Table 1 | Continued

p/t Resources dt Summary References

15 4379/11 TCGA P Develop a user-friendly data portal, The Cancer Proteome Atlas
(TCPA) with six modules: Summary, My Protein, Download,
Visualization, Analysis, and Cell Line.

Li et al., 2013

16 2920/11 TCGA and other
31 datasets

E(CS) Describe a method called “ESTIMATE” that uses gene expression
signatures to infer the fraction of stromal and immune cells in tumor
samples.

Yoshihara et al., 2013

17 4433/19 TCGA E Screen for expressed viruses across diverse cancers, provide a
large-scale virus–tumor association map, and confirm and extend
current knowledge.

Tang et al., 2013

18 3299/12 TCGA SCM(E) Develop an algorithmic approach to hierarchically stratify tumors,
divide tumors into two major classes, and reveal oncogenic
signatures to characterize tissue-independent subclasses of tumors.

Ciriello et al., 2013

p/t, number of patients/number of tumor types; Resources, major data resources; dt, major molecular data types used for pan-cancer study and validation analysis in

bracket including somatic mutation (S), copy number variation (C), DNA methylation (M), microRNA expression (R), mRNA expression (E) and reverse-phase protein

arrays (P); Summary, summary of the key contributions.

limited still now and need to be further studied with the abundant
pan-cancer data.

In order to reveal the causes of extensive somatic muta-
tions accrued in cancers, a global analysis with the pan-cancer
dataset found that APOBEC3B-catalyzed genomic uracil lesions
are responsible for a large proportion of mutations in distinct
cancer types (Burns et al., 2013). Cytidine deaminases, which
convert cytosine bases to uracil during RNA editing, may con-
tribute to DNA damage. A similar study showed a significant
presence of the APOBEC mutation pattern in bladder, cervical,
breast, head and neck, and lung cancers (Roberts et al., 2013).
Meanwhile, a newly introduced concept of understanding the
biological processes generating mutations, mutational processes,
were explored on the TCGA, ICGC and other datasets using
a previously developed computational framework. Finally, they
extracted more than 20 distinct mutational signatures, one of
which attributed to the former mentioned APOBEC family of
cytidine deaminases (Alexandrov et al., 2013). In addition, hyper-
mutation localized to small genomic regions called “kataegis” was
found in many cancer types.

All these comprehensive analyses on the mutation profiles
have proven the enhanced ability of detecting driver genes with
the increase in the number of patients across 12 tumor types.
However, cancer is a disease of pathways driven by underly-
ing systematic alterations. The main subjects of alterations are
not individual driver genes, but rather modules of function-
ally related proteins at pathway-level. With an increase in the
number of mutational profiles across different tissues, critical
and tumorigenesis-associated pathways would be discovered to
enable physicians to select the best combination therapy for
each patient. To provide an exhaustive description of potentially
actionable pathway-level catalog of the driver mutations would be
a challenge for specific targeted therapeutics across cancer types.

Computational methods for integrating, comparing and inter-
preting genome-scale molecular information are urgently needed

in current stage and known algorithmic approaches may be
adopted and adapted for such analysis. For example, to identify
mutated driver pathways using somatic mutation data, Vandin
et al. developed a method by considering mutual exclusive
principle and high coverage (Vandin et al., 2012). Zhao et al.
proposed a powerful mathematical programming model to solve
it and suggested to incorporate gene expression data to priori-
tize the true functional ones (Zhao et al., 2012). Ciriello et al.
proposed a network-based method to detect driver modules
that obey the mutual exclusivity principle (Ciriello et al., 2012).
Hofree et al. devised a network-based approach to integrate dis-
crete somatic mutation data with known biological molecular
networks to stratify patients into subtypes for individual tumor
types (Hofree et al., 2013). We believe that the similar network-
based framework can be adopted for cross-tumor comparative
analysis and finding tumor-specific features (Figure 2).

SOMATIC COPY NUMBER ALTERATIONS
Somatic copy number alterations (SCNA) are ubiquitous and
affect a majority of the genome in cancers. It has been com-
prehensively demonstrated that SCNAs play critical roles in
activating oncogenes and in inactivating tumor suppressors.
Distinguishing the driver events from the passenger SCNAs, iden-
tifying their gene targets and describing their functional roles are
major challenges in current stage. The unprecedented large-scale
data of copy number profiles across cancers will enable the identi-
fication of recurrent chromosomal alterations with potential clin-
ical benefits, provide more systematic understanding of human
cancer, and leads to substantial advances in cancer diagnostics and
therapeutics.

In a recent study, Zack et al. conducted a comprehensive anal-
ysis of high-resolution copy number profiles of the TCGA data
and identified common patterns of SCNA across cancer types
(Zack et al., 2013). They found that whole-genome doubling
observed in 37% of cancers was associated with higher rates
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FIGURE 2 | Two potential network-based frameworks for cross-tumor comparative analysis and tumor-specific feature discovery.

of every other type of SCNA. They suggested that the diverse
lengths of SCNAs in the middle of chromosomes and those of
the telomere-bounded ones indicate different mechanisms of gen-
eration. They reported a number of significantly recurrent focal
SCNAs in 140 regions, some of which were enriched for genes
involved in epigenetic regulation, or encompassed genes tend-
ing to generating interacting protein product. In another study,
Kim et al. found that chromosomal arm-level alterations among
developmentally related tumor types tend to be similar (Kim
et al., 2013). They also reported a number of co-occurring pairs
of arm-level alterations, and found that recurrent pan-cancer
focal alterations are enriched with known cancer related genes.
Both of these two studies explored the rare cataclysmic event that
occurs in a small fraction of chromosomes called chromothripsis.
Specifically, a number of localized chromothripsis events associ-
ated with known cancer-related genes were revealed on chromo-
some 2 in some neuroblastoma cases (Kim et al., 2013). Similarly,
Zack et al. revealed that chromothripsis was detected in 16%
of glioblastomas, reaching the highest rate across cancers (Zack
et al., 2013). The fact that arm-level alterations tend to be shared
among diverse cancer types was also reported in a previous study
(Beroukhim et al., 2010), where 158 regions of focal somatic copy-
number alterations were identified and a large majority of them
were present at significant frequency in multiple cancer types.
Such large-scale analysis provides insights into mechanisms of
generation and functional consequences of cancer-related SCNAs,
which cannot be revealed directly in individual cancer.

However, due to the intrinsic complexity of cancer genomes,
powerful algorithmic approaches are still needed for deep explo-
ration of the large-scale copy number alteration profiles for driver
events and the chromothripsis based on the integration of new
data resources. Statistical analysis of co-occurrence and mutual
exclusivity of genomic aberrations were needed to be further

explored. Akavia et al. once developed a computational frame-
work to integrate chromosomal copy number and gene expres-
sion data for identifying cancer drivers based on the hypothesis
that copy number aberrations often influence the expression of
genes in a module via changes in expression of the driver (Akavia
et al., 2010). Extending of such computational framework for
identifying robust common drivers and cancer-specific ones will
be promising in the near future.

Recently, a novel algorithmic approach that uses 479 selected
functional events obtained from significance analysis on the
mutation, copy number variation and DNA methylation profiles
derived a hierarchical classification of 3299 TCGA tumors from
12 cancer types (Ciriello et al., 2013). The top two classes of the
clusters are dominated by mutations (M class) and copy num-
ber changes (C class) respectively, which would be due to the
treatment of the mutation and copy number features equally and
separately. The M class of tumors contained almost all the samples
in kidney clear-cell carcinoma, while almost all ovarian cancer fell
into the C class. Patients within the same subclass may be ben-
efited from the observed cross-cancer distribution of targetable
events. Integrating these three kinds of significant features with
different weights on gene-levels would provide diverse findings
and the ready-processed data matrix of selected functional events
will be valuable for other related analysis.

DNA METHYLATION ALTERATIONS
DNA methylation is a key determinant of regulatory chromatin
complexes that has a complex relationship with gene expression
and was found to be dysregulated in many cancers. Recently, a
large-scale DNA methylation study on 82 human cell lines and
tissues provides an atlas of DNA methylation across diverse and
well-characterized samples and enables new discoveries about
DNA methylation and its role in gene regulation and disease
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(Varley et al., 2013). The comparisons of methylation pro-
files across different cancer cell lines identified cancer-associated
and cell-type specific methylation signatures. The relationship
between DNA methylation and gene expression levels were well
observed across the genome; however, evidences of its directed
or indirected associations with other molecular and phenotypic
characteristics across multiple cancers are of potential interest and
are worth further exploring with the aid of pan-cancer data.

MicroRNA AND GENE EXPRESSIONS
MicroRNAs (miRNA) have been demonstrated to play key roles
in gene regulation by binding target mRNAs in a sequence
complementary manner. Previous studies have shown that dys-
regulation of microRNAs can contribute to tumor formation
and progression. Recently, Jacobsen et al. explored the common
processes of tumor biology regulated by microRNAs across 11
diverse cancer types (Jacobsen et al., 2013). They adopted a mul-
tivariate linear regression model to evaluate a causal relationship
score of each pair of miRNA and mRNA in individual cancer
types and employed a rank-based statistical method to integrate
scores obtained from multiple cancer types to infer recurrent
pan cancer-associated miRNA-mRNA relationships from miRNA
and mRNA expression profiles. The predicted miRNA-target
interactions were shown to be highly consistent with published
experimental data and computational predictions, and form a
high-confidence pan-cancer network of 143 recurrent target rela-
tionships for further analysis. Computationally, this current anal-
ysis didn’t address the potential nonlinear effect between miRNA
and mRNA which need to be addressed further.

In another study, Hamilton et al. explored the microRNA reg-
ulatory landscape and identified pan-cancer microRNA drivers of
cancer by integrating the TCGA Pan-Cancer microRNA, mRNA,
copy number variation (CNV) and exome-sequencing data sets
from 12 tumor types with a miRNA target atlas composed of
publicly available Argonaute Crosslinking Immunoprecipitation
(AGO-CLIP) data (Hamilton et al., 2013). They showed a
pan-cancer, coregulated oncogenic microRNA “superfamily,”

which cotargets critical tumor suppressors via a central GUGC
core motif. Through these two integrative pan-cancer analysis
frameworks, we were able to understand microRNA regulatory
architectures across multiple tumor types. Both studies have
shown new examples of miRNAs that coordinately regulate cancer
pathways across many cancer types, demonstrating the potential
roles of miRNA-target co-modules. In the future studies, com-
putational techniques for identifying such co-modules (Zhang
et al., 2011) can be developed to pan-cancer data set for exploring
common ones across diverse cancer types directly.

In addition, other pan-cancer related works include a method
that uses gene expression signatures to infer the fraction of stro-
mal and immune cells in tumor samples (Yoshihara et al., 2013),
and a landscape of virus–tumor map generated using transcrip-
tome sequencing data (Tang et al., 2013). Actually, 10 year ago,
Segal et al. have conducted a study to address the common-
alities and variations between different types of tumor using
DNA microarrays (Segal et al., 2004). They implemented an inte-
grated analysis of 1975 published microarrays spanning 22 tumor
types. They defined co-expression modules based on expression
profiles in different tumors and employed a unified analysis to
characterize gene-expression profiles in tumors with activated
and deactivated modules. They have found that activation of
some modules is specific to particular types of tumor and other
modules are shared across a diverse set of tumors. We believe that
the revisit of the large-scale pan-cancer study in terms of expres-
sion profiles and integration analysis with other genomics data
will improve the understanding for diagnostic, prognostic and
therapeutic studies.

WEB TOOLS FOR PAN-CANCER STUDY
Several useful web tools have been developed to interactively visu-
alize and explore the large-scale TCGA pan-cancer data (Table 2).
Specifically, Gonzalez-Perez et al. developed a web platform
called IntOGen-mutations to identify and visualize cancer drivers
across tumor types, which provides convenience for better clin-
ical decision-making (Gonzalez-Perez et al., 2013b). Moreover,

Table 2 | Brief summary of useful webserver or database for pan-cancer study.

Name Website Key purposes References

IntOGen-mutations http://www.intogen.org/mutations Identify and visualize cancer drivers across tumor types. Gonzalez-Perez
et al., 2013b

CancerMiner http://cancerminer.org Search recurring microRNA-mRNA associations across
cancer types.

Jacobsen et al.,
2013

Synapse https://www.synapse.org/ Collaborate with the TCGA pan-cancer group to share and
update data, results and methodologies.

Omberg et al.,
2013

TCGA http://cancergenome.nih.gov/ Provide a platform for researchers to search, download, and
analyze data sets generated by TCGA.

Weinstein et al.,
2013

TCPA http://bioinformatics.mdanderson.org/
main/TCPA:Overview

Facilitate access of the broader research community to
cancer proteomics datasets.

Li et al., 2013

UCSC Cancer Genomics
Browser

https://genome-cancer.ucsc.edu Offer interactive visualization and exploration of TCGA
genomic, phenotypic, and clinical data.

Cline et al., 2013
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Li et al. developed a user-friendly data portal with six modules,
The Cancer Proteome Atlas (TCPA), which provides comprehen-
sive, and unique cancer proteomic data and powerful visualizing
and analysis modules for exploring such data (Li et al., 2013).
Jacobsen et al. have presented all predictions of miRNA-target
relationships in their study on an online resource, which allows
exploration, prioritization and visualization of novel miRNA-
target interactions in TCGA data (Jacobsen et al., 2013). The
University of California Santa Cruz (UCSC) Genome Browser has
become a very important tool which offers online public access
to a growing database of genomic sequence and annotations for
a large collection of organisms and provides an integrated envi-
ronment for visualizing, comparing, analyzing and sharing both
publicly available and user-generated genomic data sets with var-
ious web-based tools. Cline et al. has extended this powerful
Browser to explore the impact of genomic alterations on phe-
notypes by visualizing data of different platforms and levels,
performing cancer classifications and conducting patient survival
analysis (Cline et al., 2013). The Synapse web server developed by
Sage Bionetworks is an informatics platform of public resources
for the scientific community and encourages scientists to discover
and share data, models, and analysis methods. The TCGA pan-
cancer group has collaborated on this system to share and evolve
data, results, and methodologies throughout the full duration of
the project (Omberg et al., 2013). More importantly, updates of
new datasets and discoveries will be immediately available based
on this system. In summary, all these resources and tools will
provide great convenience and promote pan-cancer type of study.

DISCUSSION AND CONCLUSION
Although several previous pan-cancer studies focusing on mul-
tiple tumor types or cell lines have been reported before (Segal
et al., 2004; Lee et al., 2008; Sahin et al., 2008; Wu et al., 2010;
Beroukhim et al., 2010), the ongoing pan-cancer project has pro-
vided an unequaled resource for the integrative analysis of multi-
ple cancer types, and achieved remarkable discoveries. Generally,
the main investigation and observations are attributable to two
fundamental aspects: intra-cancer heterogeneity and cross-cancer
similarity reflected in different levels of molecular properties.
However, along with these progresses, new challenges are emerg-
ing and pressing to be resolved.

How to integrate the data generated on different platforms or
different versions of the same platform is an unavoidable chal-
lenge which doesn’t account for the challenge in the integration
of data across cancer-types. Consensus and reliable standardiza-
tion of the input data will be a key step to obtain robust and
reliable results from the true biological signals and conquer the
unwanted batch effects. Large-scale collaborative analysis and
open community-based competition has been suggested to be one
possible solution to establish best practices for overcoming this
challenge (Omberg et al., 2013).

To our knowledge, there were no well-established and uni-
fied approaches to integrate different molecule data in pan-cancer
studies. There were only some general routine techniques such as
robust quantile normalization or z-score transformation for con-
quering the data scale issue of different cancer datasets. Currently,
most published pan-cancer studies prefer to rerun the same

algorithm on each cancer type individually and compare or com-
bine the results to derive the pan-cancer similarities in statistical
fashion or meta-analysis.

The multi-dimensional genomic profiling data provide unique
opportunities to study the coordination between regulatory
mechanisms on multiple levels. Recently, we have developed
methods for the integrative analysis of multi-dimensional
genomics data and the discovery of underlying combinatorial
patterns (Li et al., 2012; Zhang et al., 2012). The discovered
multi-dimensional modules have been demonstrated to reveal
perturbed pathways that would have been overlooked with only
a single type of data, uncover associations between different lay-
ers of cellular activities and allow the identification of clinically
distinct patient subgroups. It will be valuable to adopt such study
to uncover hidden patterns of multi-dimensional “omics” data
across tumor types.

Due to the shared molecular dimension, the pan-cancer stud-
ies are focusing on the molecular properties. However, unlike
molecular profiles, most clinical features are incomparable across
tumor types due to the nature and availability of such data
(Weinstein et al., 2013). For example, tumor stage and grade are
not comparable as each tumor has its own system. Furthermore,
some clinical features are collected according to the classification
by tissue or organ, making them vary widely across tumors. Thus,
how to effectively employ the clinical features in performing com-
parative analysis involving multiple cancers will be an important
but challenging issue.

Almost all the pan-cancer studies are involved in direct use
of existing computing techniques, or previously well-developed
approach with an extending analysis on the new dataset. However,
the uniqueness and complexity of the pan-cancer data may
require more specific and modified approaches for novel discov-
eries of underlying principles in tumor evolution. Moreover, in
contrast to well-studied phenotypic heterogeneity in tumors, the
genetic heterogeneity among the cells of an individual tumor or
tumors of different patients set an obstacle to effective response to
uniformly designed therapeutics. This issue could not be simply
resolved by numerical calculation. More efforts on personalized
medicine and development of treatment should take advantage of
detection of this heterogeneity. For example, Liu et al. evaluated
the patient survival prediction performance of genomic and clin-
ical data on the five intrinsic breast cancer subtypes and revealed
that molecular gene profiles and clinical features have different
prognostic power (Liu et al., 2014). How to extend this kind of
studies to make a pan-cancer type of analysis will be an interesting
and meaningful problem.

Distinguishing and interpreting the functional role of variants
in the noncoding parts of the sequences is an open frontier which
has not been as well explored so far. In addition, the prediction
of the functional consequences of chromosomal- scale structural
variation are also challenging (Weinstein et al., 2013; Wheeler and
Wang, 2013).

The ultimate goal of almost all cross cancer studies is to affect
clinical decision-making, accelerate the discovery of novel thera-
peutic agents applied for tumors rising from different organs with
similar genomic characteristics. The number of commercially
available targeted cancer drugs is still limited nowadays. New
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computational findings require rapid and effective methods for
functional validation. Experimental follow-ups are always crit-
ical to assess the hypotheses and consequences. Therefore, a
great challenge is how to speed up the process of translat-
ing novel discoveries into treatments based on experimental
measurements.

As we known that, the process of tumor usually take decades
to develop but cancer metastasis occurs only a few years before
death. Thus, the investigation on molecular aberrations account
for cancer metastasis should be highly informative. Moreover, the
knowledge learned from cancer genomics can also be exploited
to develop methods for prevention and early detection of cancer,
which will be essential to reduce cancer morbidity and mortal-
ity (Vogelstein et al., 2013). Besides, the causal relationships of
several carcinogenic etiologies with multiple cancer types are also
worth exploration (Weinstein et al., 2013). All these challenges
enable the pan-cancer study to be a hot topic.
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