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The central role of kinases in virtually all signal transduction networks is the driving
motivation for the development of compounds modulating their activity. ATP-mimetic
inhibitors are essential tools for elucidating signaling pathways and are emerging as
promising therapeutic agents. However, off-target ligand binding and complex and
sometimes unexpected kinase/inhibitor relationships can occur for seemingly unrelated
kinases, stressing that computational approaches are needed for learning the interaction
determinants and for the inference of the effect of small compounds on a given kinase.
Recently published high-throughput profiling studies assessed the effects of thousands
of small compound inhibitors, covering a substantial portion of the kinome. This wealth
of data paved the road for computational resources and methods that can offer a major
contribution in understanding the reasons of the inhibition, helping in the rational design of
more specific molecules, in the in silico prediction of inhibition for those neglected kinases
for which no systematic analysis has been carried yet, in the selection of novel inhibitors
with desired selectivity, and offering novel avenues of personalized therapies.
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INTRODUCTION
The kinome plays a predominant role in signal transduction net-
works and cellular responses; its involvement in a large number of
pathologies is a major impulse for the identification and develop-
ment of compounds modulating the activity of individual kinases
or kinase families. Currently, eleven kinase inhibitors are FDA-
approved for cancer treatment, and 149 inhibitors and 42 distinct
kinase targets are being tested in clinical trials (Fedorov et al., 2010;
Chahrour et al., 2012; see http://www.brimr.org/PKI/PKIs.htm
for an updated list). In addition to their promises as therapeu-
tical agents, kinase inhibitors are commonly used as research
tools to disclose the biological consequences of the inactivation
of their targets. Generally, kinase inhibitors are ATP-mimetic
compounds. The majority of known inhibitors belong to the
so-called type I class, and they occupy directly the ATP bind-
ing site, located in a hydrophobic cleft between the two lobes of
the kinase domain, while type II inhibitors target the ATP bind-
ing site as well, but extend also to an allosteric pocket adjacent
to the ATP binding site; additional non-ATP-mimetic inhibitor
classes (type III, IV, and V), of which a limited number of exam-
ples is currently known, seem very promising therapeutic agents
given their generally high specificity (Liu and Gray, 2006; Garuti
et al., 2010; Chahrour et al., 2012; Gavrin and Saiah, 2013). An
example of type I, II, and IV inhibitors is provided in Figure 1.
For type I and II inhibitors, the evolutionary structural con-
servation of the kinase ATP-binding site can lead to off-target
binding, and while similar kinases tend to show similar inhibi-
tion profiles by sharing recurring sequence and structural patterns
(Chiu et al., 2013), often complex kinase/inhibitor relationships
occur, where kinase bioactivity profiles cannot be reconciled to

their phylogenetic relationships (Paricharak et al., 2013). While
absolute specificity toward an individual kinase is not always nec-
essary for a compound to achieve a therapeutic effect (Mencher
and Wang, 2005), a detailed knowledge of target selectivity for
kinase inhibitors is crucial for predicting and interpreting the
effects of inhibitors, and for designing drugs with a desired
selectivity. However, kinase inhibitor selectivity is generally not
inclusively known for the majority of the tested compounds, as
kinase research has been principally focused on a small subset of
the kinome.

Traditional kinase inhibitor analysis is a low-throughput pro-
cess in which the capability of small compounds to decrease the
phosphorylation activity (usually reported as the IC50 or as the
remaining or residual activity of the kinase) or their binding affin-
ity (as its dissociation constant) is measured, but are generally not
extended to the characterization of the inhibitory abilities of a
given compound against the entire kinome. Such data are mined
from the literature and collected in general-purpose databases such
as ChEMBL (Gaulton et al., 2012) and STITCH (Kuhn et al., 2014),
or in kinase-dedicated public resources such as the CheEMBL
Kinase SARfari, or the commercially available Kinase Knowledge-
base (KKB) by Eidogen-Sertanty (Oceanside, CA, USA) and the
kinase inhibitor database provided by GVK Biosciences (Hyder-
abad, India). While largely populated, such databases tend to be
highly heterogeneous by including evidences obtained by diverse
means.

However, in recent years the results of medium- and high-
throughput profiling studies became available, tackling inhibi-
tion of the phosphorylation activity for panels of widely used
research compounds and clinical agents against large subsets
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FIGURE 1 | Binding of the ABL kinase with dasatinib (type I inhibitor,

shown in purple), imatinib (type II inhibitor, shown in green), and

GNF-2 (type IV inhibitor, shown in blue). The human ABL kinase
co-crystallized with imatinib (PDB code 1IEP) was used as reference for the
structural superposition of the human ABL co-crystallized with dasatinib
(PDB code 2GQG) and of the mouse ABL in complex with the allosteric
inhibitor GNF-2 (PDB code 3K5V). Only the ribbon representation of the
human ABL kinase domain from 1IEP (chain A) is shown.

of the human kinome (Table 1). These studies were able
to identify novel inhibitor chemotypes for specific kinase tar-
gets and to reveal the target specificities of a large set of
kinase inhibitors. Importantly, these panels also provide nega-
tive results, i.e., inhibitors having little or no effect on tested

Table 1 | Kinase/inhibitor profiling panels.

Dataset Kinases Compounds Readout

Fabian et al. (2005) 119 20 Kd

Bain et al. (2007) 70–80* 65 % Activity; IC50

Fedorov et al. (2007) 60 156 �Tm

Bamborough et al. (2008) 203 577 % Control

Karaman et al. (2008) 317 38 Kd

Posy et al. (2011) 317–402* 21,851 % Control

Davis et al. (2011) 442 72 Kd

Miduturu et al. (2011) 353 118 % Control; Kd

Metz et al. (2011) 172 3,858 Ki

Anastassiadis et al. (2011) 300 178 % Activity

Cao et al. (2013) 234 158 % Activity; IC50

Sutherland et al. (2013) 100 2,871 IC50

For each dataset, the number of tested kinases and compounds is reported,
together with the type or provided readout: Kd (dissociation constant); Ki (inhibi-
tion constant); % Activity (remaining catalytic activity); % Control (percentage of
kinase bound to the inhibitor compared to a control); IC50 (half maximal inhibitory
concentration); �Tm (thermal stability shift upon inhibitor binding); *: not all
kinase/inhibitor combinations were tested.

kinases, which are instrumental for computational learning
techniques and are generally absent or scarce in low-throughput
settings.

Additionally, a large and growing number of known three-
dimensional (3D) structures of whole kinases or kinase domains
are available in the Protein Data Bank (PDB, Berman et al., 2013),
and, in few cases, the kinase was also co-crystallized with an
inhibitor. These structures provide a rich background for a detailed
analysis of kinase binding pockets and for a better identification
of binding determinants.

Computational methods for kinase/inhibitor relationships
analysis and inference were successfully attempted in the past
(e.g., Manallack et al., 2002; Vieth et al., 2004; Xia et al., 2004;
Chuaqui et al., 2005), but were limited by the incomplete
and heterogeneous data available at the time. In this review
we focused on recent computational methods and resources
that employ the latest kinase inhibition profiling data but
go beyond standard quantitative structure-activity relationship
(QSAR) modeling approaches, which are generally specific for
a single target, being instead purposely tailored toward kinase
inhibition analysis and applied to the whole kinome, taking
advantage from the overall kinase domain conservation and
from shared binding patterns and characteristics and provid-
ing multidimensional structure-activity relationships concerning
tens or hundreds of targets at the same time (Goldstein et al.,
2008).

METHODS FOR KINASE/INHIBITOR INFERENCE
Procedures that use inhibition data from panels of proteins tested
against panels of compounds are generally based on numerical
descriptions of physicochemical, structural and/or geometrical
properties of both ligands and targets, and seek possibly non-linear
relationships that explain the binding profiles. Machine learning
methods are therefore particularly suited, either for classification
(binds/does not bind) or regression on the measured inhibition
values (e.g., IC50 or Kd). Since all information available for any
kinase target and/or inhibitor is used for learning, these studies can
be considered a multi-target approach. Additionally, they can be
used to infer novel kinase/inhibitor relationships, also for kinases
and compounds not included in the training set.

A number of recent papers explored this kind of approach, dif-
fering in the employed training dataset, in the way compounds
and proteins are described and in the learning algorithm, but
following similar pipelines. For example, Niijima et al. (2012)
and Cao et al. (2013) both started from data extracted from
Kinase SARfari [in Niijima et al. (2012) the Metz dataset was
additionally used for external validation], and propose a simi-
lar kinase/inhibitor deconvolution approach, in which the whole
kinase sequences, or only the kinase ATP-binding pockets, are
deconstructed into residues (either described simply by amino
acid type or by physicochemical characteristics) and compounds
into chemical fragments or in topological Daylight fingerprints.
Yabuuchi et al. (2011) developed a method, called CGBVS (chem-
ical genomics-based virtual screening), in which compounds
were represented by a large set of substructure descriptors and
physicochemical properties, and protein descriptors were com-
puted from the protein sequence dipeptide composition using a
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string kernel. Originally developed for G-protein-coupled recep-
tor inhibitors, the method was also applied to kinases, using a
panel of 143 kinases and 8830 inhibitors, for a total of more
than 15,000 tested interactions extracted from the commercial
GVK Biosciences kinase inhibitor database. In Lapins and Wik-
berg (2010), starting from the Karaman dataset, compounds were
described by physicochemical and geometrical characteristics,
while kinases were described with either alignment-independent
or alignment-based methods, by building a multiple alignment
of the kinase domains, excluding gap-rich positions, describing
columns of the alignment with physicochemical properties, and
applying principal component analysis (PCA) and partial least
squares discriminant analysis to summarize descriptors. Schürer
and Muskal (2013) employed the Eidogen-Sertanty KKB Q4 2009
release, including more than 430,000 tested kinase/compound
pairs extracted from literature and patents. Given the hetero-
geneous nature of the dataset, data were subject to filtering,
standardization, and clustering procedures. For each kinase
in the dataset, active and inactive compounds were described
using extended connectivity fingerprints, and negative instances
for training were either known as inactive on a given kinase,
or taken as the entire set of molecules not tested on that
kinase.

Then, in these works, machine learning algorithms were trained
on kinases and compounds converted into numerical descrip-
tors, to learn associations between kinase residues and compound
fragments, and for inference. Variants of a naïve Bayesian (NB)
classifier or of a support vector machine (SVM) were used in
Niijima et al. (2012), a random forest (RF) in Cao et al. (2013),
SVM, decision trees, k-nearest neighbors, and partial least squares
projections in Lapins and Wikberg (2010), an SVM in Yabuuchi
et al. (2011), Laplacien-corrected NB classifiers, k-nearest neigh-
bors, and partial least squares regression in Schürer and Muskal
(2013). All these studies achieved good prediction performances:
from 0.67 to 0.73 correlation coefficient in Lapins and Wikberg
(2010); accuracy between 74 and 81% and matthews correlation
coefficient (MCC) between 0.3 and 0.48 in different tested datasets
and with different encodings and learning methods in Niijima
et al. (2012); 94% accuracy and 0.98 area under the ROC curve
(auROC) in Cao et al. (2013). In Schürer and Muskal (2013), the
auROC for individual kinase models vary from around 0.93 to 1,
and the prediction accuracy showed a positive correlation with the
number of known inhibitors available for training. In Yabuuchi
et al. (2011), some predicted novel inhibitors for the epidermal
growth factor receptor kinase and the cyclin-dependent kinase 2
were experimentally confirmed, sometimes showing scaffold hop-
ping (i.e., having radically different characteristics than known
inhibitors).

Another class of methods includes those taking advantage of
kinase 3D structures, used to obtain a more accurate representa-
tion of kinase binding sites. A reasonable assumption is that the
affinity that a kinase, or a set of kinases, show toward a compound
can be ascribed to set of residues that either allow or hinder the
binding, and that, once identified in the 3D structures, can be
looked for in other kinases to infer their binding ability, even for
those kinases for which the 3D structure is unknown, by taking
advantage of the kinase domain sequence conservation. Such sets

of residues can additionally be converted in numerical descriptors
for machine learning.

A subset of kinase/inhibitor pairs extracted from the Fabian
and Karaman datasets was used in Caffrey et al. (2008). For
these inhibitors the structure of the kinase/compound complex
is known, and the specificity determinants can be rationalized. An
algorithm was developed to predict specificity determinants given
a kinase multiple sequence alignment and structural information,
which was able to reproduce the known determinants and to high-
light non-trivial additional factors, and can be used as basis for the
design of drugs with a desired specificity.

X-ReactKIN (Brylinski and Skolnick, 2010) is a machine learn-
ing method for assessment of cross-reactivity in which each human
kinase domain structure was obtained through homology model-
ing, and binding sites residues were predicted using computational
methods. Similarity between kinases was computed by different
metrics using sequence, structure, and ligand binding profiles.
The system employed data from the Fabian and Karaman panels
for training and validation of a NB classifier, obtaining sensitiv-
ity higher than 0.5 for around 70% of the tested compounds,
and the Bamborough dataset was used for further validation,
finding significant correspondence (0.53 average Pearson cor-
relation) between predicted and experimental activity profiles.
The computed cross-reactivity profiles are freely available for
download.

In Huang et al. (2010), all kinase 3D structures available in the
PDB at the time were superposed to obtain a fine description of a
series of features known in the literature to be related to inhibitor
specificity, e.g., the size of the gatekeeper residue, that affects the
pocket accessibility, the hydrogen bonding and covalent bond-
ing ability at specific positions, the flexibility of the hinge loop
connecting the kinase domain small and large lobes, and others.
These features were extended to kinases for which the structure
in unknown via multiple alignments, converted into numerical
vectors and used to estimate a similarity between each pair of
kinases. Using these distances, a network of kinase binding sites
was constructed, which recapitulated well a network based on the
similarity between the inhibitor profiles in the Karaman dataset.
Integration of the binding site similarity network with the inhi-
bition profile network led to inference of off-target interactions,
some of which were validated experimentally.

On the same lines, in Anderson et al. (2012), starting from the
Karaman dataset, first kinases were clustered by similarity in bind-
ing affinity profiles for the inhibitors tested in the dataset. Kinases
within the same cluster were shown to have more similar bind-
ing sites, as detected by the comparison of the binding site 3D
structures extracted from the PDB. In silico docking procedures
then highlighted cluster-specific residues acting as interaction hot
spots, which were converted into a series of descriptors, used
for RF training, achieving 76% of prediction accuracy. The RF
was then used for the prediction of novel kinase/inhibitor rela-
tionships, some of which were experimentally tested, obtaining
a good agreement with the predicted Ki values in 70% of the
cases.

The Karaman dataset, crossed with kinase 3D structures avail-
able in the PDB, were also the starting point for the work presented
in Bryant et al. (2013); the structure of a kinase bound to a known
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type II kinase inhibitor, imatinib, was used as template to iden-
tify contact residues, mapped to all other considered kinases using
the Pfam (Punta et al., 2012) kinase family multiple alignment. A
combinatorial clustering was used to find subsets of binding site
residues that better correlate with the binding affinities reported in
the Karaman dataset. An SVM was then trained on these data, and
the prediction performance was estimated individually for each
inhibitor as the auROC, which ranges from 0.5 to 1 (mean 0.8).
Finally, the trained SVM was used to infer the binding ability of
unlabeled kinases.

INTEGRATIVE APPROACHES
The wealth of kinase inhibition profiling data presents great oppor-
tunities for being analyzed as a whole, by integrating data from
different resources in order to provide a unified view on kinome
inhibition. The whole kinase/inhibitor data can therefore be rep-
resented as a network, where binding can be treated as a binary
on–off relation or weighted by the binding affinity or by the
strength of the inhibitory effect. This kind of network can aid
in the identification and rationalization of drugs secondary effects
and facilitate drug repositioning.

KIDFamMap (Chiu et al., 2013) and K-Map (Kim et al., 2013)
are free web-databases in which kinase/inhibitor relationships,
retrieved from different sources, are connected and integrated with
other annotations to facilitate the at-a-glance investigation of the
kinome inhibition. In KIDFamMap, the Karaman, Anastassiadis
and Davis profiling panels, Kinase SARfari, the PDB, and oth-
ers resources, for a total of more than 186,000 kinase/compound
pairs, are investigated by decomposing each interaction into a
series of binding pocket sub-regions and compound fragments
preferences (Chen et al., 2010), and then extending the iden-
tified rules to the whole kinome (introducing the concept of
kinase/inhibitor families) and associated to known pathologies
involving kinases. Queries can start from a kinase, a compound
or a disease, retrieving a detailed overview of the kinase/inhibitor
interaction, all the other interactions belonging to the same family,
and a description of associated diseases and how allelic variants
might affect the compound binding. In K-Map the Anastassiadis
and Davis datasets were analyzed by building connectivity maps
based on the Kolmogorov–Smirnov statistic to find correlations
between inhibitors and lists of kinases. K-Map allows querying
these datasets by kinase, kinase family, custom lists, or kinase-
related GO terms, obtaining lists of associated inhibitors ranked
by correlation significance. Similarly, the user can start from lists
of inhibitors. The intent of K-Map is to provide insights for drug
development and repositioning.

Caveats of integrative approaches are that to convert data into
an on-off relation would require setting thresholds that might not
be easy to optimize, and that data from different sources might not
be directly comparable, so they must be opportunely processed. In
Sutherland et al. (2013) the Anastassiadis, Metz and Davis datasets
were compared to each other and to an additional profiling panel
(the Sutherland dataset in Table 1), by converting each readout in
an estimated IC50, testing the concordance between IC50 in dif-
ferent panels, and for promiscuity and selectivity measures. They
found that the all panels have good agreement in assessing whether
a compound is active or inactive on a given kinase, but the exact

inhibition values show instead low levels of concordance, as well
as measures of how much selective is a compound.

In Tang et al. (2014) the Metz, Davis, and Anastassiadis datasets
were compared and integrated with data from ChEMBL and
STITCH. Since these panels employed different assays and dif-
ferent readouts (Kd, Ki and percentage of remaining activity
for the Davis, Metz and Anastassiadis datasets, respectively), a
new method called KIBA (kinase inhibitor bioactivity) is intro-
duced to obtain a single comparable activity score for each
kinase/compound pair. The three panels have a relatively small
number of common tested kinase/inhibitor pairs; in such cases,
the Metz and Davis datasets show good degree of correlation
between readouts, which is smaller when both are compared with
the Anastassiadis panel. The project resulted in a kinase/inhibitor
bioactivity map comprising 467 kinases and more than 50,000
compounds, which is freely available.

CONCLUSION
While different in methods and scope, the approaches presented
here highlight the need for original and effective computational
methods to unravel the rich and complex kinase/inhibitor rela-
tionships systematically measured in inhibition profiling panels,
which can have significant implications in understanding the rea-
sons of the inhibition, helping in the rational design of bioactive
molecules, and can be used for the in silico prediction of inhibi-
tion for those neglected kinases for which no systematic analysis
has been carried yet, and for the selection of inhibitors with
desired promiscuity. Additionally, a better understanding of the
kinase determinants of inhibition can help in apprehending the
different response of individual patients to treatment, such as
inhibitor resistance due to specific mutations, moving toward a
more personalized treatment.
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