
OPINION ARTICLE
published: 02 July 2014

doi: 10.3389/fgene.2014.00199

On best practices in the development of bioinformatics
software
Felipe da Veiga Leprevost1,2*, Valmir C. Barbosa3, Eduardo L. Francisco2, Yasset Perez-Riverol4 and

Paulo C. Carvalho1

1 Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute - Fiocruz, Curitiba, Brazil
2 Hexabio Bioinformatics, Curitiba, Brazil

*Correspondence: felipe@leprevost.com.br

Edited by:

Max A. Alekseyev, George Washington University, USA

Reviewed by:

Son Pham, Salk Institute, USA
Jeremy Goecks, George Washington University, USA
Geir Kjetil Sandve, University of Oslo, Norway

Keywords: bioinformatics, best practices, source control, test, repository

1. INTRODUCTION
Bioinformatics is one of the major areas
of study in modern biology. Medium-
and large-scale quantitative biology stud-
ies have created a demand for professionals
with proficiency in multiple disciplines,
including computer science and statistical
inference besides biology. Bioinformatics
has now become a cornerstone in biol-
ogy, and yet the formal training of new
professionals (Perez-Riverol et al., 2013;
Via et al., 2013), the availability of good
services for data deposition, and the devel-
opment of new standards and software
coding rules (Sandve et al., 2013; Seemann,
2013) are still major concerns. Good pro-
gramming practices range from documen-
tation and code readability through design
patterns and testing (Via et al., 2013;
Wilson et al., 2014). Here, we highlight
some points for best practices and raise
important issues to be discussed by the
community.

2. SOURCE-CODE AVAILABILITY TO
REVIEWERS

It is debated among researchers whether
source codes should be made available to
reviewers, as doing so could allow for a
more complete review and evaluation of
the manuscript’s results. It could also ulti-
mately enable reviewers to demand qual-
ity and clarity in the same way as from
manuscripts originating from laboratory
experiments, in which a bad PCR or a
Western-Blot without controls may lead to

wrong interpretations of the results (Ince
et al., 2012). In the case of software, a
clear indication that best practices were
not followed can bespeak carelessness and
therefore indirectly signal that something
may be wrong. It is our opinion that
reviewing the source code from submit-
ted papers should be possible if desired,
though publishers would obviously have to
search for even more specialized review-
ers for the task. The review process does
not necessarily need to be done at the code
level but can be accomplished by evaluat-
ing the structure of the project, availabil-
ity of test units, and functional tests. By
organizing and providing tests with differ-
ent case scenarios the authors can easily
demonstrate how the software works and
how it behaves in different occasions. The
possibility of executing the code (without
having to go deeply into it) and of look-
ing into how particular issues are handled
in the code is important at all stages of
the work (both pre- and post-publication).
Further inspection by the scientific com-
munity will eventually lead to the same
advantages we see in open-source projects
like the Linux kernel (Torvalds, 2014b) or
the protocols used in the Internet. Bugs
can be spotted and improvements sug-
gested by the community. This is espe-
cially important because, as science is an
ever changing enterprise, always adapt-
ing and growing, the opportunity is given
for the software to evolve along with the
field.

3. SOFTWARE INDEXING AND
AVAILABILITY

A topic that we should address as a com-
munity is the possibility of indexing soft-
ware with a solution like the well-known
DOI system. An example of such an initia-
tive is the combined work of the Mozilla
Science Lab (Mozilla Foundation, 2014),
GitHub (GitHub, 2014), and Figshare
(Figshare, 2014). This would enable
researchers and practitioners to easily
keep track of different software versions,
thereby facilitating access and deployment
(Summers, 2014). Currently, it is common
for bioinformatics software to be hosted by
university or even personal or laboratory
websites. Although they are convenient
and provide users with quick access to
the material in question, such solutions
are also the source of a major problem
in bioinformatics, namely the discontin-
uation of software availability. An ideal
solution to this problem would be a cen-
tral hosting repository where each version
could be archived and made available. This
would also help when old versions became
necessary for old, third-party workflows.
Another important aspect is the ability to
prevent the deletion of previous versions
of a project, which would also help prevent
other projects from ceasing to exist after a
certain time or being abandoned.

4. DOCUMENTING THE SOURCE CODE
Software documentation can be catego-
rized into two groups, one targeted at

www.frontiersin.org July 2014 | Volume 5 | Article 199 | 1

3 Systems Engineering and Computer Science Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
4 Proteomics Services, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/journal/10.3389/fgene.2014.00199/full
http://community.frontiersin.org/people/u/104802
http://community.frontiersin.org/people/u/162339
http://community.frontiersin.org/people/u/49408
http://community.frontiersin.org/people/u/127334
mailto:felipe@leprevost.com.br
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Leprevost et al. On best practices in the development of bioinformatics software

software developers, the other at the end
users. The former is usually found in the
source code, or is linked to it, and is used
to explain the particularities of the code
itself, which is important especially for
software updating and customization. The
latter typically uses nontechnical language
and is aimed at aiding the user in the
process of software installation and execu-
tion. Without proper code documentation
the process of resolving a bug or includ-
ing new developers in the team becomes
a very complicated task. Users likewise
need to have access to the documentation
explaining its usage, which must include
all directives for installation under differ-
ent operating systems (when such is the
case) and for the handling of parameters
and input data prior to a run. It is also
important to note that we need proper
documentation for biologists, as they will
be the ones installing and using the pro-
grams. With easy-to-follow guidelines and
instructions for non-programmers, it is
possible to improve software usability.

5. SOURCE-CODE MANAGEMENT
During a software’s life cycle, a varying
number of developers can be involved with
its production and different versions of it
can be created. One of the main goals of
having source-code management is to have
all these aspects automatically taken care
of through the building of a historical reg-
istry of development. Solutions such as Git
allow the simultaneous collaboration with
several projects while greatly simplifying
each maintainer’s tasks of tracking and
resolving bugs, handling feature requests,
and launching upgrades (Torvalds, 2014a).
This also helps to promote the collabora-
tive aspect of software development since
anyone can join an ongoing project and
provide patches.

6. TEST LIBRARIES, SAMPLE DATA,
AND DATASET REPOSITORIES

A test library is a series of scripts designed
to test a given piece of software. It is meant
to aid in quickly determining whether the
software’s main modules are working as
expected. Ideally, all functions of the code
should be thus tested, but sometimes this
is not possible because of the size or com-
plexity of the project. What is fundamen-
tal to test, though, is whether the main
logic and operations are working correctly

whatever the running environment hap-
pens to be. Normally a test library is
shipped together with the software and
the tests are executed before installation to
certify that the main features are working
on the machine at hand. Another impor-
tant aspect of any scientific software is that
sample data be provided along with it, in
a manner similar to that in which supple-
mentary files are provided together with a
manuscript. Through “real-world” exam-
ples, users can verify what to expect of
the various analyses. Such examples also
allow for comparisons with other datasets
(Perez-Riverol et al., 2014).

7. THE ADVANTAGES OF THE
OPEN-SOURCE DEVELOPMENT

There are several advantages to making
a software project open source (Perez-
Riverol et al., 2014). In computer science,
projects are usually classified into two
major categories: open source and propri-
etary. Being open source means making
the code freely available, a simple ges-
ture that can have powerful implications
for user projects, especially those that are
science-related. One of the greatest advan-
tages of an open-source program is that it
is possible to see and understand all func-
tionalities and every calculation it does,
thus ensuring full transparency. The same
cannot be said of proprietary software,
in which case users are required, essen-
tially, to have faith in the product’s devel-
oper/seller and become unable to criticize
or properly know how results are obtained.
In general, open source means a greater
tendency toward reliability, as anyone can
peruse the source code and eventually spot
some bug. As such, an open-source project
is continually reviewed by the community.
When someone spots an error and then
corrects it, a patch can be generated and
sent to the code maintainer. One of the key
aspects of having an open-source project
is to provide clarity about how results are
generated and can be reproduced (Prli and
Procter, 2012).

8. FINAL CONSIDERATIONS
During the development phase of a soft-
ware project, adopting best practices in
programming involves investing time and
effort to better structure ideas as both the
code and the documentation are written.
Although such investment may at times

seem cumbersome, in the long run it
benefits both developers and users, and
is therefore valuable. In a related vein,
another crucial issue is trustworthiness:
from the perspective of the scientists using
it, a software tool abiding by good prac-
tices can provide more confidence as their
own projects are developed, which in turn
is a key aspect of any work based on data
analysis. All of this point in the direc-
tion of the software having more qual-
ity, since ultimately, quality depends on
programming practices. The more qual-
ity a software has, the longer it will live
and the more people will use it (Altschul
et al., 2013). In this regard, a noteworthy
initiative is the GMOD Galaxy, an open
and integrated workflow system which
allows the sharing of customized analyses
(Giardine, 2005). Other examples of soft-
wares following the best practices listed
above are Tophat (Trapnell et al., 2009),
Bowtie (Langmead et al., 2009), and the
BioPerl project (Stajich, 2002).

ACKNOWLEDGMENTS
Felipe da Veiga Leprevost, Valmir C.
Barbosa, and Paulo C. Carvalho are sup-
ported by Capes and CNPq; Valmir C.
Barbosa is supported by the FAPERJ BBP
grant; Yasset Perez-Riverol is supported
by the BBSRC PROCESS grant [reference
BB/K01997X/1].

REFERENCES
Altschul, S., Demchak, B., Durbin, R., Gentleman, R.,

Krzywinski, M., Li, H., et al. (2013). The anatomy
of successful computational biology software. Nat.
Biotechnol. 31, 894–897. doi: 10.1038/nbt0614-
592b

Figshare (2014). Figshare - Credit for All Your Research.
Available online at: http://figshare.com/

Giardine, B. (2005). Galaxy: a platform for interac-
tive large-scale genome analysis. Genome Res. 15,
1451–1455. doi: 10.1101/gr.4086505

GitHub (2014). Github. Available online at: http://
github.com/

Ince, D. C., Hatton, L., and Graham-Cumming, J.
(2012). The case for open computer programs.
Nature 482, 485–488. doi: 10.1038/nature10836

Langmead, B., Trapnell, C., Pop, M., and Salzberg,
S. L. (2009). Ultrafast and memory-efficient align-
ment of short DNA sequences to the human
genome. Genome Biol. 10:R25. doi: 10.1186/gb-
2009-10-3-r25

Mozilla Foundation. (2014). Mozilla Science Lab.
Available online at: http://mozillascience.org/

Perez-Riverol, Y., Hermjakob, H., Kohlbacher, O.,
Martens, L., Creasy, D., Cox, J., et al. (2013).
Computational proteomics pitfalls and chal-
lenges: havanabioinfo 2012 workshop report. J.

Frontiers in Genetics | Bioinformatics and Computational Biology July 2014 | Volume 5 | Article 199 | 2

http://figshare.com/
http://github.com/
http://github.com/
http://mozillascience.org/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Leprevost et al. On best practices in the development of bioinformatics software

Proteomics 87, 134–138. doi: 10.1016/j.jprot.2013.
01.019

Perez-Riverol, Y., Wang, R., Hermjakob, H., Mller,
M., Vesada, V., and Vizcano, J. A. (2014). Open
source libraries and frameworks for mass spec-
trometry based proteomics: a developer’s perspec-
tive. Biochim. Biophys. Acta. 1844(1 Pt A), 63–76.
doi: 10.1016/j.bbapap.2013.02.032

Prli, A., and Procter, J. B. (2012). Ten simple rules
for the open development of scientific software.
PLoS Comput. Biol. 8:e1002802. doi: 10.1371/jour-
nal.pcbi.1002802

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E.
(2013). Ten simple rules for reproducible compu-
tational research. PLoS Comput. Biol. 9:e1003285.
doi: 10.1371/journal.pcbi.1003285

Seemann, T. (2013). Ten recommendations for creat-
ing usable bioinformatics command line software.
Giga Sci. 2:15. doi: 10.1186/2047-217X-2-15

Stajich, J. E. (2002). The bioperl toolkit: perl modules
for the life sciences. Genome Res. 12, 1611–1618.
doi: 10.1101/gr.361602

Summers, N. (2014). Mozilla Science Lab, Github
and Figshare Team up to Fix the Citation of Code

in Academia. Available online at: thenextweb.
com/dd/2014/03/17/mozilla-science-lab-github-
figshare-team-fix-citation-code-academia/

Torvalds, L. (2014a). Git. Available online at: http://
git-scm.com

Torvalds, L. (2014b). The Linux Kernel Project.
Available online at: http://kernel.org

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009).
Tophat: discovering splice junctions with rna-seq.
Bioinformatics 25, 1105–1111. doi: 10.1093/bioin-
formatics/btp120

Via, A., Blicher, T., Bongcam-Rudloff, E., Brazas,
M. D., Brooksbank, C., Budd, A., et al. (2013).
Best practices in bioinformatics training for
life scientists. Brief Bioinform. 14, 528–537. doi:
10.1093/bib/bbt043

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong,
N. P., Davis, M., Guy, R. T., et al. (2014).
Best practices for scientific computing. PLoS
Biol. 12:e1001745. doi: 10.1371/journal.pbio.10
01745

Conflict of Interest Statement: The authors declare
that the research was conducted in the absence

of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Received: 24 April 2014; accepted: 13 June 2014;
published online: 02 July 2014.
Citation: Leprevost FV, Barbosa VC, Francisco EL,
Perez-Riverol Y and Carvalho PC (2014) On best prac-
tices in the development of bioinformatics software.
Front. Genet. 5:199. doi: 10.3389/fgene.2014.00199
This article was submitted to Bioinformatics and
Computational Biology, a section of the journal
Frontiers in Genetics.
Copyright © 2014 Leprevost, Barbosa, Francisco,
Perez-Riverol and Carvalho. This is an open-access
article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are
credited and that the original publication in this
journal is cited, in accordance with accepted aca-
demic practice. No use, distribution or reproduc-
tion is permitted which does not comply with these
terms.

www.frontiersin.org July 2014 | Volume 5 | Article 199 | 3

http://thenextweb.com/dd/2014/03/17/mozilla-science-lab-github-figshare-team-fix-citation-code-academia/
http://thenextweb.com/dd/2014/03/17/mozilla-science-lab-github-figshare-team-fix-citation-code-academia/
http://thenextweb.com/dd/2014/03/17/mozilla-science-lab-github-figshare-team-fix-citation-code-academia/
http://git-scm.com
http://git-scm.com
http://kernel.org
http://dx.doi.org/10.3389/fgene.2014.00199
http://dx.doi.org/10.3389/fgene.2014.00199
http://dx.doi.org/10.3389/fgene.2014.00199
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

	On best practices in the development of bioinformatics software
	Introduction
	Source-code Availability to Reviewers
	Software Indexing and Availability
	Documenting the Source Code
	Source-code Management
	Test Libraries, Sample Data, and Dataset Repositories
	The Advantages of the Open-source Development
	Final Considerations
	Acknowledgments
	References

