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Diabetes mellitus represents a group of complex metabolic diseases that result in impaired
glucose homeostasis, which includes destruction of β-cells or the failure of these insulin-
secreting cells to compensate for increased metabolic demand. Despite a strong interest
in characterizing the transcriptome of the different human islet cell types to understand the
molecular basis of diabetes, very little attention has been paid to the role of long non-coding
RNAs (lncRNAs) and their contribution to this disease. Here we summarize the growing
evidence for the potential role of these lncRNAs in β-cell function and dysregulation in
diabetes, with a focus on imprinted genomic loci.
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INTRODUCTION
Recent technological advances in the field of genome sequencing
have paved the way for a new appreciation of non-coding RNAs
in gene regulation. Ultra high-throughput transcriptome analyses
have revealed that the vast majority of the genome is transcribed,
with two-thirds of the human genome covered by processed tran-
scripts, of which only a small fraction (<2%) is translated into
proteins (Djebali et al., 2012). The identification of several com-
mon genomic and functional features of these untranslated RNAs
has led to their categorization into various classes of non-coding
RNAs. One such class that has been the focus of extensive research
is that of long non-coding RNAs (lncRNAs).

LncRNAs are defined as transcripts longer than 200 bp that
lack protein-coding potential (Guttman et al., 2009; Derrien et al.,
2012; Batista and Chang, 2013; Fatica and Bozzoni, 2014). Like
messenger RNAs, lncRNAs typically have multiple exons, are
processed using canonical splice sites, and may exist as sev-
eral isoforms (Ponjavic et al., 2007; Cabili et al., 2011; Derrien
et al., 2012). In contrast to mRNAs, lncRNAs preferentially dis-
play nuclear localization, consistent with their proposed function
in chromatin organization and regulation of gene expression
(Khalil et al., 2009; Zhao et al., 2010; Derrien et al., 2012; Guttman
and Rinn, 2012; Rinn and Chang, 2012; Fatica and Bozzoni,
2014).

Similar to protein-coding genes, lncRNA-encoding genes are
marked by chromatin signatures typical of active transcription in
the cell types where they are expressed, consisting of H3K4me3
(trimethylated lysine 4 in histone H3) at the promoter, followed
by H3K36me3 along the transcribed regions (so-called “K4–K36
domains”; Guttman et al., 2009; Khalil et al., 2009; Cabili et al.,
2011; Guttman and Rinn, 2012; Rinn and Chang, 2012). While
lncRNA exons display weaker evolutionary conservation than

those of protein-coding genes, there is evidence of positive selec-
tion for a subset of lncRNAs, which may be driven by constraints to
maintain secondary structure required for functional interactions
with their targets (Ponjavic et al., 2007; Guttman et al., 2009; Cabili
et al., 2011; Ulitsky et al., 2011; Derrien et al., 2012). In contrast, the
promoters of lncRNAs are as highly conserved as those of protein-
coding genes (Carninci et al., 2005; Ponjavic et al., 2007; Guttman
et al., 2009; Derrien et al., 2012; Batista and Chang, 2013). Despite
their overall lower expression levels, lncRNAs exhibit a higher
degree of tissue specificity compared to average protein-coding
genes (Mercer et al., 2008; Cabili et al., 2011; Derrien et al., 2012;
Batista and Chang, 2013; Fatica and Bozzoni, 2014).

Through numerous studies, several general principles of
lncRNA function have emerged. LncRNAs have been shown to
function both in cis, i.e., locally close to the site of their production,
and in trans, i.e., at sites on other chromosomes. LncRNAs have
been proposed to act as scaffolds for chromatin modifiers, block-
ers of transcription, antisense RNAs, microRNA sponges, protein
decoys, and enhancers (Cech and Steitz, 2014; Fatica and Bozzoni,
2014). In fact, the act of transcription of a lncRNA itself can inter-
fere with the regulatory function of a regulatory DNA sequence,
as exemplified in yeast (Martens et al., 2004) and in mammalian
imprinting (Latos et al., 2012). As a result of their diverse functions
in multiple tissues, mis-regulation of lncRNAs can lead to failure of
normal development and, consequently, to disease. Mammalian
chromatin modifiers such as the repressive polycomb complexes
often lack their own specific DNA-binding domains but instead
contain RNA-binding elements. LncRNAs can play critical roles
in directing these repressive chromatin modifying complexes to
their target regions (Bernstein and Allis, 2005; Rinn et al., 2007;
Zhao et al., 2010). One such example is the Foxf1-adjacent, non-
coding developmental regulatory RNA (Fendrr), a lncRNA that
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interacts with the polycomb repressive complex 2 (PRC2) and is
critical for heart development and function (Grote et al., 2013).
Similarly, the well-characterized HOTAIR lncRNA, which is tran-
scribed from the HOXC locus, is highly upregulated in primary
breast tumors and was shown to function through the silencing
of tumor suppressor genes in a PRC2-dependent manner [Gupta
et al., 2010; See Maass et al. (2014) for a list of lncRNAs currently
implicated in human diseases]. Taken together, these features sug-
gest that lncRNAs and other non-coding RNA species may play
an essential role in defining organismal complexity (Mattick and
Makunin, 2006; Taft et al., 2007).

These findings raise the possibility that lncRNAs and other non-
coding RNAs may be exciting molecular candidates to account for
the unresolved genetic risk in complex diseases such as diabetes
(Medici et al., 1999; Hyttinen et al., 2003). Diabetes mellitus repre-
sents a group of metabolic diseases that result in impaired glucose
homeostasis. In the case of type 1 diabetes (T1D), metabolic
impairment is the result of autoimmune destruction of insulin-
producing pancreatic β-cells. In type 2 diabetes (T2D), the most
prevalent form of the disease, the defect in glucose metabolism is
the result of decreased sensitivity of peripheral tissues to insulin
action, accompanied by failure of β-cells to compensate for the
increased metabolic demand (Zimmet et al., 2001). Together, these
diseases affect over 25 million Americans and account for $176
billion in healthcare costs per year in the US alone (Association,
2013), necessitating the pursuit of more effective and personalized
treatments.

Significant efforts have been made to attain a better understand-
ing of the causes of diabetes at the molecular level. Linkage analysis
of affected families led to the successful identification of causal
gene mutation in several rare, Mendelian forms of the disease
(Fajans et al., 2001; O’Rahilly, 2009). However, large-scale efforts
to identify DNA variants associated with more common forms
of diabetes through genome-wide association studies (GWAS)
have predominantly identified candidate variants that lie in non-
coding regions and with as yet unknown functions (McCarthy,
2010). Thus, to improve our current understanding of the molec-
ular basis of diabetes mellitus and to develop better treatment
strategies, we need to carefully characterize the transcriptome of
pancreatic β-cells, with a focus on elucidating the functions of
non-coding transcripts. In this review, we present a summary of
recent evidence for a role of lncRNAs in the regulation of β-cell
function and their potential contribution to the pathogenesis of
diabetes.

β-CELL lncRNAs
The most comprehensive catalog of human lncRNAs expressed in
β-cells published thus far is that by Morán et al. (2012). In this
study, the authors profiled whole islet and FACS-sorted β-cells
and identified 1,128 distinct transcripts that displayed many of
the typical properties of lncRNAs described above, including the
“K4–K36” histone modification domains, lack of protein-coding
potential, and non-uniform expression levels among tissues. Most
notably, the lncRNAs identified were roughly five times more
islet-specific compared to general protein-coding genes, and the
vast majority had orthologous genes in the mouse genome. Ku
et al. (2012) similarly characterized mouse islet- and β-cell-specific

transcripts and identified 1,359 high-confidence lncRNAs with
several of the aforementioned properties. Using high-throughput
transcriptome analysis of sorted human islets, lncRNAs expressed
in α-cells have also been identified (Bramswig et al., 2013).

Of particular interest was the fact that lncRNAs were often
found in proximity to critical islet-specific transcription factors
(Ku et al., 2012; Morán et al., 2012). Thus, protein-coding genes
adjacent to islet-enriched lncRNAs were also more likely to be islet-
specific than the average protein-coding gene (Morán et al., 2012).
This correlation has led to the suggestion that lncRNAs and nearby
protein-coding genes share common regulatory elements. Indeed,
lncRNAs were often found in large regions of open chromatin
that were uniquely associated with protein-coding genes expressed
highly in islets (Gaulton et al., 2010).

The temporal expression of islet lncRNAs has also been stud-
ied by Morán et al. (2012) in human embryonic pancreases as
well as in a stepwise in vitro β-cell differentiation model using
human embryonic stem (ES) cells (developed by Kroon et al.,
2008). Unlike some lncRNAs that are known to be critical to early
stages of embryonic development (Guttman et al., 2011; Grote
et al., 2013), the expression of a majority of islet lncRNAs identi-
fied in this study (Morán et al., 2012) is restricted to differentiated,
mature endocrine cells. The orthologous mouse lncRNAs (e.g.,
Mi-Lnc80) exhibit similar cell- and stage-specific expression.

The characteristics of these islet lncRNAs imply a role for these
RNAs in mature β-cell function. To test this hypothesis, Morán
et al. (2012) used short hairpin RNAs (shRNAs) to suppress the
activity of one such lncRNA transcript in the human EndoC-βH1
β-cell line (Ravassard et al., 2011). From a panel of known islet-
specific transcripts, the authors identified GLIS3 as a downstream
target of HI-LNC25, a lncRNA that shares a regulatory domain
with MAFB. Variants at the GLIS3 locus are associated with dif-
ferent risks for T1D (Barrett et al., 2009), elevated fasting glucose
levels (Dupuis et al., 2010), as well as T2D (Cho et al., 2012). Loss-
of function studies suggest that GLIS3 encodes a transcription
factor critical for regulating the expression of insulin and sev-
eral key islet-transcription factors, and may confer risk for both
T1D and T2D by resulting in diminished β-cell numbers and by
promoting the formation of a pro-apoptotic splice variant of the
protein Bim (Kang et al., 2009; Nogueira et al., 2013; ZeRuth et al.,
2013). However, the shRNA-mediated decrease in GLIS3 mRNA
levels had no impact on glucose-stimulated insulin secretion or
insulin transcript levels in the transduced EndoC-βH1 β-cell line,
possibly because this cell line does not recapitulate all aspects of
β-cell function in vivo. Additionally, only a minor fraction of β-cell
expressed lncRNAs was responsive to elevated glucose levels in
human islets.

As previously noted, several risk variants for common forms
of diabetes identified by GWAS do not change the protein-coding
potential of known genes, suggesting that they might affect as
yet unidentified regulatory elements (McCarthy, 2010). Using a
computational tool known as MAGENTA to search for enrichment
of genetic associations in a predefined set of genes (Segrè et al.,
2010), Morán et al. (2012) determined that the islet lncRNA genes
identified in their study were in fact highly enriched for risk alleles
associated with T2D and related phenotypes, further underscoring
the need to interrogate the function of these RNAs in β-cell biology.
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Overall, these studies highlighted lncRNAs as a major com-
ponent of the β-cell transcriptome that is cell-type-specific,
developmentally regulated, and evolutionarily conserved with
strong associations to disease risk. However, it still remains to
be determined how these lncRNAs may contribute to β-cell func-
tion, and if their mis-regulation may play a role in diabetes. Their
expression in EndoC-βH1 cells and mouse islets provides addi-
tional platforms to evaluate their function in a systematic and
comprehensive manner. Future studies will also need to address
the question of whether the lncRNAs identified thus far act in cis
(on neighboring islet protein-coding genes) or in trans to exert
their function.

IMPRINTING
Some of the best characterized lncRNAs to date were first uncov-
ered in early studies of imprinting and dosage compensation of the
X-chromosome (Brannan et al., 1990; Brown et al., 1991; Fatica
and Bozzoni, 2014). Imprinting refers to the biased expression of
genes depending on the parental origin of the chromosome. This
process is tightly regulated, typically through epigenetic modifi-
cations such as DNA methylation at cis-acting elements known
as “imprinting control regions” (ICRs), to establish and main-
tain mono-allelic expression of specific genes (Thorvaldsen and
Bartolomei, 2007). Methylation at the ICRs is maintained despite
active demethylation and dynamic reprogramming in the newly
formed zygote, and is only altered during establishment of methy-
lation pattern in a sex-specific manner during primordial germ cell
development (Bartolomei and Ferguson-Smith, 2011). Imprinted
loci are generally found in large clusters, where both maternally-
and paternally expressed genes are interspersed. Frequently, the
protein-coding genes are expressed from one parental allele, while
non-coding genes are expressed from the other (Barlow, 2011).
LncRNAs play an essential role in the regulation of mono-allelic
expression, either by acting in cis as an antisense molecule to block
the transcriptional machinery, or by directly recruiting repressive
chromatin modifiers to silence reciprocally expressed genes (Lee
and Bartolomei, 2013).

While imprinting is most extensively studied in the context of
fetal development, tissue-specific regulation in adult tissues has
also been observed (Barlow, 2011; Lee and Bartolomei, 2013). As
a result, several imprinted genes are also implicated in human dis-
eases that arise from somatic tissues. One such example is that
of the maternally expressed adipose tissue transcription factor,
KLF14 (Parker-Katiraee et al., 2007), which is associated with risk
for both T2D and high-density lipoprotein disorders (Teslovich
et al., 2010; Voight et al., 2010; Small et al., 2011). Perhaps the
functionally haploid nature of these loci results in their increased
likelihood to be associated with susceptibility to disease, as muta-
tions in these genes, when found on the maternal chromosome
that is expressed, cannot be “covered” by the gene from the
other, silenced paternal allele. This may be particularly true for
metabolic disorders, as several imprinted genes encode dosage-
sensitive proteins related to growth factors and energy metabolism.
Interestingly, several risk variants for type 1 and type 2 diabetes
identified through GWAS are located in imprinted loci including
KCNQ1, MEG3, PLAGL1, and GRB10. A few of these are discussed
below in the context of islet and β-cell function.

DLK1–MEG3 LOCUS
Recently, we identified the maternally expressed non-coding RNAs
of the imprinted DLK1–MEG3 locus as down-regulated in human
islets from T2D donors (Kameswaran et al., 2014). This gene clus-
ter is located on human 14q32 (mouse chromosome 12) and
contains three paternally expressed protein-coding genes, DLK1,
RTL1, and DIO3. DLK1 is a non-canonical Notch ligand that
is expressed in many embryonic tissues (Falix et al., 2012) and
is a well-established negative regulator of adipocyte differenti-
ation (Smas and Sul, 1993; Mitterberger et al., 2012; Abdallah
et al., 2013). DLK1 is highly expressed in human and mouse β-
cells (Tornehave et al., 1996; Dorrell et al., 2011; Appelbe et al.,
2013). While DLK1 was demonstrated to be stimulated by growth
hormone and prolactin expression in rat islets, including dur-
ing pregnancy, it is not directly responsible for the mitogenic
effects of these hormones on islets (Carlsson et al., 1997; Friedrich-
sen et al., 2003). Additionally, loss of expression of Dlk1 in
unchallenged mouse β-cells does not cause any observable phe-
notype (Appelbe et al., 2013). Rtl1 (Retrotransposon-like 1) is
critical for normal placental development and its loss results in
severe developmental defects and late-fetal lethality (Sekita et al.,
2008).

The maternally expressed genes are all non-coding RNAs, con-
sisting of the lncRNA, Maternally Expressed Gene 3 (MEG3, known
as Gtl2 in mice), as well as a large cluster of microRNAs (miRNAs)
and snoRNAs (Schmidt et al., 2000; Seitz et al., 2004; da Rocha
et al., 2008). In several tissues, including human islets, the non-
coding RNAs are all derived from a single transcript that initiates
from the MEG3 promoter (Tierling et al., 2006; da Rocha et al.,
2008; Kameswaran et al., 2014).

Reciprocal imprinting is established by methylation of two
differentially methylated regions (DMRs) on the paternal allele,
one located ∼13 kb upstream of the MEG3 transcription start
site (IG-DMR), and the other overlapping with the promoter
of the MEG3 poly cistronic transcript (MEG3-DMR; Figure 1).
While the IG-DMR is the primary ICR for this imprinted clus-
ter, the MEG3-DMR is also critical to regulating and maintaining
imprinting at this region (Kagami et al., 2010). Failure to maintain
imprinting at this locus can lead to either maternal or paternal uni-
parental disomy (UPD) of chromosome 14, which causes distinct
and severe developmental disorders (Kagami et al., 2008).

Increased methylation of the MEG3-DMR and related loss of
MEG3 expression has been observed in several human cancers,
such as pituitary and renal cell cancers and multiple myeloma
(Zhao et al., 2005; Kawakami et al., 2006; Benetatos et al., 2008)
to name a few (further reviewed by Benetatos et al., 2011). These
studies, coupled with in vitro experiments, suggest that MEG3
functions as a tumor suppressor by activating p53, in a manner
dependent upon the secondary structure of the MEG3 RNA (Zhou
et al., 2007, 2012). Furthermore, decreased expression of MEG3
and hypermethylation of the DMRs may single-handedly explain
the subtle phenotypic differences between induced pluripotent
stem cells (iPSCs) and ES cells, such as the decreased efficiency in
generating chimeric mice from iPSCs (Stadtfeld et al., 2010).

Similar to the aforementioned examples, decreased expression
of MEG3 and the associated miRNAs in T2D islets strongly cor-
relates with hypermethylation of the MEG3-DMR (Kameswaran
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FIGURE 1 | Proposed model of imprinting at the DLK1–MEG3 locus:

the DLK1–MEG3 imprinted region contains a primary ICR (IG-DMR) and
secondary (MEG3–DMR) ICR that overlaps with the promoter of the MEG3.
Both ICRs are paternally methylated. In mouse ES cells, the Meg3 lncRNA
is believed to direct PRC2 mediated silencing of Dlk1 (Zhao et al., 2010).

et al., 2014). Additionally, a single nucleotide polymorphism
(SNP) (rs941576) located in an intron of MEG3 was found to be
associated with T1D, with the risk allele being transmitted more
frequently from the father than the mother of the affected offspring
(Wallace et al., 2010). Overall, these examples provide compelling
evidence for the importance of MEG3 and the regulation of this
imprinted region in several diseases. Despite the strong disease
association of this lncRNA,and the fact that genes in this imprinted
cluster are very highly expressed in human β-cells (Dorrell et al.,
2011; Kameswaran et al., 2014), there are currently no postulated
mechanisms for its potential role in β-cell function and diabetes
pathogenesis.

Recent studies have suggested that similar to other nuclear lncR-
NAs, MEG3 also directly interacts with the PRC2 complex in ES
cells to guide the repressive histone modification mark H3K27me3
to its target sites (Zhao et al., 2010; Kaneko et al., 2014). One study
identified Dlk1 as a direct target of the Meg3-PRC2 complex in
mouse ES cells (Figure 1), although this finding could not be repli-
cated in MEG3-expressing human iPSCs, where MEG3 was found
to function in trans (Zhao et al., 2010; Kaneko et al., 2014). A
careful characterization of MEG3-PRC2 complex targets in adult
pancreatic islets will provide better insights into the role of this
lncRNA in β-cell function.

KCNQ1 LOCUS
The KCNQ1 gene, encoding a voltage-gated potassium chan-
nel, has been of great interest to the β-cell biology field due
to its strong disease association. The gene is located in an
imprinted locus on human 11p15.5, adjacent to another inde-
pendently regulated imprinted locus, H19–IGF2. This region was
implicated as a molecular candidate for Beckwith–Wiedemann

syndrome (BWS), a disorder characterized by prenatal macro-
somia, predisposition for tumor development and frequently,
hyperinsulinemic hypoglycemia (Lee et al., 1997, 1999; Hussain
et al., 2005). This imprinted region consists of several con-
served, maternally expressed protein-coding genes, such as the
cell cycle inhibitor CDKN1C, and a paternally expressed anti-
sense lncRNA, KCNQ1 overlapping transcript1 (KCNQ1OT1;
Monk et al., 2006). Loss of imprinting in this locus can lead
to the suppression of CDKN1C, which is sufficient to cause re-
entry of adult human β-cells into the cell cycle (Avrahami et al.,
2014).

Imprinting of this region is maintained by a maternally methy-
lated ICR, known as the KvDMR, which is also the promoter
for KCNQ1OT1 (Figure 2). To maintain appropriate mono-
allelic expression of imprinted genes in this locus, the KvDMR
is hypomethylated on the paternal allele, leading to expression
of the KCNQ1OT1 lncRNA and subsequent repression of the
maternal, protein-coding genes on the same allele (Fitzpatrick
et al., 2002; Ideraabdullah et al., 2008), possibly by facilitating
intra-chromasomal looping to direct the repressive PRC2 com-
plex to their promoter (Figure 2; Zhao et al., 2010; Zhang et al.,
2014).

The KCNQ1 locus harbors at least two independently identi-
fied and replicated GWAS signals at SNPs located in the intron
of the KCNQ1 gene (rs2237892), with one overlapping the
KCNQ1OT1 lncRNA (rs231362; Unoki et al., 2008; Yasuda et al.,
2008; Kong et al., 2009; Voight et al., 2010). Additional SNPs in
this gene, such as rs2237895, are also reported to be associated
with T2D risk in specific ethnic populations (Unoki et al., 2008).
While these SNPs are predicted to confer risk for diabetes only
when maternally inherited (Kong et al., 2009), the risk alleles do

FIGURE 2 | Proposed model of imprinting at the KCNQ1 locus: the
KCNQ1OT1 lncRNA is expressed from the paternally unmethylated KvDMR
ICR, which is methylated on the maternal allele. Recent evidence suggests
that KCNQ1OT1 can directly recruit the PRC2 complex and facilitate
intra-chromosomal looping to the KCNQ1 promoter (Zhang et al., 2014).
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not correlate with each other (Kong et al., 2009; Voight et al.,
2010) and have opposing effects on docking of insulin granules
(Rosengren et al., 2012).

To investigate how these T2D risk variants may affect allelic
expression and imprinting of this region, Travers et al. (2013)
correlated the risk SNP genotypes with DNA methylation and
expression patterns of the imprinted genes in human fetal pancreas
and adult islets. This study revealed that fetal samples homozygous
for the rs2237895 risk allele had marginally increased methy-
lation levels at the KvDMR region. As this was not observed
in the adult, these results suggest that effects of the risk allele
are likely be established during early stages of islet develop-
ment, as KCNQ1 and KCNQ1OT1 are only imprinted in fetal
but not adult tissues (Monk et al., 2006; Travers et al., 2013).
Overall, this study proposes a model whereby each risk allele
for the rs2237895 SNP leads to increased methylation of the
KvDMR, and consequently, decreased expression of KCNQ1OT1.
However, there was no observable difference in KCNQ1 or
KCNQ1OT1 expression in samples used for this study. On the
contrary, KCNQ1OT1 transcript levels have been shown to be
significantly elevated in T2D islets (where SNP genotype was
not determined; Morán et al., 2012), which parallels an overall
decrease in methylation at several tested CpGs near the KCNQ1
gene (Dayeh et al., 2014). Thus, the interpretation of variants
to disease pathology at this region has been contradictory and
challenging. Nevertheless, the regulation of this locus and the
lncRNA KCNQ1OT1 remains relevant to β-cell biology and T2D
pathogenesis.

H19–IGF2 LOCUS
The H19–IGF2 locus resides adjacent to the KCNQ1 region
on human 11p15.5. The region consists of the paternally
expressed insulin-like growth factor 2 (IGF2) gene and mater-
nally expressed H19 lncRNA (Brannan et al., 1990; DeChiara
et al., 1990; Bartolomei et al., 1991). The IGF2 protein func-
tions as a growth factor essential for embryonic develop-
ment (DeChiara et al., 1990), whereas H19 may function as
a tumor suppressor (Hao et al., 1993). Imprinting at this
locus is maintained by an ICR, which is selectively methy-
lated on the paternal allele. The insulator protein, CCCTC-
binding factor (CTCF), binds to critical regulatory regions in
the unmethylated ICR on the maternal allele, thus blocking
access of downstream enhancers to the IGF2 promoter (Figure 3;
Stadnick et al., 1999; Bell and Felsenfeld, 2000; Engel et al.,
2004).

Loss of methylation at the H19/IGF2 ICR results in short body
length and low birth weight, both in rodent models (DeChiara
et al., 1990) as well as in humans, such as patients with Silver-
Russell syndrome, a developmental disorder characterized by
intrauterine and postnatal growth retardation (Gicquel et al.,
2005). This has also been observed in humans who were peri-
conceptually exposed to famine (Heijmans et al., 2008). There
is growing evidence that intra-uterine exposure to malnutri-
tion can predispose the offspring to metabolic complications
including β-cell dysfunction and diabetes later in life (Ravelli
et al., 1998; Roseboom et al., 2006). This theory is commonly
referred to as the “thrifty phenotype hypothesis” (Hales, 2001)

FIGURE 3 | Proposed model of imprinting at the H19–IGF2 locus: the
H19–IGF2 locus consists of a paternally methylated ICR. On the maternal
allele, this ICR is unmethylated and is bound by the insulator protein CTCF
that prevents access of the IGF2 promoter to downstream enhancers.

and is thought to be mediated primarily through environmentally
induced epigenetic changes to key metabolic regulators (Park
et al., 2008; Bramswig and Kaestner, 2012). However, first
and second generation progeny of mice exposed to gestational
diabetes were found to have impaired glucose tolerance with
hypermethylation of the H19 ICR in islets (Ding et al., 2012).
These contradicting observations may be a result of differ-
ent nutrient availability that the developing fetus was exposed
to, as well as the varying lengths of exposure. The above
studies suggest that the H19–IGF2 locus is highly responsive
to these changes in the intrauterine milieu and may repre-
sent a prognostic marker of metabolic complications later in
life.

Hypermethylation of the H19–IGF2 ICR has been observed
in some cases of BWS (Ohlsson et al., 1993), as well as in focal
congenital hyperinsulinism (FoCHI), a glucose metabolism disor-
der characterized by unbridled insulin secretion from hyperplastic
islet cells and consequent hypoglycemia (de Lonlay et al., 1997).
Increased methylation at this ICR would be predicted to result
in decreased H19 expression, loss of imprinting at this region
and a concomitant increase in IGF2 expression. Although over-
expression of IGF2 in mouse β-cells recapitulates the FoCHI
phenotype (Devedjian et al., 2000), IGF2 expression was variable
in human FoCHI lesions (Fournet et al., 2001). On the contrary,
H19 transcript levels were consistently down-regulated in these
cells, suggesting that H19 may have an important regulatory role
in restraining islet-proliferation. This hyperproliferative pheno-
type, accompanied by suppression of H19 has also been reported
in Wilms’ tumor (Cui et al., 1997). Taken together, the H19 lncRNA
may function as a critical regulator of β-cell function and prolifer-
ation either on its own or indirectly through the regulation of IGF2
levels.
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ZAC–HYMAI LOCUS
Transient neonatal diabetes (TNDM) is a rare form of diabetes
mellitus characterized by hyperglycemia and low insulin levels
within the first year of birth (Temple et al., 2000). This form of
diabetes is distinct from T1D as there is no evidence for autoim-
munity (Abramowicz et al., 1994; Shield et al., 1997). Although
it usually resolves by 2 years of age, children with TNDM are
at a higher risk of developing T2D later in life (Temple et al.,
2000). The molecular cause of this disease was identified to be
abnormal imprinting of chromosome 6q24, which encompasses
the cell cycle regulator, ZAC/PLAGL1, and the lncRNA, HYMAI
(Abramowicz et al., 1994; Arima et al., 2000; Gardner et al., 2000;
Kamiya et al., 2000; Mackay et al., 2002). Both ZAC and HYMAI
share a common imprinted promoter (P1 in Figure 4), which
also serves as the ICR, and are expressed from the paternal allele
(Arima et al., 2000; Mackay et al., 2002). However, tissue-specific
usage of an alternative promoter (P2 in Figure 4) that drives
biallelic expression of ZAC has also been reported (Valleley et al.,
2007).

ZAC encodes a zinc finger protein that regulates apoptosis and
cell cycle arrest (Spengler et al., 1997). The protein is expressed
at very high levels in insulin-producing cells in the human fetal
pancreas, but not adult islets (Du et al., 2011). ZAC can also func-
tion as a transcriptional activator of CDKN1C and KCNQ1OT1
(Arima et al., 2005). ZAC is believed to control the induction of
the pituitary adenylate cyclase-activating polypeptide (PACAP), a
strong activator of glucose-stimulated insulin secretion (Yada et al.,
1994; Ciani et al., 1999). These features of the ZAC gene make
this a strong candidate for the pathogenesis of TNDM. However,
the mechanism of imprinting and the function of HYMAI in the
context of TNDM have yet to be established.

FIGURE 4 | Proposed model of imprinting at the ZAC–HYMAI locus:

ZAC/PLAGL1 and the lncRNA HYMAI are both paternally expressed from a
common promoter that is also the ICR. However, in some tissues, ZAC is
biallelically expressed from an upstream promoter.

MALAT1, AN ABUNDANT lncRNA
The metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is a highly conserved lncRNA that is mis-regulated
in several tumors (Ji et al., 2003; Gutschner et al., 2013). MALAT1
is very abundantly expressed (higher than many housekeeping
genes) in multiple cell types, including the pancreas (Ji et al., 2003)
and in purified human α- and β-cells (Dorrell et al., 2011). Addi-
tionally, MALAT1 is encoded within an active enhancer cluster with
several binding sites for islet-transcription factors (Pasquali et al.,
2014), making this is an intriguing candidate for gene regulation
in human islets.

Metastasis-associated lung adenocarcinoma transcript 1 has
several interacting partners through which it may mediate its
function. One such interacting partner is DGCR8, a double-
stranded RNA binding protein that together with Drosha mediates
miRNA bioprocessing (Macias et al., 2012). MALAT1 was found
to be bound to Argonaute (Ago), the primary effector of miRNA
function in HeLa cells (Weinmann et al., 2009). MALAT1 was
also found to be associated with Ago in human islets, suggest-
ing that this lncRNA may be regulated by miRNAs in human cells
(Kameswaran et al., 2014). In fact, we discovered several sequences
that consisted of miRNAs fused to MALAT1 while assaying miR-
NAs and their targets that were bound to Ago in human islets.
These chimeric reads were the result of ligation of two adjacent
RNA species present in the RISC complex with Ago (Helwak et al.,
2013), and proved that MALAT1 is regulated by several miRNAs
in human islets (Kameswaran et al., 2014).

Metastasis-associated lung adenocarcinoma transcript 1 can also
regulate gene expression through its association with different
nuclear sub-compartments (Hutchinson et al., 2007; Yang et al.,
2011; Gutschner et al., 2013). One example of this is MALAT1
localization in nuclear speckles, which are nuclear domains where
splicing factors are stored and post-transcriptionally modified
(Hutchinson et al., 2007; Mao et al., 2011). Through the modi-
fication of critical splicing factors, MALAT1 has been shown to
contribute to alternative splicing (Tripathi et al., 2010). However,
despite the abundance of this lncRNA and the early suggestions of
its function from in vitro studies, mice lacking MALAT1 displayed
no obvious phenotype in the absence of additional pathological
stressors and exhibit largely normal nuclear speckle formation and
alternative splicing patterns (Eißmann et al., 2012; Nakagawa et al.,
2012; Zhang et al., 2012). Thus, the role of this lncRNA remains to
be determined.

PERSPECTIVE
The exciting discovery of lncRNAs and the growing recognition of
their involvement in human pathogenesis have added a new level
of complexity to our understanding of gene regulation. However,
due to the range of sequencing and bioinformatic tools currently
available, the rate of discovery of new lncRNAs has surpassed our
ability to examine their function. This gap between lncRNA gene
discovery and function currently holds true in the field of β-cell
biology as well, necessitating the systematic analysis of mouse and
human islet lncRNAs identified to date (Ku et al., 2012; Morán
et al., 2012).

Factors such as overlap between the human and mouse α- and
β-cell lncRNA complements (Ku et al., 2012; Morán et al., 2012;
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Bramswig et al., 2013), degree of conservation, expression, asso-
ciated protein-coding genes, and relative distance from GWAS
SNP variants may be good early predictors of important lncRNAs.
However, these parameters alone may underestimate other essen-
tial candidates, as some lncRNAs exhibit low primary sequence
conservation despite crucial function (Nesterova et al., 2001), or,
conversely, a dispensable function despite high sequence conser-
vation and expression (Zhang et al., 2012). These observations
emphasize the need for careful loss-of-function experiments in
appropriate model systems induced by metabolic and/or inflam-
matory challenges to clearly understand the function of these
lncRNAs. Although many of the human β-cell lncRNAs are
expressed in the EndoC-βH1 cell line that somewhat resembles
human β-cells in vitro (Ravassard et al., 2011), targeted deletion or
inhibition in mouse and human islets may be necessary in some
cases to reveal their function, as seen in the example of HI-LNC25
discussed above (Morán et al., 2012).

While the loss-of-function of even abundant lncRNAs such as
MALAT1 may sometimes result in a lack of phenotype (Eißmann
et al., 2012; Nakagawa et al., 2012; Zhang et al., 2012), lessons from
the miRNA field suggest that additional physiological and environ-
mental stressors may be necessary to truly elucidate the function of
these non-coding RNAs (Mendell and Olson, 2012). Additionally,
in order to study the role of lncRNAs in the context of loss-of-
function, a careful analysis of the genomic location of the lncRNAs
may be required to evaluate the best method of gene silencing, as
targeted recombination may result in disruption of overlapping
protein-coding transcripts or their regulatory domains, further
confounding data interpretation.

Given the broad range of human diseases that lncRNAs are now
associated with, it is perhaps not surprising that there is growing
evidence for their role in β-cell function and diabetes pathogenesis.
Revealing their function will undoubtedly lead to a new wave of
exciting targets to explore for therapeutic development.
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