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Multi-Worm Tracker (MWT) is a real-time computer vision system that can simultaneously
quantify motional patterns of multiple worms. MWT provides several behavioral
parameters, including analysis of accurate real-time locomotion speed in the nematode,
Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer’s
disease (AD) transgenic strain that over-expresses human beta-amyloid1-42 (Aβ) in the
neurons. The MWT analysis showed that the AD strain logged a slower average speed
than the wild type (WT) worms. The results may be consistent with the observation
that the AD patients with dementia tend to show deficits in physical activities, including
frequent falls. The AD strain showed reduced ability of the eggs to hatch and slowed
hatching of the eggs. Thus, over-expression of Aβ in neurons causes negative effects on
locomotion and hatchability. This study sheds light on new examples of detrimental effects
that Aβ deposits can exhibit using C. elegans as a model system. The information gathered
from this study indicates that the motion tracking analysis is a cost-effective, efficient way
to assess the deficits of Aβ over-expression in the C. elegans system.

Keywords: Alzheimer’s disease, beta amyloid, age-related memory impairment (AMI), frailty, behavioral aging,

motion tracking, automated system, Alzheimer’s disease in children

INTRODUCTION
Alzheimer’s disease (AD) is a type of amyloidosis and is the major
neurodegenerative disorder that causes dementia. Amyloidosis is
characterized by fibril deposits that contain at least 30 fibril pro-
teins in humans and 10 fibril proteins in animals, according to the
2012 the Nomenclature Committee of the International Society
of Amyloidosis (Sipe et al., 2012). Of them, accumulation of Aβ

has been observed in the AD and congophilic cerebral angiopathy
(CAA) (Selkoe, 2001; Revesz et al., 2003). AD leads to cognitive
deficits due to abnormal deposits of β-amyloid (Aβ) peptides in
the brain, while CAA is characterized by vascular deposits in the
central nervous system, in which hemorrhage is a major clini-
cal feature (Samarasekera et al., 2012). CAA is often observed in
AD patients, in which case it has been diagnosed as AD (Wright,
2013).

In AD, deposits of the Aβ peptides arise from the prote-
olytic processing of amyloid precursor proteins (APP), commonly
observed in patients with AD (Nicholson et al., 2012). Aβ deposits
and tau tangles are well known hallmarks for AD, which may
trigger inflammation worsening the disease (Nicholson et al.,
2012; Jack and Holtzman, 2013). Aβ toxicity may be linked to
tau hyperphysphorylation observed in tau tangles (Lloret et al.,
2011; Ermak and Davies, 2013). Although it is believed that Aβ is
involved in initiation of AD in the presence of tau pathologies and
that tau is correlated with severity of AD (reviewed in LaFerla,
2010; Castillo-Carranza et al., 2014), molecular mechanisms of

AD remain unclear. Details of clinical pathogenesis and biomark-
ers have been reviewed elsewhere (Jack and Holtzman, 2013).

This study aimed to assess the effects of Aβ toxicity on a
behavioral parameter, average speed of movement. A transgenic
strain overexpressing the signal peptide::Aβ1−42 in the neurons
(Dosanjh et al., 2010; Lublin and Link, 2013) was used for this
study. Over-expression of Aβ in the neurons may affect the sero-
tonin system (Dosanjh et al., 2010). Previously, locomotion has
been assessed in a manual assay that measures the rate of body
bend, which is an indirect measure with relatively high variabil-
ity (Dosanjh et al., 2010; Lublin and Link, 2013); the manual
assay may have been missed early signs of motility defect. In addi-
tion, another neural Aβ strain is tagged by a behavioral marker
(i.e., roller phenotype) (McColl et al., 2012), which is difficult to
assess locomotion speed. We used behavioral tracking software,
Multi Worm Tracker (MWT) (Swierczek et al., 2010), to record
and collect data on the speed. MWT is a program designed to
quantify the behavior of multiple worms on a petri plate with
minimal human effort. The main advantage is that it allows for
a more accurate and detailed assessment of locomotion speed
compared to the traditional method that measures body bends.
Thus, our hypothesis is that the strain overexpressing Aβ in
the neurons show defects in locomotion speed. We reason that
motion tracking analysis, including MWT analysis, should con-
tribute to understanding the harmful effects of Aβ toxicity in
C. elegans.
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MATERIALS AND METHODS
STRAINS, MEDIA, AND STAINING
Wild-type strain, N2, was used (referred to as WT strain).
As a control, we also used the smg-1ts strain [smg-1ts(cc546)],
which generated similar results as N2 in the assays (i.e., loco-
motion and hatchability) used in this study (data not shown).
The strain CL2355 [smg-1ts(cc546); snb-1::Aβ1−42::long 3′-UTR]
that utilizes the C. elegans promotor of the synaptobrevin (snb-
1) gene to cause a pan-neuronal overexpression of the signal
peptide::Aβ1−42 (Dosanjh et al., 2010; Lublin and Link, 2013)
was used (referred to as AD strain). For simplicity, the trans-
genic strain CL2355 is referred to as the AD strain for the
duration of the paper. All strains were maintained at 15◦C
in a nematode growth media (NGM) spotted with Escherichia
coli, OP50, as a food source (Murakami et al., 2005). The fol-
lowing procedure adopted from Stiernagle (2006) was used to
prepare NGM plates. Before autoclaving, 17 g agar, 2.5 g pep-
tone, 3 g NaCl, and 975 mL distilled H2O was added to a flask
and covered with aluminum foil. Then the flask was auto-
claved for 50 min. After autoclaving the mixture, 1 mL of 1 M
CaCl2, 1 mL of 5 mg/mL cholesterol in ethanol, 1 mL of 1 M
MgSO4, and 25 mL of 1 M KPO4 (pH 6.0) was added to the
flask. Then petri plates were filled 2/3 with agar. Plates were
left at room temperature for 2–3 days to allow excess mois-
ture to evaporate. For immunofluorescence staining, we used
the procedure described in Link (1995). Transgenic worms were
fixed, permeabilized, and stained with the anti-Aβ monoclonal
antibody 4G8 and anti-TOR-2 polyclonal sera as a counter-
stain. DNA was visualized using 4′,6-diamidino-2-phenylindole
(DAPI).

GROWTH CONDITIONS
Strains were grown on NGM agar plates at 15◦C. To assess hatcha-
bility, eggs were layed on NGM plates at 15◦C and incubated at the
temperature indicated in the text (15 or 25◦C). Unhatched eggs
were counted after 24 h or the time specified in the text. Hatched
eggs (larvae) were also counted to confirm the result. To prepare
adult worms, eggs were layed and grown into adults for 4 days.
Adults at the age of day 5 (i.e., 1 day after they start to lay eggs)
was defined as “younger adults.” Adults at the age of day 7 was
defined as “middle-aged adults.” Adults at the age of day 13–14
was defined as “older adults.”

MULTI WORM TRACKER (MWT) ANALYSIS
Videos of the worms were recorded under a stereomicroscope
using ToupView, a video capturing software (Amscope.com,
Irvine, CA). The parameters of 3 min for duration and 6 s for bin
size was set when capturing the video, which created a video file
that was 35 s in length. To analyze the speed of the worms, the
video file was uploaded into MWT, a behavioral tracking soft-
ware (Swierczek et al., 2010). In a typical assay, about five worms
in a microscopic field was computed and average speed of the
worms were calculated. A measure for speed (in pixels/s) was
made at a series of ages indicated in the text. We used the con-
version rate in the system: 1 pixel/s = 0.035 cm/s at the images of
72 PPI (pixels per inch). Death was determined by observing no
movement of the worms. Statistical analysis has been performed

by ANOVA using NCSS 2007 statistics software (NCSS, LLC,
Kaysville, Utah, USA).

RESULTS
We sought to assay the locomotion of the transgenic C. elegans
strain CL2355 (Dosanjh et al., 2010), which expresses a human
Aβ42 minigene under the control of the pan-neuronal synapto-
brevin (snb-1) promoter. Expression of Aβ using this promoter
leads to intraneuronal deposition of Aβ, particularly detectable in
the nerve ring area (Figure 1).

Video images of the worms on NGM agar were captured
for 3 min and the speed of the worms was determined using
MWT. We compared the results of the WT (wild type) and AD
strains (over-expressing amyloid beta) (Materials and Methods).
As described in the Method, adults that had grown for 5 days were
defined as “younger adults.” Adults that had grown for 7 days
were defined as “middle-aged adults.” Adults that had grown for
13 days were defined as “older adults.”

THE AD TRANSGENIC STRAIN SHOWING SLOWER MOVEMENT
Table 1 summarizes the results. For the younger adults (day 5),
WT had a mean speed of 0.18 ± 0.15 cm/s whereas the AD
had a mean speed of 0.05 ± 0.06 cm/s (p > 0.0001; Figure 2A;

FIGURE 1 | Intraneuronal deposition of Aβ in transgenic C. elegans.

Anterior region of transgenic C. elegans is shown. The strain was
immune-stained by anti-Aβ monoclonal antibody 4G8 (green), anti-TOR-2
polyclonal sera (red), and DAPI (blue). Note cytoplasmic accumulation of Aβ

in nerve ring neurons. Size bar = 10 μM.
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Table 1 | Locomotion speed (mean ± standard deviation) as assessed

by MWT analysis for various stages in the life cycle (*p < 0.0001).

Life stage (day #) Type of strain Average speed (cm/s)

Younger adult (day 5) WT 0.18 ± 0.15

AD 0.05 ± 0.06*

(day 6) WT 0.52 ± 0.25

AD 0.21 ± 0.17*

Middle-aged (day 7) WT 0.43 ± 0.19

AD 0.05 ± 0.05*

(day 10) WT 0.10 ± 0.11

AD 0.08 ± 0.12

Older adult (day 13) WT 0.11 ± 0.07

AD 0.12 ± 0.07

Table 1). Slow locomotion speed in the AD strain compared to
WT was observed from day 5 (younger adults) to day 7 (mid-
dle age) (p > 0.0001; Figures 2A,B; Table 1). Interestingly, there
was a peak of locomotion speed at the age of day 5 (Figure 2E),
which was consistent with previous study as assessed in a classi-
cal assay that measured body bends, an indicator of locomotion
speed (Murakami et al., 2008).

Slow locomotion speed in the AD strain was also evi-
dent in the still images (Figure 3) and Supplementary Video
(Supplementary Figure). In the sill images taken every 7 s
(Figure 2), the WT worms were located in different positions
(Figure 3A), while the AD worms were nearly stagnant from 0 to
35 s (Figure 3B). Thus, a difference in the worm movements was
clearly visible.

Older worms at day 10 and 13 showed similar results for the
WT and AD strains. Day 10 WT worms had an average speed of
0.10 ± 0.11 cm/s whereas Day 10 AD worms moved at an average
speed of 0.08 ± 0.12 cm/s for four worms (Figure 2C; Table 1).
Finally, in the older adult at the age of Day 13, WT worms logged
an average speed of 0.11 ± 0.07 cm/s and Day 13 AD worms
showed similar locomotion speed (0.12 ± 0.07 cm/s) (Figure 2D;
Table 1). Overall, worms with overexpressed Aβ resulted in slower
movement up to middle-aged (Figure 2).

Aβ TOXICITY IN THE EMBRYONIC STAGE
Hatching of the eggs from the WT (N2) and AD (CL2355)
strains were compared. We measured total number of unhatched
eggs 24 h at restrictive temperature (25◦C) after egg lay. We also
counted hatched larvae to confirm the results. In the WT strain,
there were 16.3% (37/227) eggs that remained unhatched and
83.7% (190/227) hatched (Figure 4A). For the AD strain, 89.2%
(182/204) eggs remained unhatched and 10.8% (22/204) hatched.
The rate of hatching in the control strain (smg-1ts), was simi-
lar to WT (data now shown), excluding the possibility that the
background mutation lowered the rate of hatching. Thus, the AD
strain showed an approximately 7.8 folds lower hatching after 24 h
of egg lay. We also investigated the time course of hatchability at
permissive temperature, 15◦C. Most of the eggs in the WT strain

hatched 1 day after egg lay (Day 2; Figure 4B). In contrast, the AD
strain hatched much slower than the WT strain, taking 2 days after
egg lay (Day 3; Figure 4B). Thus, the AD strain shows reduced
hatching and a delayed timing of egg hatching. We also observed
a low rate of fecundity (Blood size: WT, 248 ± 22, n = 10; AD,
50 ± 12, n = 20; p < 0.001).

DISCUSSION
In this study, we used MWT analysis to measure locomotion
speed. Compared to a manual assay to measure the number of
body bends, MWT analysis provides a more accurate measure of
multiple worms for a longer time (MWT for 3 min; Manual assay
for 1 min). Young wild-type worm (locomotion speed: 0.18 ±
0.15 cm/s) was within the range of previously reported results
(lower range of 0.13 cm/s, Ramot et al., 2008; upper range of
0.22 cm/s, Ryu and Samuel, 2002). They have also reported loco-
motion speed, ranging from 0.14 to 0.33 cm/s at the temperatures
ranging from 17 to 27◦C. The groups used other worm tracking
systems, which suggests that MWT analysis results are consistent
with those from the other worm tracking systems. It is worth not-
ing that our MWT system is one of the most cost effective systems.
The total cost was estimated to be up to US$200 for a routine
USB-camera (as of April, 2014; our cost was zero since we recy-
cled the camera, excluding the cost of software, computer, and
microscope), which is much less than the cost estimated for MWT
elsewhere (US$7,000) (Husson et al., 2012).

The AD strain showed an approximately 7.8-fold decrease in
hatching compared to the WT strain. Likewise, the AD strain
showed reduced hatching even at the permissive temperature,
where Aβ is expressed, but at a lower level. The reduced level of
hatching seen in the AD strain could be attributed to Aβ overex-
pression, suggesting the negative effect of Aβ on embryogenesis
due to its toxicity. It is worth noting that some CL2355 worms
are completely sterile (no eggs laid). This is a surprising observa-
tion if the defects in the CL2355 strain are restricted to neurons,
as fertility in C. elegans is not strongly neuronally regulated. The
fertility/sterility phenotypes of CL2355 were observed in the pre-
cursor extrachromosomal line, suggesting that these defects are
not due to gene disruption caused by chromosomal integration
of the transgene. We also observed that worms show larval arrest
and death, suggesting defects in development caused by Aβ (data
not shown).

The findings also suggest that Aβ accumulation has detrimen-
tal effects on locomotion speed in the adult life cycle, except for
late-life in which all worms move poorly. In younger adults and
middle-aged adults (corresponding to Day 5 and 7, respectively),
the AD worms exhibited a slower speed than the WT worms
(Figure 1). The middle-aged AD worms showed the greatest
amount of difference from that of the WT worms; the approxi-
mate 8.3-fold difference in speed indicates that the presence of Aβ

is correlated with the slower movement in the worms. This may
be consistent with frailty seen in the Alzheimer’s patients (Koch
et al., 2013; Kulmala et al., 2014) and gait problems in the mouse
models of AD (APP and APP/PS1 mice) (Lalonde et al., 2012;
Wang et al., 2012a), though some other mice models [APP23,
J20, APP + PDAPP, PS1 [Tg2576 + PS1 (M146L)], TgCRND8,
TG2576, and 3 × Tg-AD mice] show increased locomotion due to
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FIGURE 2 | The AD strain exhibits slower speeds than WT in the life

cycle. (A) The graph represents the locomotion speed of adult worms
measured at the age of day 5 (younger age). (B) The graph represents the
speed for worms measured at the age of day 7 (middle age). (C) The graph
represents the speed for middle-aged worms measured at the age of day 10.

(D) The graph represents the speed for older adult worms measured at the
age of day 13 (older age). (E) Comparison of the average speeds for WT
(blue) and AD (red) worms at various ages over the course of their life span.
Error bars indicate standard error of the mean. ∗p > 0.0001. WT worms
(blue); and AD worms (red). See also Table 1.

A B

FIGURE 3 | Images of middle-aged (day 7) worms on the NGM

plates at various time points. The images captured were taken
every 7 s from 0 to 35 s. The worms were labeled 1–6 for the
WT and 1–5 for the AD strain so that the difference in movement

could be seen between and amongst frames. (A) An example of
the WT worms. They moved throughout the plate as time
progressed. (B) An example of the AD worms. They hardly moved
as time elapsed.
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FIGURE 4 | Rate of egg hatching (hatchability) in the WT and AD

strains. (A) Percentage of eggs unhatched after 24 h. There were more
AD eggs (red) that remained unhatched compared to the WT eggs (blue).

(B) Time course of the percentage of eggs that hatched from day 0 (the
day of egg lay) to day 3 for both strains. Error bars indicate standard
error of the mean.

aggression and other behavioral problems (Webster et al., 2014).
Thus, locomotion is not always defective in AD patients and in
AD models but rather altered. It is critical to assess locomotion in
each AD system. In addition to our finding, locomotion defects
have been observed in the fruit fly model of Aβ toxicity, while
paralysis has been observed in the other strains over-expressing
Aβ in the muscles and in the neurons (McColl et al., 2012; Wang
et al., 2012b; Lublin and Link, 2013; Prüßing et al., 2013; Carrillo-
Mora et al., 2014). Technical difficulties in the previous studies
have been discussed above.

This study provides evidence that Aβ toxicity affects the
embryonic stage as well as the adult phases. Since the AD trans-
genic strain used in this study has Aβ overexpression, the data
can be used to assess the effects of Aβ toxicity on embryonic and
behavioral parameters. Assessing the hatchability and speed of the
worms allows for the analysis of the strains and the impact Aβ tox-
icity has on embryonic health and movement. The research will
be beneficial as AD is one of the most common causes of demen-
tia, and the number of Americans aged 65 and older affected by
AD is predicted to triple by 2050 (Hebert et al., 2013). Currently,
there are drugs there are drugs that can treat memory impair-
ment in AD patients, but there are no cure for the disease itself. It
is worth noting that a chaperone, HSP-16, is strongly associated
with the Aβ deposits in the neuronal expression lines (reviewed
in Lublin and Link, 2013). The future direction of this study aims
to explore the relationship between AD drugs and potential Aβ

clearance. The hope is that future studies will demonstrate the
effectiveness of current FDA-approved AD treatment interven-
tions to help alleviate the Aβ buildup seen in AD patients and
enhance future treatments by potentially slowing or stopping the
disease.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fgene.
2014.00202/abstract

Supplementary Video | Video images of day 7 worms shown in Figure 2.

(Video 1). Video shows the WT strain (File name: Machino et al. WT strain

Day 7.mwv). (Video 2) Video shows the AD strain (File name: Machino

et al. AD strain Day 7.mwv). As described in Materials and Methods,

3 min-long videos were shortened into 35 s in length. Due to the

conversion from AVI to MP4 format to reduce the size of the files, the

video have lower quality compared to the originals.
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