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The recent advances in sequencing throughput and genome assembly algorithms have
established whole-genome shotgun (WGS) assemblies as the cornerstone of the genomic
infrastructure for many species. WGS assemblies can be constructed with comparative
ease and give a comprehensive representation of the gene space even of large and
complex genomes. One major obstacle in utilizing WGS assemblies for important research
applications such as gene isolation or comparative genomics has been the lack of
chromosomal positioning and contextualization of short sequence contigs. Assigning
chromosomal locations to sequence contigs required the construction and integration of
genome-wide physical maps and dense genetic linkage maps as well as synteny to model
species. Recently, methods to rapidly construct ultra-dense linkage maps encompassing
millions of genetic markers from WGS sequencing data of segregating populations have
made possible the direct assignment of genetic positions to short sequence contigs. Here,
we review recent developments in the integration ofWGS assemblies and sequence-based
linkage maps, discuss challenges for further improvement of the methodology and outline
possible applications building on genetically anchored WGS assemblies.
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INTRODUCTION
Next-generation sequencing (NGS) has facilitated the rapid col-
lection of vast amounts of genomic sequence data, enabling
whole-genome shotgun (WGS) assemblies in species with huge
genomes (Li et al., 2010; Jia et al., 2013; Ling et al., 2013; Nyst-
edt et al., 2013). Compared with approaches based on physical
maps, WGS assemblies are rapidly made, are comparatively cheap
and represent an easy way to gain a comprehensive view of the
gene complement of a species, even for species without prior
availability of genomic resources. Nevertheless, de novo sequence
assembly from short sequence reads remains a formidable algo-
rithmic challenge requiring large amounts of sequence data and
powerful compute resources. A recent comparative benchmark-
ing (Bradnam et al., 2013) of assembly pipelines on real datasets
highlighted substantial differences in the performance of dif-
ferent algorithmic approaches. The main limitation of WGS
assemblies for downstream applications is their fragmentation
(Green, 1997): they often consist of up to millions of short con-
tiguous pieces of sequence (contigs), which may be grouped
and partially ordered by long-distance mate-pair reads to form
scaffolds.

The primary algorithmic challenge of sequence assembly – and
thus the origin of the fragmentation – are repeat elements (Alkan
et al., 2011b), whose numerous copies are nearly identical, are
difficult to resolve with short NGS reads and thus tend to be
assembled into a single collapsed sequence contig. Moreover, con-
tigs representing single-copy regions cannot be unambiguously
extended at the border of repetitive elements and terminate there.
The lack of contiguity of WGS assemblies is a major impediment
to downstream analyses. Sequence-based high-throughput geno-
typing and its applications such as genome-wide association or

population genetic studies rely on the visualization of features
[single-nucleotide polymorphisms (SNPs), peaks of summary
statistics] along the chromosomes, often applying sliding-windows
to aggregate the information of neighboring contigs (Luikart et al.,
2003; Schneeberger et al., 2009; Andrews and Luikart, 2014; Elle-
gren, 2014). Without any notion of order or vicinity of contigs,
such approaches are impossible.

The process of assigning chromosomal locations to contigs
of an assembly is referred to as anchoring. The ultimate goal
of this process is to establish pseudomolecules, single accu-
rately ordered sequence scaffolds for each chromosome with as
little intervening gaps as possible. Lacking in completeness –
in particular in the repetitive portion of the genome – and
contiguity, WGS assemblies of large and complex genomes of
flowering plants or mammals have so far not attained the qual-
ity of a draft genome (Alkan et al., 2011b; Feuillet et al., 2011).
High-quality reference sequences continue to be constructed
with the help of physical maps and sequencing single bacterial
artificial chromosomes (BACs; Groenen et al., 2012; Amborella
Genome Project, 2013). However, this hierarchical shotgun
approach entails the laborious and expensive steps of BAC library
construction, finger-printing and clone-by-clone sequencing
(Ariyadasa and Stein, 2012).

If extensive physical mapping resources are not available (as
is the case for many non-model species), reference genomes of
related species may serve as proxy to order WGS assemblies, but
approaches based on genome collinearity (Mayer et al., 2009)
are restricted to genic regions and their accuracy is bounded
by the degree of syntenic conservation between related species.
Recent translocations or duplications of single genes or larger
genomic regions may reduce interspecific collinearity and thus
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impact the accuracy of synteny-guided assembly ordering (Wicker
et al., 2011). This approach is also limited to the gene-space, as
intergenic, repetitive sequences evolve very fast and show little
conservation even between individuals of a single species (Brun-
ner et al., 2005). It is therefore desirable to have methods at hand
that can provide fast and cost-efficient access to an at least partially
ordered WGS assembly.

GENETIC ANCHORING OF WGS ASSEMBLIES
For more than a century, genetic mapping has been a univer-
sal method to order genomic loci along the chromosomes of
sexually reproducing species. Theoretical models of allelic seg-
regation in experimental mapping populations have long been
established (Morgan et al., 1922) and various algorithms applying
these principles to construct genetic linkage maps from geno-
typic data have been implemented [reviewed in Cheema and
Dicks (2009)]. During the last decades, advances in genetic map-
ping have been concomitant with the development of molecular
marker technologies (Henry, 2012). NGS-based genotyping has
recently enabled the simultaneous and near-exhaustive assay of
every sequence polymorphism segregating in a mapping popu-
lation (Huang et al., 2009; Davey et al., 2011). Genotyping-by-
sequencing of mapping populations has first been employed in
species with high-quality map-based reference sequences such as
rice (Huang et al., 2009; Xie et al., 2010) or Drosophila (Andol-
fatto et al., 2011). This obviated the need for inferring marker
order de novo from the genotypic data and enabled the efficient
elimination of missing data through a sliding-window approach
(Xie et al., 2010).

Because whole genome resequencing is still too expensive to
deeply sequence a large number of individuals of species with large
genomes, methods have been designed that reduce the genomic
complexity either by restriction enzyme digestion (Altshuler et al.,
2000; Baird et al., 2008; Elshire et al., 2011) or sequence capture
with oligonucleotide baits (Hodges et al., 2007; Bainbridge et al.,
2010). Reduced representation sequencing has been applied to
anchor a large portion of the small genome (240 Mb) of wood-
land strawberry (Shulaev et al., 2011), but could assign only a
minor fraction of the sequence assembly of the 4 Gb genome of
the bread wheat progenitor Aegilops tauschii (Jia et al., 2013) to
chromosomal locations.

Recently, two reports (Mascher et al., 2013; Hahn et al., 2014)
described computational pipelines that employ genotyping by
whole genome sequencing of a genetic mapping population to
construct an ultra-dense de novo linkage map of this population
and place the assembly contigs of a WGS assembly into the map,
producing a genetically anchored WGS assembly. The major com-
putational steps of these procedures are: (i) constructing a WGS
assembly from NGS data, (ii) mapping the sequence reads of the
population to the assembly and computational genotype calling,
(iii) building a genetic linkage map as a framework into which to
(iv) integrate the WGS SNPs and assembly contigs harboring them
(Figure 1).

The POPSEQ method (Mascher et al., 2013) utilizes established
software for read mapping (BWA (Li and Durbin, 2009), vari-
ant calling [SAMtools (Li, 2011)] and map-making [MSTMap
(Wu et al., 2008)]. SNPs detected by whole-genome sequencing

of a mapping population are placed into a genetic framework of
this same population through a simple nearest neighbor search.
POPSEQ was first used to anchor genetically an existing genome
assembly of barley (Hordeum vulgare), a monocotyledonous
crop plant. The individuals of two mapping populations were
sequenced to average onefold whole-genome coverage and after in
silico genotyping, SNPs were placed into genetic framework maps
of the populations which had been previously constructed from
SNP array data (Comadran et al., 2012), through genotyping-by-
sequencing (Poland et al., 2012), or were made from the WGS
data of the population. The genetic positions of SNPs on WGS
contigs were then used to assign chromosomal locations to the
contigs of the WGS assembly. Two thirds (1.2 Gbp) of the 1.8 Gbp
barley assembly could thus be genetically localized. Although the
anchored portion of the assembly included 80% of the predicted
gene loci, the assembly itself represented only the low-copy por-
tion of the large (5 Gb) and highly repetitive barley genome
(The International Barley Genome Sequencing Consortium,
2012).

A similar method [recombinant population genome construc-
tion, RPGC(Hahn et al.,2014)] likewise combines existing tools for
sequence-based genotyping [BWA (Li and Durbin, 2009), SAM-
tools (Li, 2011), GATK (DePristo et al., 2011)] and genetic map
construction [MSTMap (Wu et al., 2008)]. An additional feature
of RPGC is the detection and correction of assembly errors caused
by erroneously collapsing highly similar paralogous sequences.
Such collapsed loci show segregation patterns inconsistent with
a 1:2:1 distribution of genotypes in an F2 population. The authors
evaluated RPGC with simulated sequence data of an F2 pop-
ulation of the worm C. elegans, a model species with a small
genome (∼100 Mb). A de novo assembly with ALLPATHS-LG
(Gnerre et al., 2011) consisted of only 88 scaffolds and covered
96% of the genome. Alignment to the C. elegans reference genome
revealed that all scaffolds were ordered and oriented correctly,
indicating that NGS-based sequence assembly and subsequent
anchoring may be able to create almost complete and highly
accurate sequence assemblies for species with small, repeat-poor
genomes.

POPSEQ and RPGC are both targeted towards the construc-
tion of a reference sequence for a given species. Nevertheless, the
availability of a reference genome does not at all depreciate fur-
ther de novo assembly efforts. Structural variation is abundant
in the genomes of many species (Feuk et al., 2006; Springer et al.,
2009; Munoz-Amatriain et al., 2013; Marroni et al., 2014). Because
complex events resulting in copy-number or presence absence
variation are difficult to disentangle by mapping short NGS reads
to a single reference sequence (Medvedev et al., 2009; Alkan et al.,
2011a), reference-guided de novo assembly (Schneeberger et al.,
2011) has been proposed as a tool to detect large-scale deletions,
insertions and inversions. In a recent example, Gao et al. (2013)
used sequence data from a segregating population of rice to assem-
ble the genome sequence of one parent and correct errors in the
existing assembly of the other parent.

Anchoring sequence scaffolds by population sequencing can
also benefit on-going map-based sequencing projects. Although
the construction of genetically anchored WGS assemblies is inde-
pendent of a physical map and associated sequence resources
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FIGURE 1 | Workflow for creating a genetically anchored WGS

assembly. A WGS assembly is created from deep sequence data of a
single, ideally homozygous individual using a combination of paired-end
and long-jumping mate pair reads. Shallow coverage sequence data
from the individuals of a genetic mapping population is mapped to this
assembly and SNPs are detected and genotyped in silico in the
population. This genotypic data is used to construct a linkage map or is

integrated with existing maps. Finally, contigs are placed to the genetic
map based on the segregation patterns of the SNP markers they carry.
Currently, assembly, SNP genotyping and genetic map construction are
performed consecutively with existing general-purpose tools. Future
research should focus on developing an integrated pipeline, where an
initial assembly is iteratively improved using sequence information from
the mapping population.

(sequenced BAC clones, BAC end sequences), both can
synergistically improve each other. As shown for barley, the
sequence and marker resources provided by the assembly can be
used to order and anchor the physical map (Ariyadasa et al., 2014)
and, vice versa, the information about short-range connectivity
obtained from clone overlaps can help further resolve the order of
sequence contigs within recombination bins.

APPLICATIONS OF GENETICALLY ORDERED SEQUENCE
ASSEMBLIES
The genome sequence of a species is not an end in itself. But a
genome constitutes a “research infrastructure” for biology (Olson,
1993), providing a stepping stone to a wide range of studies in
basic and applied research that either makes possible or greatly
accelerates the achievement of their aims. Many of these applica-
tions do not strictly necessitate a finished reference genome, i.e.,
near-complete pseudomolecules for each chromosome, but they
can also be carried out with a partially ordered sequence assem-
bly (possibly supplemented by physical mapping resources) that
represents the majority of gene models. Such a partial order can
be provided by genetically ordered WGS assemblies, which may
function as hubs for gene isolation and empower comparative and
evolutionary genomics.

Mapping-by-sequencing is the combined use of bulked segre-
gant analysis and NGS to identify genes that underlie phenotypic
traits (Schneeberger and Weigel, 2011). After the initial imple-
mentation in Arabidopsis (Schneeberger et al., 2009), similar
approaches have been developed in other plant and animal species
(Doitsidou et al., 2010; Abe et al., 2012; Leshchiner et al., 2012).
As the individuals of the mapping population are not genotyped
individually but sequenced together in pools, only the distribution

of allele frequencies across pools can be inspected and marker
order cannot be determined de novo. Thus, genetic marker posi-
tions have to be inferred from an ordered reference sequence
(Figure 2). Moreover, QTL mapping using whole-genome (Huang
et al., 2009; Gao et al., 2013) or reduced representation resequenc-
ing (Baxter et al., 2011; Morris et al., 2013; Liu et al., 2014) of
biparental populations or association panels can take advantage
of an ordered reference to search identified target intervals for
anchored candidate genes.

Genomics has been acknowledged as a powerful means to study
evolutionary processes across several individuals of a single species
(Luikart et al., 2003) and also across species boundaries (Sousa
and Hey, 2013) to gain insights into how evolutionary forces
such as adaptation to environmental conditions, natural selec-
tion, or random genetic drift shape the genomes of individuals
and species. These fields have greatly benefited from the “democ-
ratization of sequencing” engendered by NGS technology (Stapley
et al., 2010; Ekblom and Galindo, 2011). Genomic resources of
non-model organisms can now quickly be assembled in order to
support specific research aims (Ellegren, 2014). The recent study
of Ellegren et al. (2012) used a genetically ordered draft genome
sequence to dissect speciation between closely related songbird
species. In an agronomic context, the International Oryza Map
Alignment Project (Jacquemin et al., 2013) aims at sequencing
the genomes of all members of the genus Oryza, i.e., relatives
of cultivated rice. Starting from the premise that a single refer-
ence genome is not sufficient to assess the natural diversity across
an entire genus, this project wants to establish a comprehensive
genomic infrastructure to empower studies into the evolution-
ary dynamics of genome structure, conservation genomics and
to assist crop improvement by introgressing beneficial alleles
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FIGURE 2 | Reference-based genetic mapping. A genetically
ordered gene-space assembly can function as an effective surrogate
for a reference genome sequence for the purpose of mapping-by-
sequencing (Schneeberger et al., 2009). This example shows the allele
frequency distribution along the POPSEQ map of barley (Mascher et al.,
2013) in two contrasting bulks of the Oregon Wolfe Barley (OWB)

population. The bulks were defined by presence or absence of the
zeocriton (compressed ear) phenotype. Eighty-two OWB individuals were
sequenced as part of POPSEQ and phenotypes were assigned based
on publicly available phenotypic data (Carollo et al., 2005). The peak
coincides with the genetic position of the gene ZEOCRITON (2H,
127 cM; Houston et al., 2013).

into elite germplasm. This endeavor could probably benefit
from population sequencing data to anchor WGS assemblies and
physical maps.

CHALLENGES AND LIMITATIONS
The most time-consuming step of anchoring a WGS assembly
is the construction of a genetic population. While the sequenc-
ing and computational steps can be carried out in less than
6 months (Mascher et al., 2013), population development, in
case of recombinant inbred line populations, may involve several
rounds of self-fertilization, which can take several years. However,
in plants, genetic mapping is routinely performed by researchers in
academia and private industries and suitable mapping populations
are often readily available. Moreover, plant mapping populations
lend themselves very well to sequence-based mapping. Popula-
tions are generally started from highly homozygous genotypes
and advanced recombinant inbred or doubled haploid progeny
lines are nearly or completely homozygous, respectively. By con-
trast, F2 generations involve only one round of selfing after the
initial cross. However, half of the genome of F2 individuals is
expected to be heterozygous, requiring deeper sequence cover-
age for reliable genotyping. Even in obligate outcrossers, linkage
maps can be made from crosses between heterozygous parents
(Grattapaglia and Sederoff, 1994). Although controlled crosses
cannot be made and the progeny of a single pair of parents is
limited in number, genetic mapping is anything but impossible
in animals. Linkage analysis in families of siblings from a cross

between heterozygous parents is more complicated than in the
progeny of homozygous lines (Maliepaard et al., 1997). Markers
differ in the number of alleles and the number of heterozy-
gous parents, and it can be impossible to determine the linkage
phase of a marker, i.e., from which grandparent it was inher-
ited. High-density linkage maps of the human genome have been
constructed from multi-generation pedigrees (Dib et al., 1996).
Similar methods based on three-generation pedigrees have been
applied in other mammalian species such as macaque monkeys
(Rogers et al., 2006) and domestic cats (Menotti-Raymond et al.,
1999). Moreover, RIL populations have been created by mat-
ing of full-siblings in the laboratory animals mouse (Williams
et al., 2001), rat (Pravenec et al., 1996), and fruit fly (Nuzhdin
et al., 1997). If a robust genetic framework map can be computed,
whole genome sequencing of the pedigree should allow populat-
ing this framework with additional markers and WGS sequence
contigs. The heterozygosity of natural pedigrees may necessitate
deeper sequencing to reliably score heterozygotes. Recent stud-
ies found that genotype calling from low- or medium-coverage
(<15x) data often results in calling heterozygotes as homozygotes
and can bias downstream analyses (Kim et al., 2011; Crawford
and Lazzaro, 2012). A sliding-windows approach that aggregates
sequence information across multiple SNP positions may help
mitigate the effects of genotyping errors caused by low read
depth.

In any species, linkage mapping has the inherent limitation
that the maximally achievable resolution is determined by the
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recombination landscape, or more specifically, the ratio between
physical and genetic distance along the genome. In grasses, for
example, recombination events mainly occur in distal regions,
whereas large peri-centromeric intervals are almost devoid of
cross-overs. These so-called genetic centromeres correspond to
a single large bin in a genetic map, which can only be resolved
with extremely large mapping populations or possibly through
alternative approaches such as physical mapping (van Oeveren
et al., 2011), optical mapping (Dong et al., 2013), or methods based
on chromosomal conformation capture (Lieberman-Aiden et al.,
2009; Burton et al., 2013).

In contrast to these intrinsic difficulties given by biological facts,
algorithmic parameters of the anchoring process can be subject to
directed improvement. The major computational tasks of assem-
bly anchoring are de novo assembly, read mapping, variant calling
and linkage map construction. One of the major determinants of
anchoring efficiency is assembly contiguity. The longer a sequence
contig is, the more likely it is that at least one sequence polymor-
phism can be detected to anchor it. Furthermore, longer contigs
alleviate the problem of missing data. Even though the majority
of individuals have missing genotype calls for single SNPs as a
consequence of shallow-coverage sequencing (Huang et al., 2009;
Mascher et al., 2013), aggregating genotypic information across all
SNPs on a single contig results in consensus genotype calls with
little or no missing data.

In the approaches of Mascher et al. (2013) and Hahn et al.
(2014), read mapping and variant calling are performed with
standard tools that are routinely used in large-scale resequencing
projects (1000 Genomes Project Consortium et al., 2012; Ten-
nessen et al., 2012) and will likely scale with the growing amount of
raw data as population size and sequencing depth increase. By con-
trast, the majority of genetic mapping programs are still tailored
to datasets encompassing only a few 1000 markers. The most com-
monly used tool to compute linkage maps form larger marker sets
is MSTMap (Wu et al., 2008), for which excessive runtimes have
been reported when marker order exceeds ∼100,000 (Howe et al.,
2013). As the number of recombination bins in small biparental
populations is limited, it can be envisaged to cluster markers prior
to map-making based on their segregation patterns to obtain a
smaller, yet fully informative set of framework markers. Moreover,
focusing on a small number of high-confidence SNP loci may avoid
the common problem of map-inflation, which is often caused
by spurious cross-over events introduced by genotyping errors
(Cheema and Dicks, 2009).

Moreover, valuable insights into the choice of parameters, the
overall accuracy of the methods and the interplay of sequenc-
ing depth, population size, and final mapping resolution may be
gained by performing de novo assembly and anchoring on real
data gathered from species with existing high-quality reference
genomes to be used as a gold standard for benchmarking.

CONCLUSION
The interest in the genome sequencing of non-model species
(Ellegren, 2014) or economically important species with humon-
gous genomes (Brenchley et al., 2012; Nystedt et al., 2013) has
increased recently. Genome sequencing and assembly efforts and
novel algorithmic development can be expected to intensify in the

years to come, as genome sequencing of thousands of animal and
plant species has been proposed (Genome 10K Community of Sci-
entists, 2009; Johnson et al., 2012). We conclude with reiterating
the advice of Gao et al. (2013) that each genome assembly project
should, if at all possible, obtain WGS data from at least one segre-
gating population. Short read assembly will remain a central part
of any genome project as long as advances in sequencing technol-
ogy will not make possible chromosome-sized sequence scaffolds.
In the meantime, methods such as genetic anchoring will always
be necessary to enhance the utility of fragmented WGS assemblies.
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