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The usual analysis of genotype × environment interaction (G × E) is based on the
linear regression of genotypic performance on environmental changes (e.g., classic
stability analysis). This linear model may often lead to lumping together of the non-linear
responses to the whole range of environmental changes from suboptimal and super
optimal conditions, thereby lowering the power of detecting G × E variation. On the other
hand, the G × E is present when the magnitude of the genetic effect differs across the
range of environmental conditions regardless of whether the response to environmental
changes is linear or non-linear. The objectives of this study are: (i) explore the use of four
commonly used non-linear functions (logistic, parabola, normal and Cauchy functions) for
modeling non-linear genotypic responses to environmental changes and (ii) to investigate
the difference in the magnitude of estimated genetic effects under different environmental
conditions. The use of non-linear functions was illustrated through the analysis of one
data set taken from barley cultivar trials in Alberta, Canada (Data A) and the examination
of change in effect sizes is through the analysis another data set taken from the North
America Barley Genome Mapping Project (Data B). The analysis of Data A showed that the
Cauchy function captured an average of >40% of total G × E variation whereas the logistic
function captured less G × E variation than the linear function. The analysis of Data B
showed that genotypic responses were largely linear and that strong QTL × environment
interaction existed as the positions, sizes and directions of QTL detected differed in poor
vs. good environments. We conclude that (i) the non-linear functions should be considered
when analyzing multi-environmental trials with a wide range of environmental variation
and (ii) QTL × environment interaction can arise from the difference in effect sizes across
environments.
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INTRODUCTION
Inconsistent performance of genotypes over different environ-
ments known as genotype × environment interaction (G × E)
remains to be a major impediment to genetic improvement of
biological species in Canada and elsewhere. G × E is particularly
important for plant species (e.g., agricultural crops and forest
trees) because they spend their entire life at the same locality. Over
the past decades, the assessment of G × E has been done with the
data obtained from testing of the same genotypes over multiple
environments (locations or years), i.e., multi-environmental trials
(Yang, 2007).

The G × E effect has been incorporated into quantitative
genetic models (Falconer and Mackay, 1996) through the use
of genetic correlations within and between individual geno-
types (e.g., Crossa et al., 2004; Burgueño et al., 2008). The
basic idea behind such an approach is to predict genetic val-
ues through borrowing information among individuals from
genetic relationships, and within individuals (across environ-
ments) from genetic and environmental correlations. The analysis

of such correlation structure has been performed to obtain the
parsimony description of G × E variation using different ver-
sions of linear-bilinear models based on a mathematical tech-
nique known as singular value decomposition (SVD) (Golub
and Reinsch, 1970). One popular use of the SVD technique
is the biplot analysis of G × E based on the two commonly
used rank-two linear-bilinear models: the additive main effects
and multiplicative interaction (AMMI) model and the genotype
main effects and genotype × environment interaction effects
(GGE) model (i.e., fitted to residuals after removal of environ-
ment main effects) (for review, see Yang et al., 2009). Recently,
Burgueño et al. (2008) and Cullis et al. (2010) described a sim-
ilar biplot analysis under a mixed-model framework using a
series of rank-two factor-analytic (FA) model. Apart from the
adequacy of the rank-two models and other statistical issues,
Yang et al. (2009) pointed out that the biplot analysis has con-
tributed little to our understanding of the nature of G × E
variation because it is a descriptive analysis with little predictive
power.
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Baker (1988) and others (e.g., Scheiner, 1993; Lindgren and
Ying, 2000) have suggested the use of predictive models based on
linear and non-linear response functions for studying G × E. The
classic stability analysis based on simple linear regression model as
pioneered by Yates and Cochran (1938) is a special case of the gen-
eral non-linear predictive models. In addition, linear functions
would usually account for a small portion of G × E variation
if a wide range of environmental conditions are tested. On the
other hand, for quantitative traits such as crop yield or human
complex diseases (Franks et al., 2013), the G × E is manifested
when the magnitude of the genetic effect differs across the range
of environmental conditions regardless of whether the response
to environmental changes is linear or non-linear. For this reason,
many recent genome-wide association studies (GWAS) in human
(Kilpelainen et al., 2011; Qi et al., 2012) have focused on deter-
mining the effect sizes of causal variants (e.g., SNPs) over different
environmental conditions (e.g., different lifestyle behaviors).

The objectives of this paper are two folds. First, we investigate
the use of different non-linear functions for modeling genotypic
response to environmental changes or gradients. In this case,
G × E is present when the response curves fail to be parallel
(Baker, 1988). Similar concept has been used in evolution and
ecology but under different names [e.g., phenotypic plasticity
(robustness), reaction norm] (e.g., Via et al., 1995). Second, we
examine whether there are differences in estimated genetic effects
under different environmental conditions. It is generally expected
that a larger effect is more likely found in the environmental con-
dition where the expression of a gene is facilitated than in the
environmental condition where the expression of a gene is not
facilitated.

MATERIALS AND METHODS
DESCRIPTION OF NON-LINEAR FUNCTIONS
As a starting point, we provide a brief description of the clas-
sic stability analysis that is based on a linear regression function
(Yates and Cochran, 1938; Finlay and Wilkinson, 1963; Eberhart
and Russell, 1966; Perkins and Jinks, 1968):

yij = ai + bixj (1)

Where yij is the performance (say yield) of the ith genotype tested
in jth environment, xj is the mean yield of all genotypes tested in
the jth environment (known as environmental index), the inter-
cept ai is the yield of the ith genotype at the worst environment,
and the slope bi measures the stability of the ith genotype.

According to Finlay and Wilkinson (1963), all genotypes can
be conveniently classified into three groups: (i) genotypes with
average stability (bi = 1.0); (ii) genotypes with low stability or
high sensitivity to environmental changes (bi > 1.0) and (iii)
genotypes with high stability or low sensitivity to environmental
changes (bi < 1.0). Eberhart and Russell (1966) further refined
this definition by suggesting that a stable genotype would be the
one with average stability, low variance due to deviations from
regression and high mean yield.

However, linear response usually accounts for only a small por-
tion of the G × E variation and the responses are most often
non-linear in practice (Knight, 1973; Jinks and Pooni, 1988). This

occurs because when individuals of the same genotype are evalu-
ated at different levels of an environmental factor ranging from
suboptimal, optimal to super-optimal levels, their performance
(i.e., yield) often shows a continuous non-linear relationship with
the environment. The response curve can rise from near zero
performance at extreme suboptimal levels of the environmen-
tal factor to some asymptotic value at optimal levels, and then
decrease to near zero value at extreme super-optimal levels. If a
small portion of the environmental range is evaluated, only the
linear response could possibly be observed within this limited
range of environmental conditions.

Here we briefly describe some well-known non-linear func-
tions that have been used to model relationships of yield or
growth with a single more defined environmental variable (for
details, see Baker, 1988; Ratkowsky, 1993). The most obvious
non-linear function is a quadratic function (parabola function)
and it is often used to describe the relationship between grain
yield and field water availability (e.g., McKenzie et al., 2004):

yij = ai + bixj + cix
2
j (2)

The quadratic function has been also used to describe the genetic
response to climate variables in forest trees (Rehfeldt et al., 1999).
Another non-linear function is the reciprocal of the quadratic
function used to describe the relationship between yield and
planting density (Baker, 1988):

y−1
ij = ai + bixj + cix

2
j (3)

This general expression can take several special forms, one of
which is known as Cauchy function,

yij = ki[
1 + (xj−x max)

2

r2
i

] (4)

Where Ki is a parameter that scales yield from zero to one (i.e.,
0 ≤ Ki ≤ 1), xmax is the x value at which the maximum yield is
achieved and γi is the scale parameter which measures the range
of genotypic response to environmental changes. This Cauchy
function has been used to delineate breeding zones in forest trees
(Raymond and Lindgren, 1990; Lindgren and Ying, 2000). The
logistic curve:

y−1
ij = ai + bic

xj

j (5)

is often used to describe the plant growth with age, but it can also
be useful for the response to the environmental changes (Baker,
1988; West et al., 2001; Zuo et al., 2012). Roberds and Namkoong
(1989) proposed the use of the Gaussian function to model the
genotypic response to an environmental gradient:

yij = ki√
2πr2

i

e

⎡
⎣

(
xj−xmax

)2

2r2
i

⎤
⎦

(6)

When Ki = 1, Equation (6) becomes the normal probability den-
sity function. These non-linear functions are graphed in Figure 1.
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FIGURE 1 | Four different non-linear functions for studying

genotype-environment interaction (normal, Cauchy, parabola, and

logistic).

It should be noted that the y-axis and x-axis in Figure 1 are
rescaled in standardized units. For example, the standardized
Cauchy function is given by:

y′
ij = 1

1 + x′2
ij

(7)

Where y ′
ij = yij

ki
and x ′

ij = xj−xmax

ri
Thus, y′

ij becomes a rela-
tive measure of the performance within the range of 0 (0%)–1
(100%). All non-linear functions are indistinguishable at or near
the optimum x′

ij = 0. For example, the Cauchy function can be
well approximated by a quadratic function at the rescaled axises
because of the following mathematical relationship:

1

1 + x′2
ij

→ 1 − x′2
ijwhenx′

ij → 0 (8)

but the approximation becomes less desirable at the extreme
environmental conditions (i.e.,

∣∣x′
ij

∣∣ >> 0).

ANALYSIS OF EMPIRICAL DATA
We will describe the analysis of two empirical data sets. The first
data set (Data A) is taken from Yang et al. (2006) who analyzed
324 replicated barley cultivar trials sown at 84 sites across three
provinces (Alberta, Saskatchewan and Manitoba) in the Canadian
prairies during 1995–2003. Here we illustrate the use of non-
linear G × E analysis of the data taken from the trials in the
province of Alberta only. The data set for the analysis is briefly
recapitulated now. In each year, there were 16 (1995)–22 (2000)
trials planted at different locations across Alberta. Each trial con-
sisted of 39–44 barley cultivars. It should be pointed that in a
given year, the same cultivars were usually included in each and
every trial but over different years, at least some cultivars were dif-
ferent in the same and different test sites either due to a turnover

to newly registered cultivars or to unavailability of pedigree seed
of older cultivars. The same check cultivars were used across
the different years. All trials were conducted using a randomized
complete block design with three or four replications. Cultural
practices such as fertility, tillage and pest control varied from site
to site but were considered to be the most appropriate for the
individual sites.

Following the procedure of Yang et al. (2006), the usual anal-
ysis of variance partitioned the total sum of squares in each year
into components due to the site effects (E), the cultivar effects (G)
and the interaction between cultivar and site effects (G × E) using
SAS PROC MIXED (Sas Institute Inc, 2012). Further partitioning
of the G × E variation under different non-linear functions was
carried out using appropriate data transformations that enabled
the analysis of non-linear G × E under the mixed-model frame-
work. The different non-linear functions were compared interms
of their ability to capture the amount of G × E variation.

The second data set (Data B) is a publicly available data set
that we previously analyzed using single-marker analysis (Ham
et al., 2010) and genome-wide prediction (Yang and Ham, 2012).
The data set consisted of 150 doubled haploid (DH) lines that
were developed from a cross between two malting barley vari-
eties (Steptoe × Morex) for the North American Barley Genome
Mapping Project (NABGMP) (http://wheat.pw.usda.gov). These
DH lines were tested in 16 environments over North America for
yield and seven other agronomic and malt quality traits. A total
of 223 restricted fragment length polymorphism (RFLP) mak-
ers mapped over the seven chromosomes of the barley genome
with 37, 37, 31, 33, 29, 22, and 34 makers being mapped on chro-
mosomes 1, 2, 3, 4, 5, 6, and 7, respectively. The effects of these
RFLP markers were estimated using a R package, GLMNET/R,
at three representative environments: poor (minimum environ-
mental index), average (mean environmental index) and good
(maximum environmental index) environments. GLMNET/R
implemented an efficient procedure for fitting the entire elastic-
net regularization path for super-saturated linear regression as
in genome-wide association studies (GWAS) (Friedman et al.,
2010; R Core Team, 2012). The elastic-net penalty (Pα) is a com-
promise between the ridge-regression penalty (α = 0) and the
LASSO penalty (α = 1), where α is related to the degree of shrink-
age of marker effects. Two shrinkage methods, elastic net with
α = 0.5 and α = 1 (i.e., LASSO), were used for genome-wide esti-
mation of marker effects on response at poor, average and good
environments.

RESULTS
DATA A
We (Yang et al., 2006) previously partitioned the total variabil-
ity into components due to genotypes (G), environments (E) and
G × E, and G × E accounted for 6.6% (2003)–23.9% (2000) of the
total variability across different years. Here we further partitioned
the G × E variability into a component that could be explained
by different linear and non-linear models described above and
a residual (Table 1). This further partitioning was based on lin-
ear or non-linear regression of yield on the environmental index
(calculated as the mean of all cultivars at each and every test loca-
tion). It is evident from Table 1 that different non-linear models
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Table 1 | Percentages of genotype × environment interaction

variation explained by linear function and four non-linear functions

in barley cultivar trials in Alberta tested in 1995–2003.

Year Linear Logistic Parabola Normal Cauchy

1995 8.49 7.52 11.10 11.47 20.17

1996 8.84 7.32 14.14 13.06 25.28

1997 6.72 5.88 11.81 9.97 12.54

1998 8.40 7.70 13.15 15.12 26.54

1999 14.70 15.75 20.41 20.85 36.56

2000 5.91 8.34 8.67 14.30 32.39

2001 6.95 11.77 13.16 35.04 86.45

2002 23.60 13.17 40.08 33.46 84.87

2003 17.71 14.06 22.51 18.88 37.69

Average 11.26 10.17 17.23 19.13 40.28

captured different amounts of the total G × E variation, ranging
from an average of 10.2% for logistic model to 40.3% for Cauchy
model. It is somewhat surprising that some non-linear models
(e.g., logistic model) actually captured less G × E variation than
the linear model. For a given model, there was also a large amount
of year-to-year variation in the percentages of the G × E variation
being captured. For example, Cauchy model captured 12.5% in
1997 and 86.5% in 2001. This result suggests that G × E variation
is more predictable in some “good” years than in other “poor”
years. In good years, stable and non-extreme weather or other
agroclimatic conditions are available for optimal performance of
individual genotypes whereas in poor years, such conditions do
not exist.

DATA B
Responses of the DH lines to environmental index were exam-
ined under different linear and non-linear models. The responses
of most DH lines were linear (Figure 2). Furthermore, the varia-
tion in such linear response was greater in “good” environments
(i.e., the locations with higher environmental index values) than
in “poor” environments (i.e., the locations with lower environ-
mental index values). It is evident from Figures 3, 4 that Elastic
net (α = 0.5) detected more marker effects than LASSO (α = 1.0)
but LASSO gave much sharper resolution of marker effects. Under
both estimation methods, marker effects were more pronounced
in good environment than in poor environment.

DISCUSSION
Differential responses of genotypes to environmental conditions
(G × E interactions) can be linear or non-linear. Most current
analyses of such responses are limited to the use of linear models.
In this study, we explore the use of different non-linear mod-
els for characterizing and dissecting G × E interaction. This
was done by extending the linear regression on environmental
indexes (the means of all genotypic values at individual envi-
ronments) or the classic stability analysis (Yates and Cochran,
1938; Finlay and Wilkinson, 1963; Eberhart and Russell, 1966;
Perkins and Jinks, 1968) to the non-linear regression analy-
sis. In the past, several non-linear functions including logistic,

FIGURE 2 | Responses of 150 doubled-haploid lines of barley from a

cross between two malting barley cultivars (Steptoe × Morex) for the

North American Barley Genome Mapping Project (NABGMP). The
range of the environmental index values runs from low (poor environment)
to high (good environment).

quadratic (parabola), Cauchy and normal functions have been
individually used to describe genotypic responses to environ-
ments (e.g., Knight, 1973; Jinks and Pooni, 1979; Roberds and
Namkoong, 1989; Raymond and Lindgren, 1990; Van Tienderen
and Koelewijn, 1994; Lindgren and Ying, 2000). For example,
Van Tienderen and Koelewijn (1994) found that the quadratic
function was “statistically significantly better” than the linear
function. In this study, our comparison of these representative
non-linear functions (Figure 1) reveals the following character-
istics. First of all, when the parameters are appropriately chosen
or rescaled, the response curves of different non-linear func-
tions near the optimum are indistinguishably similar, but their
differences become increasingly evident when the environmen-
tal condition is not good (suboptimal) or too good (super-
optimal). Second, should the true response be non-linear but
be treated as linear, it would be difficult to tell the difference
between non-linear responses to suboptimal and super-optimal
conditions because in the linear analysis, both suboptimal and
super-optimal conditions are lumped together to represent a
deteriorated environment (Figure 5). Thus, the linear analysis
would cause the reduced range of environmental variation when
non-linear response is present but its presence unknown to the
researcher or simply ignored! Third, including responses to both
suboptimal and super-optimal conditions provides more oppor-
tunities to characterize the nature of G × E interaction. For
example, differences in the rate of increase in response at subop-
timal levels would reflect differences in efficiency but differences
in the rate of decrease in response at super-optimal levels would
reflect differences in tolerance.

It may not totally surprising from this study that the Cauchy
function is the best in capturing the G × E variation because
it may be best representative of how different genotype respond
to the whole range of environmental conditions. Each genotype
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FIGURE 3 | Genome-wide scan of QTLs responsible for barley yield in poor, average, and good environments using the ridge regression analysis.

FIGURE 4 | Genome-wide scan of QTLs responsible for barley yield in poor, average, and good environments using the LASSO analysis.

would have its own optimal growing environment. Any deviation
from such optimum, either super-optimal or sub-optimal con-
ditions, would cause a reduced performance or adaptation. The
reduction must be very gentle for relatively mild super-optimal
or sub-optimal conditions. For the extremely poor environments,
the reduction asymptotically approaches a nonzero minimum.

This scenario is best described by the Cauchy function which has a
gentle decline at the regions close to the optimum (the center) and
it has very long, flat tails at either side of the center but never con-
verges. Comparing to the other non-linear functions, the Cauchy
function is more sensitive to the values close to the optimum but
less sensitive to the values at extreme environments which are of
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FIGURE 5 | A demonstration of masking true (non-linear) responses to

environmental changes if a linear function is used.

little practical interest (Raymond and Lindgren, 1990; Lindgren
and Ying, 2000). Thus the Cauchy should be considered in future
plant and animal breeding and evolution studies.

Our analysis of Data A shows that different non-linear func-
tions captured different amounts of G × E interaction variation
with Cauchy function capturing an average of 40% of the total
G × E variation which is twice the amount captured by the second
best model (normal function). This striking capability of Cauchy
function was also observed in Raymond and Lindgren (1990) and
Lindgren and Ying (2000). It is evident from Figure 1 that all
non-linear functions are similar and indistinguishable when envi-
ronmental conditions are close to the optimum but they become
markedly different when environmental conditions move toward
the extremes. Our results suggest that the actual range of envi-
ronmental conditions as represented by all test locations over the
years is too extended to be accommodated by all the functions
except for the Cauchy function which can accommodate the envi-
ronmental conditions at some distance away from the optimum.
Thus, in practical applications, the choice of a non-linear function
should be done after examining the actual distributions of envi-
ronmental conditions either from previous experiences or from
empirical data. It should also be reminded that a sufficient num-
ber of environments (e.g., ∼40 locations in our study) are needed
so that the true distribution of environmental conditions can be
well approximated by the empirical data.

The results from the analysis of Data B reveal that responses
of 150 DH lines to environmental indexes were largely linear
(Figure 2). The 16 environments (essentially 12 locations in 2
years) at which these DH lines were tested would hardly be con-
sidered sufficient for covering the whole environmental range.
Thus, the linear responses may be reflective of the response to a
limited range of environmental indexes. The possibility of non-
linear responses could not be ruled out particularly if the whole
environmental range is available. Even within this limited envi-
ronmental range, our analysis revealed some interconnected and
interesting features. First of all, the variation in the responses

of DH lines was greater in good environment than in poor
environment. Second, the contrast between good and poor envi-
ronments correspondingly led to the difference in the estimated
positions, sizes and directions of QTL effects between these envi-
ronments and this occurred irrespective of which method was
used (Figures 3, 4). Third, inconsistency in the positions, sizes
and directions of QTLs across the environmental range is a direct
evidence of strong QTL × environment interaction.

As just mentioned above, there is increase in the effect size of
detected QTLs in good environment in comparison to poor envi-
ronment (Figures 3, 4). Similar observations have recently been
made in many human GWAS particularly with respect to GWAS-
discovered causal SNPs controlling the susceptibility of obesity.
For example, Kilpelainen et al. (2011) showed that the risk effect
of FTO (fat mass and obesity associated) alleles was about 100%
and larger in physically inactive individuals than in active indi-
viduals from North America. Similar increase in the effect size
was observed when individuals with ≥1 serving sugar-sweetened
beverage per day were compared to those with sugary beverage
intake <1 serving per month (Qi et al., 2012). Such increase in
the effect size occurs because there are causal variants that lead
to more phenotypic variation in the inactive lifestyle than in the
active lifestyle. While generally being ignored in the past, our
study and those other recent studies raise an important point that
the genetic effects must not only be defined and estimated under a
reference population, but also under an appropriate environment.

In conclusion, this paper calls for the attention to the use of
non-linear functions for studying G × E interaction. We illustrate
that the portion of G × E variation due to non-linear responses
can be substantial if the correct non-linear function is used. We
also emphasize that the correct identification of non-linear func-
tions depends critically on how close the estimated environmental
range is to the true range.

ACKNOWLEDGMENTS
I thank Dr. Zhiqiu Hu for computational and technical assis-
tance, and two anonymous reviewers for helpful comments.
This research is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC OGP0183983).

REFERENCES
Baker, R. J. (1988). “Differential response to environmental stress,” in Proceedings

of the Second International Conference on Quantitative Genetics, eds B. S. Weir,
E. J. Eisen, M. M. Goodman, and G. Namkoong (Sunderland, MA: Sinauer
Associates), 492–504.

Burgueño, J., Crossa, J., Cornelius, P. L., and Yang, R.-C. (2008). Using
factor analytic models for joining environments and genotypes without
crossover genotype × environment interaction. Crop Sci. 48, 1291–1305. doi:
10.2135/cropsci2007.11.0632

Crossa, J., Yang, R.-C., and Cornelius, P. L. (2004). Studying crossover geno-
type × environment interaction using linear-bilinear models and mixed mod-
els. J. Agric. Biol. Environ. Stat. 9, 362–380. doi: 10.1198/108571104X4423

Cullis, B. R., Smith, A. B., Beeck, C. P., and Cowling, W. A. (2010). Analysis of
yield and oil from a series of canola breeding trials. Part II. exploring variety
by environment interaction using factor analysis. Genome 53, 1002–1016. doi:
10.1139/G10-080

Eberhart, S. T., and Russell, W. (1966). Stability parameters for comparing varieties.
Crop Sci. 6, 36–40. doi: 10.2135/cropsci1966.0011183X000600010011x

Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics.
New York, NY: Longman.

Frontiers in Genetics | Evolutionary and Population Genetics July 2014 | Volume 5 | Article 227 | 6

http://www.frontiersin.org/Evolutionary_and_Population_Genetics
http://www.frontiersin.org/Evolutionary_and_Population_Genetics
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Yang Linear and non-linear genotype × environment interaction

Finlay, K., and Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding
programme. Aust. J. Agric. Res. 14, 742–754. doi: 10.1071/AR9630742

Franks, P. W., Pearson, E., and Florez, J. C. (2013). Gene-environment and gene-
treatment interactions in type 2 diabetes. Diabetes Care 36, 1413–1421. doi:
10.2337/Dc12-2211

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for gener-
alized linear models via coordinate descent. J. Stat. Softw. 33, 1.

Golub, G. H., and Reinsch, C. (1970). Singular value decomposition and least
squares solutions. Numer. Math. 14, 403–420. doi: 10.1007/BF02163027

Ham, B. J., Spaner, D., Rahman, M. H., Yeh, F. C., and Yang, R.-C. (2010).
Analysis of genotype-environment interactions from a genome-wide survey of
quantitative trait loci in a barley population. Curr. Top. Genet. 4, 21–32.

Jinks, J. L., and Pooni, H. S. (1979). Non-linear genotype × environment inter-
actions arising from response thresholds. Heredity (Edinb.) 43, 57–70. doi:
10.1038/hdy.1979.59

Jinks, J., and Pooni, H. (1988). “The genetic basis of environmental sensitivity,” in
Proceedings of the Second International Conference on Quantitative Genetics, eds
B. S. Weir, E. J. Eisen, M. M. Goodman, and G. Namkoong (Sunderland, MA:
Sinauer), 505–522.

Kilpelainen, T. O., Qi, L., Brage, S., Sharp, S. J., Sonestedt, E., Demerath, E., et al.
(2011). Physical activity attenuates the influence of FTO variants on obesity risk:
a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 8:e1001116.
doi: 10.1371/journal.pmed.1001116

Knight, R. (1973). The relation between hybrid vigour and genotype-environment
interactions. Theor. Appl. Genet. 43, 311–318. doi: 10.1007/BF00275258

Lindgren, D., and Ying, C. (2000). A model integrating seed source adaptation and
seed use. New Forests 20, 87–104. doi: 10.1007/BF00275258

McKenzie, R. H., Middleton, A. B., Hall, L., Demulder, J., and Bremer, E. (2004).
Fertilizer response of barley grain in south and central Alberta. Can. J. Soil Sci.
84, 513–523. doi: 10.4141/s04-013

Perkins, J. M., and Jinks, J. (1968). Environmental and genotype-environmental
components of variability. III. Multiple lines and crosses. Heredity (Edinb.) 23,
339. doi: 10.1038/hdy.1968.48

Qi, Q. B., Chu, A. Y., Kang, J. H., Jensen, M. K., Curhan, G. C., Pasquale, L. R., et al.
(2012). Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med.
367, 1387–1396. doi: 10.1056/NEJMoa1203039

Ratkowsky, D. A. (1993). Principles of nonlinear regression modeling. J. Ind.
Microbiol. 12, 195–199. doi: 10.1007/BF01584190

Raymond, C. A., and Lindgren, D. (1990). Genetic flaxibility—a model for
determining the range of suitable environment for a seed source. Silvae
Genet. 39, 3–4.

R Core Team (2012). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L., and Hamilton, D. A. Jr.
(1999). Genetic responses to climate in Pinus contorta: niche breadth, cli-
mate change, and reforestation. Ecol. Monogr. 69, 375–407. doi: 10.1890/0012-
9615(1999)069[0375:GRTCIP]2.0.CO;2

Roberds, J. H., and Namkoong, G. (1989). Population selection to maximize
value in an environmental gradient. Theor. Appl. Genet. 77, 128–134. doi:
10.1007/BF00292327

Sas Institute Inc. (2012). SAS OnlineDoc 9.3. Cary, NC: SAS Institute Inc.
Scheiner, S. M. (1993). Genetics and evolution of phenotypic plasticity. Annu. Rev.

Ecol. Syst. 24, 35–68. doi: 10.1146/annurev.es.24.110193.000343
Van Tienderen, P. H., and Koelewijn, H. P. (1994). Selection on reaction

norms, genetic correlations and constraints. Genet. Res. 64, 115–125. doi:
10.1017/S0016672300032729

Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D.,
and Van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: consensus
and controversy. Trends Ecol. Evol. (Amst.) 10, 212–217. doi: 10.1016/S0169-
5347(00)89061-8

West, G. B., Brown, J. H., and Enquist, B. J. (2001). A general model for ontogenetic
growth. Nature 413, 628–631. doi: 10.1038/35098076

Yang, R.-C. (2007). Mixed-model analysis of crossover genotype-environment
interactions. Crop Sci. 47, 1051–1062. doi: 10.2135/cropsci2006.09.0611

Yang, R.-C., Crossa, J., Cornelius, P. L., and Burgueño, J. (2009). Biplot analysis
of genotype × environment interaction: proceed with caution. Crop Sci. 49,
1564–1576. doi: 10.2135/cropsci2008.11.0665

Yang, R.-C., and Ham, B. (2012). Stability of genome-wide QTL effects on malt
α-amylase activity in a barley doubled-haploid population. Euphytica 188,
131–139. doi: 10.1007/s10681-012-0680-6

Yang, R.-C., Stanton, D., Blade, S. F., Helm, J., Spaner, D., Wright, S., et al. (2006).
Isoyield analysis of barley cultivar trials in the Canadian Prairies. J. Agron. Crop
Sci. 192, 284–294. doi: 10.1111/j.1439-037X.2006.00209.x

Yates, F., and Cochran, W. (1938). The analysis of groups of experiments. J. Agric.
Sci. 28, 410, 269–288.

Zuo, W. Y., Moses, M. E., West, G. B., Hou, C., and Brown, J. H. (2012). A general
model for effects of temperature on ectotherm ontogenetic growth and devel-
opment. Proc. R. Soc. B Biol. Sci. 279, 1840–1846. doi: 10.1098/rspb.2011.2000

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 19 May 2014; accepted: 30 June 2014; published online: 22 July 2014.
Citation: Yang R-C (2014) Analysis of linear and non-linear genotype × environment
interaction. Front. Genet. 5:227. doi: 10.3389/fgene.2014.00227
This article was submitted to Evolutionary and Population Genetics, a section of the
journal Frontiers in Genetics.
Copyright © 2014 Yang. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org July 2014 | Volume 5 | Article 227 | 7

http://dx.doi.org/10.3389/fgene.2014.00227
http://dx.doi.org/10.3389/fgene.2014.00227
http://dx.doi.org/10.3389/fgene.2014.00227
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive

	Analysis of linear and non-linear genotype  environment interaction
	Introduction
	Materials and Methods
	Description of Non-Linear Functions
	Analysis of Empirical Data

	Results
	Data A
	Data B

	Discussion
	Acknowledgments
	References




