frontiers In
GENETICS

REVIEW ARTICLE
published: 18 July 2014
doi: 10.3389/fgene.2014.00234

An emerging role for long non-coding RNAs in cancer

metastasis

Jason T. Serviss, Per Johnsson and Dan Grandér*

Grander Lab, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden

Edited by:
William Cho, Queen Elizabeth
Hospital, Hong Kong

Reviewed by:

Georges St. Laurent, St. Laurent
Institute, USA

Jun Yasuda, Tohoku Medical
Megabank Organization, Japan
Jonathon Daniel Roybal, The
University of Texas MD Anderson
Cancer Center, USA

*Correspondence:

Dan Grandér, Grander Lab,
Department of Oncology and
Pathology, Karolinska Institutet,
SE-17177 Stockholm, Sweden
e-mail: dan.grander@ki.se

INTRODUCTION

The recent discovery that ~75% of the human genome is tran-
scribed to RNA, with only ~1.2% being responsible for protein
coding, indicates that a large portion of the genome is dedicated
to regulating a relatively small amount of effectors (Kapranovet al.,
2002; International-Human-Genome-Sequencing-Consortium,
2004; Carninci etal., 2005; Katayama etal., 2005; Djebali etal.,
2012). Among the newly discovered RNA elements, long non-
coding RNAs (IncRNAs) have been identified to have functional
roles in a diverse range of cellular functions such as develop-
ment, differentiation, and cell fate as well as disease pathogenesis
(Rinn etal.,, 2007; Guan etal., 2013; Kung etal., 2013; Lee and
Bartolomei, 2013). IncRNAs are generally defined as RNA tran-
scripts longer than 200 nt with no coding potential as indicated
by lack of a discernable open reading frame. IncRNAs typi-
cally exhibit more tissue specificity, lower expression levels, and
less conservation than protein coding transcripts (Derrien etal.,
2012). Although thousands of IncRNAs have been identified,
their function and involvement in disease remains poorly studied.
Intriguingly, IncRNAs have moved into the limelight within cancer
research where their expression has been shown to be dysregu-
lated in multiple cancer types and examples of IncRNA-mediated
regulation of several tumorigenic factors has been demonstrated
(Morris et al., 2008; Yap etal., 2010; Brunner etal., 2012; Johnsson
etal., 2013). Although studies examining the role of IncRNAs in
specific oncogenic processes are limited to date, emerging evidence
suggests them to have essential roles in regulation of the metastatic
process.

METASTASIS
Metastatic disease frequently represents an incurable impasse
and a dim prognosis for patients receiving this diagnosis.

Metastasis is a multistep process beginning with the dissemination of tumor cells
from a primary site and leading to secondary tumor development in an anatomically
distant location. Although significant progress has been made in understanding the
molecular characteristics of metastasis, many questions remain regarding the intracellular
mechanisms governing transition through the various metastatic stages. Long non-coding
RNAs (IncRNAs) are capable of modulating both transcriptional and post-transcriptional
regulation, and thus, coordinating a wide array of diverse cellular processes. Current
evidence indicates that IncRNAs may also play a crucial role in the metastatic process
through regulation of metastatic signaling cascades as well as interaction with specific
metastatic factors. Here we summarize a subset of INcRNAs with proposed roles in
metastasis and, when applicable, highlight the mechanism by which they function.
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The mechanisms regulating metastatic progression have been
largely unknown hindering the development of novel treatment
options. In recent years a renewed focus on underlying molecular
dynamics and cellular pathways prompting metastatic transi-
tion has begun to shed light on this previously scantly explored
territory.

Metastasis is commonly viewed as a linear chain of events
resulting in the relocation of tumorigenic cells from the primary
tumor site to a distant location. The stages of metastasis may be
divided into the following categories: (1) invasion/intravasation,
the escape of cells from the primary tumor into the blood or
lymphatic system, (2) survival and arrest, the avoidance of apop-
tosis and shear stress in the vasculature leading to arrest at a
secondary site, (3) extravasation, infiltration into the parenchyma
of the distant tissue, (4) micrometastasis, survival within a new
microenvironment, and (5) metastatic colonization, initiation of
proliferative capability and growth. Despite the fact that these steps
represent an oversimplification of the actual events, they serve as
a useful model to support our understanding of the biological
events occurring during metastasis.

The activation of specific cell autonomous pathways has been
associated with the acquisition of necessary metastases-promoting
attributes such as increased migration, altered fate specification,
independence of cell-cell communication, avoidance of apoptosis,
and transient quiescence. Wingless (WNT) signaling, resulting in
the nuclear translocation of B-catenin and activation of its down-
stream transcriptional targets, as well as transforming growth
beta (TGF-B) signaling are two more classically recognized pro-
metastatic pathways although the NOTCH, Akt-mTOR, JNK, and
Hedgehog (Hg) pathways have all been associated with procure-
ment of various metastatic features (Jiao etal., 2008; Dubrovska
etal., 2009; Polyak and Weinberg, 2009).
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The developmental programs, epithelial-mesenchymal-
transition (EMT) and its inverse process, mesenchymal-epithelial-
transition (MET), are also partly defined mechanisms which
metastatic cells undergo to navigate transitional barriers within
the metastatic process (for a detailed review please refer to
Brabletz, 2012). EMT is typically thought to be primarily
involved in the invasion and intravasation stages where events
such as downregulation of the adhesion molecule E-cadherin
and upregulation of the mesenchymal marker vimentin lead
to increased mobility capacity. Many of the pathways known
to be involved in metastasis also have close connections with
EMT. Notably, WNT and TGF-f contribute to the EMT activa-
tion network via f-catenin-mediated activation of EMT induc-
ing factors and SMAD protein interactions, respectively (Padua
and Massague, 2009). Hypoxic conditions in tumor cores are
also conducive to the induction of EMT via upregulation
of HIF-1a (hypoxia-inducible factor-la), HGF/SF (hepatocyte
growth factor/scatter factor), and other known pro-EMT factors
(Gort etal., 2008).

Beginning with the initial observation that snail family zinc
finger (SNAIL) 1 associates with the E-cadherin promoter a
host of other transcription factors have been subsequently iden-
tified to regulate EMT (Batlle etal., 2000). Notably SNAIL2,
Zebl and Zeb2 (zinc finger E-box binding homeobox), Twistl
(twist basic helix-loop-helix transcription factor 1), and PRRX1
(paired related homeobox 1) have all been shown to be impor-
tant agonistic EMT factors (Ocana etal., 2012; De Craene and
Berx, 2013). Importantly, a network of interactions is necessary
to tip the balance and initiate the EMT program. Further-
more, alternative splicing, post-transcriptional regulation, and
microRNAs (miRNA) have all been shown to be important mech-
anisms in the regulation of EMT (reviewed in De Craene and
Berx, 2013). Despite the accumulating information concerning
the molecular mechanisms underlying EMT, relatively little is
known regarding MET regulation. Disseminating tumor cells
which undergo EMT become quiescent, inhibiting their ability
to form macrometastases. MET is one of the proposed transi-
tions that disseminated cells may utilize to re-differentiate, thus
recapturing their proliferative capability. Several lines of evidence
indicate that the ability of disseminated cells to undergo MET, may
represent the rate-limiting step in the metastatic process under-
ling the need for continued research in this area (reviewed in
Brabletz, 2012).

Here we review individual IncRNAs implicated in the metastatic
process. We highlight, when possible, the mechanisms by which
the IncRNAs function and how they are themselves regulated.
We explore several known IncRNAs, which may potentially be
involved in metastasis as well as those which have only recently
been discovered and provide interesting targets for further future
characterization.

METASTASIS-ASSOCIATED LUNG ADENOCARCINOMA
TRANSCRIPT 1

11q13 locus, previously recognized to have a role in tumor devel-
opment and invasion (Bekri etal., 1997; Chakrabarti etal., 1998;
Davis etal., 2003). Ji etal. (2003) previously showed that patients
with non-small cell lung cell cancer (NSCLC) exhibiting high over-
expression of the MALAT1 transcript were five times more likely
to have a metastatic event compared to low expressing patients.
Since this discovery, investigations have been initiated to char-
acterize the MALAT1 transcript and the mechanisms by which
it functions. Under normal conditions MALAT1 is broadly tran-
scribed across a large range of tissue types including pancreas, lung,
prostate, colon, and brain (Ji etal., 2003). Post-transcriptional
nuclear cleavage of the primary MALAT1 transcript, by RNase P
and RNase Z, gives rise to the nuclear retained MALAT1 transcript
and MALAT1-associated small cytoplasmic RNA (mascRNA), a
61 nt ncRNA (Wilusz et al., 2008).

Early reports indicated that MALAT1 localizes to nuclear
speckles where it interacts with members of the serine/arginine-
rich (SR) family of nuclear phosphoproteins and regulates
their phosphorylation status (Sanford etal., 2009; Tripathi etal.,
2010). SR protein levels and phosphorylation have known
roles in the regulation of alternative splicing patterns, indi-
cating that MALAT1 may serve to regulate splicing. Antisense
oligonucleotide-mediated knockdown of MALAT1 in human
HeLa cells confirmed this hypothesis resulting in modified mRNA
splicing of transcripts whose isoforms are regulated by nuclear
speckle-associated proteins (Tripathi etal., 2010). Several of
these mRNAs code for proteins with known roles in onco-
genic and metastatic pathways such as WNT signaling (CAMK2B
and HMG2L1), cytoskeletal organization (ARHGEF1) as well
as cell cycle, DNA damage, and metabolism (CDK7, B-MYB,
SAT1). Collectively, these results implicate MALAT1 in the post-
transcriptional modification of genes involved in established
processes that are vital to the metastatic cascade. Due to recent
results indicating aberrant splicing patterns in various cancer
types, it may well prove that MALAT1 dysregulation is par-
tially responsible for this observation (Watson and Egland, 2010;
Menghi etal., 2011).

Contrary to this, several other studies have indicated that
the involvement of MALAT1 in nuclear speckle-mediated reg-
ulation of alternative splicing is limited to non-existent (Nak-
agawa etal., 2012; Zhang etal., 2012; Gutschner etal., 2013).
MALAT1 knockout mice were shown to have normal nuclear
speckles as well as unaltered SR protein levels, localization,
and phosphorylation status (Nakagawa etal., 2012; Zhang etal.,
2012). Continued investigation utilizing MALAT1 knockout
human A549 lung adenocarcinoma cells, showed that alterna-
tive splicing was not significantly altered compared to control
cells (Gutschner etal., 2013). It should be noted that alter-
native functions, such as sub-nuclear compartmentalization
of growth control genes, have been described for MALATI
and could account for some of this discrepancy (Yang etal.,
2011).

Despite the uncertainty surrounding the mechanism of action

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), by which MALAT1 functions, some agreement can be seen in

also known as NEAT?2, has been implicated in several studies as
having an important role in metastasis. This transcript localizes
to a frequent chromosomal translocation breakpoint region, the

studies investigating its dysregulation in oncogenesis and metas-
tasis. After the original discovery that MALAT1 is overexpressed
in NSCLGC, several other studies have been published showing the
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overexpression of MALAT1 in a multitude of cancer types such
as colorectal, breast, pancreas, bladder, and prostate cancers (Lin
etal., 2007; Han etal., 2013). Studies including patient cohorts
exhibiting a metastatic cancer phenotype have noted increased lev-
els of MALAT1 in high-risk metastatic tumors compared to low
risk tumors (Schmidtetal.,2011; Yingetal.,2012; Hanetal.,2013).
Interestingly, gene expression of known regulators of EMT have
been shown to be affected by MALAT1 dysregulation. Gutschner
etal. (2013) demonstrated the downregulation of the EMT-related
proteins LPHN2 and ABCA1, as well as several other metastasis
regulators, in the MALAT1 knockout A549 cell line. Using two
separate murine xenograft models, the group also confirmed a
reduction of lung metastasis with reduced MALAT1 levels. Addi-
tional studies performed in the T24 bladder cancer cell line by Ying
and coworkers showed that siRNA-mediated MALAT1 knock-
down was associated with decreased levels of the EMT related
transcription factors Slug, Zebl, and Zeb2, as well as decreased
nuclear localization of pB-catenin. The group also noted that E-
cadherin expression was increased in this cell line upon MALAT1
siRNA targeting (Ying et al., 2012). Notably, a direct association of
MALATTI and the c-Jun transcription factor, with known roles
in TGF-B factor signaling and nuclear import of SMAD pro-
teins, has also been documented (Zhang etal., 1998; Yang etal,,
2011).

Collectively, these results indicate that MALAT1 may have
an important role in metastatic cancer. Despite the fact that
the 61 nucleotide ncRNA, mascRNA, is known to originate
from the primary MALAT1 transcript, relatively few studies
have addressed the function of this short transcript (Xu etal.,
2011). The conflicting results regarding the mechanism of func-
tion of MALAT1 could be accounted for in several ways. It
is possible that MALAT1 functions via interaction with spe-
cific proteins to achieve different end points dependent on
cellular context. Another possibility is MALAT1s role in reg-
ulating specific cellular processes may be redundant due to
shared regulatory mechanisms via other cell type specific medi-
ators. Regardless of this, the emerging role of MALAT1 and
mascRNA in oncogenesis and metastasis warrants continued
research.

H19

The oncofetal H19 gene was the first imprinted ncRNA to
be identified, and the H19/IGF2 (insulin-like growth factor
2) locus has long served as a model for genomic imprinting.
High levels of H19 expression are typically only seen dur-
ing embryonic development and, with the exception of muscle
and cardiac tissue, H19 is strongly downregulated after birth
(Pachnis etal., 1988; Poirier etal., 1991). Loss of imprinting
(LOI) at the 11p15.5 H19/IGF2 locus gives rise to an imbal-
anced expression of H19 and IGF2, the clinical features of
which are seen in Beckwith—Wiedemann syndrome (Sparago
etal,, 2004). Patients suffering from this syndrome exhibit
postnatal overgrowth and increased risk for childhood can-
cers, such as Wilms’ tumor (DeBaun and Tucker, 1998). H19
dysregulation has also been implicated in a variety of other
cancers such as colorectal cancer (Tsang etal., 2010), hepa-
tocellular carcinoma (HCC; Ariel etal., 1998), breast cancer
(Lottin etal., 2002), and bladder cancer (Luo etal., 2013), among
others.

The H19 locus is host to a multitude of maternally imprinted
coding and non-coding transcripts including H19, miR-675, H19
opposite tumor suppressor (HOTS), and 91H (Figure 1). Several
of these transcripts have also been implicated in the oncogenic
process although in depth characterization is lacking for many
of them (Wilkin etal., 2000; Berteaux etal., 2008; Onyango and
Feinberg, 2011; Schmitz etal., 2011; Schultz etal., 2012). The
amount of transcripts arising from the H19 locus has, in many
cases, complicated elucidation of the function of H19, not in
the least from studies performed previous to the other transcripts
discovery.

Several direct lines of evidence indicate that H19 is involved
in the metastatic process with its role being best characterized in
bladder and breast cancer. Using the T24P bladder carcinoma cell
line, Ayesh etal. (2002) overexpressed H19 and thereafter used
expression array analysis to identify differentially expressed genes.
The group identified altered levels of known metastatic and inva-
sive phenotype regulators and concluded that H19 regulates genes
involved in invasiveness, migration, and angiogenesis. Further
characterization of the role of H19 in bladder cancer showed that

FIGURE 1 | Genomic organization of the maternal H19 locus. H19, H19
opposite tumor suppressor (HOTS), miR-675, and 91H are expressed from
the H19/IGF2 locus. HOTS is a protein coding gene transcribed antisense to

W NS

Maternal H19 locus

miR-675

H19. H19 is also the host gene for the miR-675, which is a prognostic marker
in several cancer types. 91H is a 120-kb nuclear localized H19-antisense
transcript, which is overexpressed in breast cancer tissues.
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H19is commonly overexpressed in primary human tumor samples
that subsequently metastasize (Luo etal., 2013). Additionally, H19
was found to associate with enhancer of zeste homolog 2 (EZH2)
and to downregulate E-cadherin as well as regulating WNT signal-
ing via inhibition of the WNT-signaling antagonist Nkd1 (naked
cuticle homolog 1). Contrary to this, detailed studies of human
bladder carcinoma samples indicate that H19 levels decrease with
increasing tumor grade (Ariel et al., 2000). This could indicate that
H19 is involved at early time points in the invasion process in blad-
der carcinoma, such as in the response to hypoxia or EMT. In fact,
H19 has been reported to be strongly induced by hypoxic con-
ditions, potentially via a HIF-1a-mediated mechanism (Matouk
etal., 2007).

In accordance with studies examining bladder carcinoma, sev-
eral investigations have also implicated H19 in breast cancer
metastasis, where its expression in epithelial cells localized at
the epithelial/mesenchymal boundary has been linked to a poor
prognosis (Dugimont etal., 1995). Furthermore, in vitro charac-
terization showed that HGF/SF was capable of causing increased
expression of H19 in epithelial cells, leading to a subsequent cell
morphology indicative of increased cell motility (Adriaenssens
etal,, 2002). Using an elegant mouse mammary tumor model,
allowing differentiation between individual stages in the metastatic
cascade, Yang etal. (2004) identified H19 as highly upregulated,
not only in initial metastatic stages, but also throughout the
entire metastatic process. An additional study seeking to link
several breast cancer predisposing single nucleotide polymor-
phisms (SNPs) to clinical characteristics and prognosis, found
that carrying the homozygous risk allele for the rs2107425 SNP,
located in intron 1 of H19, was significantly associated with
short metastatic free survival (Riaz etal., 2012). Upon analysis
of H19 expression from these patients it was found that this
SNP did not affect H19 expression, suggesting that this geno-
type may either alter effective splicing of H19 or potentially
the expression of one of the H19 antisense transcripts. Demon-
strations of IncRNA SNPs resulting in an altered expression of
IncRNA-regulated transcripts has, in fact, been reported (Ling
etal., 2013).

H19 expression in hepatic metastases arising from 9 differ-
ent primary tumor types has also been evaluated (Fellig etal.,
2005). 80% of these hepatic metastases were shown to exhibit
H19 expression, with over half of them being classified as having
high expression. Furthermore, H19 expression has been correlated
with tumor invasion in the reproductive organs and neoplastic cell
invasion of the myometrium (Lottin etal., 2005).

This growing body of evidence indicates that H19 has a dis-
tinct pro-metastatic role. Some studies provide evidence refuting
this hypothesis indicating that H19 is, in fact a negative regulator
of metastasis (Zhang etal., 2013), while other lines of evidence
indicate H19s role to be primarily in regulating growth. Reconcili-
ation of these findings may be provided by the hypothesis that H19
arbitrates diverse functions in different cancer types or at unique
stages of metastasis. Due to its possible role in events early in
the metastatic cascade, such as hypoxia induced invasion, regula-
tion of EMT-related processes and mediation of epithelial/stromal
communication leading to cell morphogenesis, it may also be
hypothesized that H19 is involved in acquiring an early invasive

phenotype. The increasing amount of information regarding the
complex regulation of the H19/IGF2 locus and the functional gene
products arising from here will, no doubt, in the future lead to a
deeper understanding of its role in metastasis.

HOX ANTISENSE INTERGENIC RNA

The HOX loci have long been known to host an abundance of
ncRNAs whose function was poorly understood. In an attempt
to identify these ncRNAs, Rinn etal. (2007) created an ultrahigh-
resolution tiling microarray and detected 407 discrete transcribed
regions within four HOX loci. Of these, HOX antisense inter-
genic RNA (HOTAIR) was found to be transcribed antisense to
the HOXC locus, and preferentially expressed in posterior and dis-
tal sites along the developmental axis. Functional studies revealed
that, despite its genomic location in relation to HOXC, HOTAIR
has little effect on the regulation of its sense transcript. Instead,
HOTAIR was shown to function in trans to negatively regulate
HOXD via increased Polycomb repressive complex 2 (PRC2) occu-
pancy at the HOXD locus. Subsequent studies found that the
regulatory dominion of HOTAIR is not exclusive to the HOXD
locus (Chuetal.,2011). In fact, chromatin isolation by RNA purifi-
cation (ChIRP) allowed for the discovery of 832 HOTAIR genomic
occupancy sites that displayed a high level of co-occupancy with
PRC2 components. These studies also utilized PRC2 deficient
cells showing HOTAIR occupancy to be largely unchanged indi-
cating its role in the recruitment of PRC2 to specific genomic
loci in a global fashion much as it does locally at the HOXD
locus.

HOTAIR role in metastasis has been confirmed in several can-
cer types including breast, gastrointestinal stromal tumors, HCC,
and non-small cell lung cancer. Initially, a study by Gupta etal.
(2010) showed HOTAIR to be overexpressed up to 2000 fold in
breast cancer metastases, with its expression being a significant
predictor of metastasis and death independent of other risk fac-
tors such as tumor size, stage, and hormone receptor status. The
study went on to show that overexpression of HOTAIR retargets
PRC2 to an alternative gene set, which facilitates expression pat-
terns promoting invasion and motility (Figure 2). In vivo and
in vitro experiments also supported a causative role for HOTAIR
overexpression in the procurement of a pro-metastatic pheno-
type. HOTAIR levels have also been shown to be increased in
primary tumors from patients with HCC, which exhibit lymph
node metastasis, as well as having significant association with a
shorter 3 year cumulative recurrence-free survival (Geng etal.,
2011). Results in this latter study also indicate that HOTAIR
may serve to increase the expression of the pro-metastatic fac-
tors VEGF and MMP-9. Studies examining HOTAIRs role in
non-small cell lung cancer provide evidence that it is overex-
pressed in patients exhibiting advanced stage, increased lymph-
and vascular invasion, as well as a shorter disease-free survival
(Nakagawa et al., 2013). Increased expression of HOTAIR was also
found in brain metastases compared to primary tumor samples.
Finally, Niinuma et al. (2012) showed overexpression of HOTAIR
to be strongly associated with metastasis and poor overall sur-
vival in patients with gastrointestinal stromal tumors. This study
also showed that 144 of the previously identified HOTAIR tar-
get genes exhibit reduced expression in patient samples showing
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FIGURE 2 | Hox antisense intergenic RNA mediated regulation. The
recruitment of PRC2 to specific gene sets is mediated by HOTAIR in
trans, consequently increasing methylation and inactivation of the
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target an alternative gene set, thus mediating a gene expression profile
conducive to metastasis. The mechanism by which HOTAIR
overexpression mediates de-repression of some genes is, thus far,
unknown.

high levels of HOTAIR expression. In addition to its more well
known mechanism of action by interacting with PRC2, HOTAIR
has also been shown to function as a competitive endogenous
RNA (ceRNA). ceRNAs can be non-coding or coding RNAs, that
compete with other RNA transcripts for miRNA binding through
shared miRNA response elements, thus modulating the pool of
miRNAs available for target downregulation. An additional study
investigating gastric cancer identified HOTAIR to function as a
ceRNA by sequestering miR331-3p (Liu etal., 2014). Decreased
miR331-3p levels led to increased HER2 levels whose role in pro-
moting metastasis has been previously identified (Yonemura et al.,
1991). Together these studies indicate that therapies capable of
returning HOTAIR expression to a baseline level may be benefi-
cial, allowing for the simultaneous return of multiple metastatic
genes to normal levels.

PROSTATE CANCER ASSOCIATED TRANSCRIPT 1

In a cohort of 102 prostate cancer related samples, a
genome-wide RNA sequencing (RNAseq) approach was used
in order to evaluate differential expression of IncRNAs (Pren-
sner etal.,, 2011). More specifically, the study utilized prostate

tissues including benign adjacent tissues, localized prostate
cancers, metastatic tumors and prostate cell lines. RNAseq-
based transcript analysis led to the identification of 121
unannotated transcripts, which could accurately discriminate
benign, localized and metastatic samples. Further character-
ization of one of these transcripts, PCAT-1, showed that
this IncRNA was upregulated in a subset of high-grade and
metastatic cancers. Investigation of putative PCAT-1 regulated
genes found 370 genes to be differentially expressed upon
siRNA-mediated knockdown of PCAT-1, including subsets with
gene ontology annotations such as cell cycle/mitosis, micro-
tubule/cytoskeleton, and microtubule-based processes (Prensner
etal., 2011).

Since this initial report, an independent group showed that
PCAT-1 may have a similar role in colorectal cancer (Ge etal,
2013). Utilizing a large group of primary patient samples, PCAT-1
was determined to be overexpressed in tumor samples compared
to adjacent matched normal tissues. Moreover, increased PCAT-
1 expression significantly correlated with distant metastasis as
well as short overall survival. The discovery of analogous roles
for PCAT-1 in two cancer types may indicate its cancer type
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independent role as a general regulator of the metastatic pheno-
type, although further confirmation of this is yet to be provided
(Ge etal., 2013).

IncRNA-LOW EXPRESSION IN TUMOR

IncRNA-low expression in tumor (IncRNA-LET) represents a
ncRNA implicated in the suppression of metastasis. Originally dis-
covered in a screen for differentially expressed ncRNAs in hepatitis
B virus-related HCC, its expression was further confirmed to be
reduced in squamous-cell lung carcinoma and colon carcinoma
(Yang etal., 2013a). Clinicopathological characteristic stratifica-
tion confirmed the relationship between IncRNA-LET expression
and micrometastasis as well as the anti-invasive pathological char-
acteristic, encapsulation, in HCC primary human samples. The
group’s findings were further substantiated using both tail vein and
orthotopic xenograft models with results confirming IncRNA-LET
as anti-metastatic. (Yang etal., 2013a).

Mechanistic studies revealed the function of IncRNA-LET to
primarily be the regulation of HIF-1a, which has a previously
well-documented role in invasiveness and metastasis (Figure 3).
Hypoxic conditions causing increased levels of HIF-1a resulted in
upregulation of HDAC3 (histone deacetylase 3). In turn, this was

proposed to lead to reduced IncRNA-LET expression via deacety-
lation of its promoter. Decreased IncRNA-LET expression gave
rise to decreased ubiquitination and thus, accumulation of the
NF90 (interleukin enhancer binding factor 3) potentially due to
the fact that IncRNA-LET is necessary for interaction between
NF90 and a ubiquitin ligase. NF90 was shown to increase HIF-1a
levels in a transcription-independent fashion thus indicating that
IncRNA-LET is involved in a positive-feedback system promoting
HIF-1a levels. These results prompted the group to conclude that
IncRNA-LET mediates an anti-invasive phenotype via an indirect
reduction of HIF-1a. The group also characterized the ability of
IncRNA-LET to regulate the pro-metastatic factor, CDC42, in a
non-hypoxia-induced fashion (Yang etal., 2013a).

Analysis of human primary HCC samples strengthened the
group’s findings regarding IncRNA-LET’s mechanism of action
as well as its underlying importance in metastasis. Specifically,
a decreased acetylation status at the IncRNA-LET promoter was
found in HCC samples compared to normal adjacent samples.
Additionally, an inverse correlation was found for an independent
endogenous hypoxia marker, carbonic anhydrase 9 (CA9), and
IncRNA-LET expression. Finally, IncRNA-LET and NF90 expres-
sion levels were shown to be sufficient to differentiate between

IncRNA-LET

HIF-1a
.

HDAC3

Acetylation RMNA-LET

Ubiquitin ligase Ubiquitin Chains

N SSP

W \ﬁ,
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Promoter
aaf9o
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FIGURE 3 | IncRNA-low expression in tumor regulation and
function. Under normal conditions, INncRNA-LET is expressed (1),
resulting in the degradation of NF90 and low HIF -1a levels (2). Hypoxic
conditions and concomitant upregulation of HIF -1a increases levels of
HDAC3, mediating deacetylation of the IncRNA-LET promoter (3). This

Hypoxic Conditions

oV

Promoter

s
-4 ) 4 @expmssiou
Ol

RNA-LET

high levels

Py

results in decreased expression of INcRNA-LET which, in turn, causes
decreased ubiquitination of NF90, and thus accumulation of HIF -1a via
a positive-feedback mechanism (4). The recruitment of HDAC3, which
results in deacetylation of the IncRNA-LET promoter, is currently
unexplored.
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HCC staging and the prognostic states of HCC with no tumor
thrombus, and HCC with tumor thrombus (Yang etal., 2013a).

COLON CANCER ASSOCIATED TRANSCRIPT 2

Genome-wide association studies investigating SNPs in can-
cer have led to the discovery of numerous cancer-associated
genomic regions. Investigation of one such SNP, rs6983267, asso-
ciated with increased risk for colorectal-, prostate-, ovarian-,
and inflammatory breast cancer and was found to locate
within a highly conserved IncRNA (Ling etal., 2013). This
IncRNA, subsequently named colon cancer associated tran-
script 2 (CCAT2), was shown to have increased expression in
metastatic CRC patient tumor samples. The role of CCAT2
in invasion and metastasis was further substantiated using a
combination in vitro assays and CRC mouse xenograft models
showing that CCAT2 overexpression resulted in a higher inci-
dence and greater number of metastatic tumors (Ling etal,
2013).

Continued investigation indicated that CCAT?2 is involved in
the regulation of WNT-signaling (Figure 4). An activation of
WNT signaling-induced transcription factor TCF7L2 (transcrip-
tion factor seven-like 2) was found to increase CCAT?2 expression.
CCAT?2, in turn, modulates expression of WNT target genes,
including MYC and thus, its downstream metastasis-associated
targets miR17HG and miR20a. Furthermore, CCAT2 overexpress-
ing cell lines showed increased WNT signaling activity, indicating
a CCAT2-mediated positive-feedback mechanism on WNT sig-
naling. Collectively, these results indicate that CCAT2 mediates
its function by increasing the effects of WNT signaling thus
contributing to an enhanced metastatic phenotype (Ling etal,,
2013).

Finally, the effect of the rs6983267 allele genotype on CCAT2
levels and function was investigated. Findings indicated that the
1s6983267 GG allele results in a significantly higher number of
CCAT?2 transcripts compared to the TT allele. Moreover, patient
samples exhibiting a GG allele and increased CCAT?2, also exhibit
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FIGURE 4 | Colon cancer associated transcript 2. WNT signaling,
cumulating in nuclear translocation of g-catenin and interaction with TCFL72
(1), results in the expression of WNT target genes including CCAT2 (2).
Chromosomes harboring the CCAT2 rs6983267 GG allele give rise to
increased levels of CCAT2 transcript, and downstream targets such as MYC,

WNT target genes
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compared to the TT allele. CCAT2 then exhibits a positive-feedback reinforcing
WNT signaling (3). The increased levels of MYC, in turn, leads to elevated
levels of its downstream targets (4) including known metastasis mediators,
such as miR17HG and miR20a, and promotes an increased metastatic
phenotype.
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increased MYC expression, which could not be detected in TT
allele patient samples (Ling etal., 2013).

Since the original publication characterizing the CCAT?2 tran-
script in CRC, an additional study examined the prognostic
value of CCAT2 in breast cancer (Redis etal., 2013). CCAT2
was found to have increased expression in 2 out of 3 exam-
ined primary breast cancer patient sets, although a correla-
tion between the rs6983267 genotype and CCAT expression
was not identified. Furthermore, CCAT2 was found to be a
valid predictive marker for metastatic-free survival and over-
all survival in patients with local lymph node metastasis who
had received adjuvant CMF (cyclophosphamide, methotrex-
ate, and 5-fluorouracil) therapy. In vitro studies in breast
cancer cell lines confirmed increased migration capability of
CCAT?2 overexpressing cells independent of genotype (Redis et al.,
2013).

Transcription within the 8q24 region from which CCAT?2 arises
is complex with an abundance of characterized and uncharacter-
ized transcripts originating here. IncRNAs CCAT1 and CCAT1-L
have also been indicated to be involved in the MYC regulation net-
work although their role in metastasis has not been formally inves-
tigated (Nissan et al., 2012; Yang et al., 2013b; Xiang et al., 2014). In
addition, very IncRNAs arising from this locus encompass several
of the CCAT-IncRNAs as well as additional cancer-associated SNPs
(Kapranov etal., 20105 St. Laurent etal., 2013). Further investiga-
tion of these non-coding transcripts, in conjunction with the func-
tional role that cancer-associated SNPs may play in mediating this
function, is necessary to establish their potential role in regulating
metastasis.

In summary, these studies provide support for the hypothesis
that CCAT2 may have a critical role in invasion and metastasis as
well as underlining the utility of genome-wide association stud-
ies in identifying potential IncRNAs with disease-associated roles.
Furthermore, CCAT?2 expression status may prove to be an impor-
tant predictive marker in CRC, and additionally indicate lymph
node positive breast cancer patients that may not benefit from
CMF treatment.

Zeb2/Sip1-NATURAL ANTISENSE TRANSCRIPT
Genome-wide high-throughput sequencing studies have indi-
cated that a large portion of protein coding sense genes also
exhibit antisense transcription, known as natural antisense tran-
scripts (NATs; Katayama et al., 2005; Engstrom et al., 2006). These
NATs can be both coding and non-coding in nature and may
also be co-classified as IncRNAs. The Zeb2 transcription fac-
tor is intimately linked with EMT and the loss of an epithelial
phenotype (reviewed by Gheldof etal., 2012). Its expression
has been linked to advanced carcinoma stages in a variety of
cancer types such as breast, ovarian, and gastric cancer (Rosi-
vatz etal., 2002; Elloul etal., 2005). Initial reports characterized
a non-coding NAT to the Zeb2 gene with subsequent inves-
tigations uncovering the importance of this transcript in the
regulation of Zeb2 expression (Nelles etal., 2003; Beltran etal,,
2008).

Under homeostatic conditions, the 5 UTR of the Zeb2 mRNA
transcript contains an inhibitory ribosome scanning sequence,
which serves to prohibit its translation (Figure 5). Upon induction

of SNAIL1 or TGF-B-induced EMT, expression of the Zeb2 NAT
is upregulated after which it binds to the 5" UTR of Zeb2 mRNA
(Figure 4). This serves to block the 5’-splice site of an internal
ribosome entry site (IRES)-containing intron within the Zeb2
mRNA, mediating ribosomal binding and translation. In Zeb2
NAT overexpressing cell lines, the resulting Zeb2 translation
was shown to be sufficient to give rise to decreased E-cadherin
levels but not to cause full EMT. As well, the intron-retained
Zeb2 transcript was shown to have a high inverse correla-
tion with E-cadherin in primary human colon adenocarcinoma
samples as well as in breast cancer cell lines (Beltran etal,
2008).

OTHER LONG NON-CODING RNAs
Several other IncRNAs that have been implicated in metastasis
should be mentioned despite the limited amount of information
surrounding them. The IncRNA gastric cancer associated tran-
script 1 (GACAT1), was found to be expressed at lower levels
in gastric cancer tissues compared to corresponding normal tis-
sues (Sun etal., 2013b). More importantly, decreased levels of
GACAT1 was found to be significantly related to lymphatic and
distant metastasis, degree of differentiation, and depth of invasion
making it an attractive candidate for mechanistic studies in the
future (Sun etal., 2013b).

Another IncRNA, sprouty homolog 4 intronic transcript
1 (SPRTY-IT1), was one of 4 non-coding transcripts found
to be abnormally expressed in a screening for differentially
expressed IncRNAs in melanoma (Khaitan etal., 2011). This
IncRNA is transcribed from the second intron of the sprouty
homolog 4 (SPRTY4), and a positive correlation was identi-
fied between SPRTY4-IT1 and SPRTY4 expression in several
tissues. SiIRNA-mediated knock down of the SPRTY4-IT1 tran-
script produced no effect on the levels of SPRTY4, but in vitro
assays revealed a decrease of cellular invasion- and mobility
capability. Further studies are warranted to ascertain more in
depth knowledge concerning the function of this IncRNA in
metastasis.

The transcript down-regulated expression by hepatitis B virus
X protein (Dreh) was identified as one of 429 dysregulated
IncRNAs in the HBx transgenic hepatitis B virus HCC mouse
model, when compared to wild type mice (Huang etal., 2013).
Of these differentially expressed IncRNAs, Dreh was the only
one identified to be consistently downregulated in three differ-
ent age groups. Xenograft studies indicated that overexpression
of Dreh was able to increase tumor differentiation and inhibit
metastatic propensity in subcutaneous nude mouse models.
Examination of HBV-related human HCC samples found Dreh
expression to be significantly correlated with both recurrence
free- and overall survival. RNA pull-down experiments revealed
vimentin, a common EMT marker and cytoskeletal component
of mesenchymal cells, to be associated with IncRNA Dreh. Both
overexpression and knockdown studies confirmed Drehs’ abil-
ity to negatively regulate cellular levels of vimentin, potentially
explaining one mechanism with which it acts to inhibit metastasis
(Huang etal., 2013).

The IncRNA-ATB was recently identified to be activated by
TGF-p signaling and serve to regulate several metastatic stages
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FIGURE 5 | Zeb2-NAT. The Zeb2 transcript harbors a ribosome
scanning inhibitory sequence (RSIS) in its 5 UTR, which causes low
levels of translation (1). Upon either SNAIL1- or TGFB-mediated EMT
induction, the expression of Zeb2-NAT causes the retention of the

Zeb2 transcripts’ 5 UTR intron by blocking its 5' splice site (2). An
internal ribosome entry sequence (IRES) located in 5 UTR intron then
permits increased ribosomal binding and thus, increased translation of
Zeb2 (3).

in HCC via two separate mechanisms (Yuan etal., 2014). First,
IncRNA-ATB was shown to function as a ceRNA, by seques-
tering members of the miR200 family and thus reducing their
availability to target other transcripts. This mediated increased
levels of Zeb1/2, resulting in the transition from an epithelial to
mesenchymal phenotype and increased metastatic capability. Sec-
ondly, and independent of its ceRNA function, IncRNA-ATB was
shown to bind to IlI-11 mRNA increasing its stability. IncRNA-
ATB-mediated increases in Il-11 levels were shown to increase
STATS3 activation and promote cellular propensity to successfully
survive and colonize distant tissues. IncRNA-ATB expression was
shown to be a valid predictor of both recurrence-free- and overall
survival in HCC patients and is a promising candidate for further
investigation.

Furthermore, Tahira etal. (2011) specifically examined global
transcription of IncRNAs in primary and metastatic pancreatic
cancer. RNA levels were interrogated in 15 primary adenocarci-
noma samples and six distant metastases originating from multiple
secondary tumor sites. This revealed 134 ncRNAs to be differen-
tially expressed, the majority (101) being intronic (Tahira etal.,
2011).

Finally, several additional antisense transcribed IncRNAs
have been implicated as regulators in metastasis. Using a cus-
tom microarray, Kohno etal. (2010) defined 256 differentially
expressed antisense transcripts comparing primary colorectal
tumors to liver metastases samples. Additionally, an antisense tran-
script to HIF-1a has been shown to be capable of inhibiting HIF-1a
during chronic hypoxia, and also being a marker for metastasis free
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survival in paragangliomas (Uchida et al., 2004; Span etal., 2011).
Another example is the LINE-1 chimeric antisense transcript,
LCT13, which was shown to induce transcriptional silencing
of its sense gene, the anti-metastasis protein TFPI2 (tissue fac-
tor pathway inhibitor 2; Cruickshanks etal., 2013). Lastly, the
E-cadherin gene, with its well-established role in EMT, has an
antisense transcript that has been reported to negatively regu-
late its protein coding sense gene (Morris etal., 2008). Although,
as of yet, further characterization of this transcript’s role in
metastasis has not been performed. These antisense ncRNAs all
provide potentially interesting candidates for additional studies to
allow further understanding of the specific role they may play in
metastasis.

CONCLUSION

The IncRNA-mediated regulation of a diverse range of biologi-
cal processes is continuously being revealed. Cell cycle regulation,
interferon-y and androgen signaling response, cellular differen-
tiation, and apoptosis are only a few of the thus far reported
IncRNA-regulated cellular functions (Rinn etal., 2007; Gomez
etal, 2013; Sun etal.,, 2013a; Takayama etal., 2013). We pro-
pose invasion and metastasis to be added to this list due to
the ever-growing amount of IncRNAs reported to be differ-
entially expressed in metastatic human samples and IncRNAs’
documented ability to regulate crucial players in the metastatic
cascade.

As outlined here, IncRNAs have been shown to play both pro-
and anti- metastatic roles via their regulation of hypoxic sig-
naling, the WNT pathway, EMT, and cell adhesion. The role
of IncRNAs in other important metastatic features such as cell
fate specification, transient quiescence, and avoiding apoptosis
are beginning to be uncovered although evidence for dysreg-
ulation in human metastatic samples is in some cases lacking
(Mourtada-Maarabouni et al., 2008; Hu et al., 2012).

Several studies have analyzed differential expression of IncRNAs
in multiple cancer types, comparing normal and tumorigenic
samples. Despite this, many of these studies do not include
ample patient sample information and/or sample numbers to
differentiate between primary and metastasizing tumor IncRNA
expression. Identification of IncRNAs mediating progression to
specific metastatic stages serves not only to increase our under-
lying knowledge regarding mechanisms of metastasis but also
provides more useful prognostic and diagnostic markers. Ide-
ally, studies aiming to achieve this would divide tumor samples
by invasive/metastasizing and secondary tumor, allowing for the
identification of IncRNAs, which may be crucial for transitions
between these stages of metastasis. As well, new technologies
allowing the detection of circulating tumor cells (CTCs; Ram-
skold et al., 2012) may allow for the interrogation of the circulation
survival step in the metastasis cascade. Although this has ini-
tially been performed, for example in pancreatic cancer, the use
of an endothelial marker (cytokeratin) for CTC detection may
exclude cells that have undergone EMT (Yu etal., 2012). Finally,
our initial glimpse into the vastness of non-coding RNA tran-
scription was greatly facilitated by the advent of improved whole
transcriptome analysis techniques, such as RNA sequencing. The
continued development of techniques such as single cell RNA

sequencing, direct RNA sequencing, and improved data analysis
methods promise to increase our understanding of the non-coding
transcriptome and how it is affected in malignancy and metasta-
sis (Ozsolak etal., 2009; Ozsolak and Milos, 2011; Picelli etal.,
2014).

Identification of differential expression, while extremely use-
ful, is only the first step in the elucidation of the IncRNA-
based molecular mechanisms capable of regulating metastasis.
Follow-up with detailed functional studies allows for a deeper
understanding of IncRNA regulation and consequently how
they regulate their downstream targets. Ultimately, achieving a
comprehensive understanding of the complex organization of
interaction between both coding and non-coding elements will
best facilitate our progress in preventing and treating metas-
tasis. Potentially, future efforts may allow the direct clinical
manipulation of IncRNAs involved in metastasis thus aiding in
reducing the significant amount of metastasis-related patient
mortality.
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