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We extend the usual logistic model between a dichotomous phenotype and an allele count
in two ways: a polytomous phenotype with K > 2 levels, and modeling of allele counts at
two unlinked marker loci. Inference is based on within-family information to guard against
potential bias due to population genetic structure. Score tests of the model coefficients
taking into account the correlation between relatives in entire pedigrees are derived as
an extension of the Generalized Disequilibrium Test (GDT). Simulations confirm that the
tests have the expected statistical properties, and that their power exceeds that of the
GDT under a favorable scenario. The score tests are illustrated with candidate genetic
markers, a major psychosis phenotype and a cognitive endophenotype in large kindreds
from Eastern Quebec.
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1. INTRODUCTION
Studies of the association between a phenotype and genetic
markers are commonly performed on the members of fam-
ilies of various sizes. While methods to estimate association
parameters and test the null hypothesis of absence of associ-
ation (possibly coupled with absence of genetic linkage) with
dichotomous phenotypes in family samples are well devel-
oped (see for instance chapter 12 of Ziegler and König,
2010), methods are lacking to analyze polytomous pheno-
types. Such phenotypes can arise when a disease has multi-
ple subtypes (Guey et al., 2010) or when two dichotomous
phenotypes are considered simultaneously. The latter occurs
when endophenotypes are measured in genetic studies to bet-
ter capture phenotypic complexity. Endophenotypes are traits
related to a disease and believed to be influenced by fewer
genes (Gottesman and Gould, 2003). A dichotomous disease
status and a dichotomous endophenotype create a four cate-
gory phenotype. Comparisons between analyzing a polytomous
phenotype vs. a dichotomous one have not been done for fam-
ily studies due to the lack of analysis methods for polytomous
phenotypes.

We focus in this paper on a within-family analysis, con-
ditional on phenotype and genotype observed in each family.
Such approach is well known to protect against confounding
due to population stratification. Families where multiple pheno-
typic categories are represented provide the most information on
the relationship between a polytomous phenotype and genetic
markers. Since families extending over multiple generations typ-
ically need to be recruited to obtain a large number of pheno-
typed subjects, we required that the methods for dichotomous
traits that we generalize to polytomous traits be applicable to

extended families. For a score test of association, we selected the
Generalized disequilibrium test (GDT) of Chen et al. (2009).

In previous work, we showed by simulation that condition-
ing on a marker at a known disease susceptibility locus increased
power to detect linkage to new loci interacting with that disease
susceptibility locus (Bureau et al., 2009, 2012). Similar power
gains are expected in association analysis, as conditioning on
a known environmental risk factor increases power to detect
loci interacting with the exposure (Kraft et al., 2007). Models
involving genetic markers at two distinct loci are needed for anal-
yses conditional on the genotype of known disease susceptibility
markers and also to model the relationship between pairs of loci.
Multi-category phenotypes present a larger realm of possibili-
ties of interplay between multiple loci than dichotomous traits,
making multilocus modeling even more important to capture the
actual effects. This is why we derive score tests under two-locus
models, with one marker at each locus, in addition to one-locus
models. The Type I error and the power of tests of various combi-
nations of regression coefficients are assessed using simulation.
The tests are also illustrated with candidate genetic markers, a
major psychosis phenotype and a cognitive endophenotype in the
Eastern Quebec kindred study.

2. METHODS
We extend the GDT of Chen et al. (2009) in two ways: by allow-
ing the outcome Y to have K > 2 levels, and by allowing the odds
of the outcome categories to depend on two or more variables X,
coding the genotype of markers at two mutually unlinked marker
loci. As in the original GDT, X represents the count of a particular
form of the DNA sequence at the marker, called allele. We begin
by deriving the score statistic from the conditional likelihood
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for a polytomous outcome Y with a general vector X of allelic
count terms (possibly including product terms). Then we derive
expressions for particular forms of terms in X.

The polytomous model for subject i with a general Xi vector
can be written

log

(
P[Yi = k|Xi]
P[Yi = K|Xi]

)
= μk + β˜′

kXki, k = 1, · · · , K − 1 (1)

where Xki is the sub-vector of Xi containing the allelic terms
related to level (category) k and β˜k the sub-vector of the full coef-

ficient vector β˜ applicable to level k (in this general formulation,

β coefficients can either be distinct for each level k or can be
common to multiple levels of k).

Without loss of generality, we assume that the n genotyped
pedigree members with an observed phenotype are ordered such
that the first n1 subjects are in outcome category Y = 1, the n2

following subjects are in outcome category Y = 2 and so on up to
the last nK subjects with Y = K.

With K = 2 and a single X (β˜1 = β a scalar, without covari-

ates), Chen et al. (2009) showed that the contribution of the
family to the score statistic from the conditional likelihood P to
test the null hypothesis β = 0 has the form:

SGDT = ∂ log P

∂β

∣∣∣
β = 0

= 1

n

n1∑
i = 1

n∑
j = n1 + 1

(Xi − Xj) (2)

We show in Supplementary Material that the contribution of a
family to the score statistic for the coefficient βh component of β˜when testing the global null hypothesis that the full β˜ = 0 under

a polytomous model is:

S(h) = ∂ log P

∂βh

∣∣∣
β˜= 0

= 1

n

⎡
⎣ n1∑

i = 1

n∑
j = n1 + 1

(
X(h)

1i − X(h)
1j

)
+ · · ·

+
n − nK∑

i = n−(nK−1 + nK ) + 1

∑
j ∈ EK−1

(
X(h)

(K−1)i − X(h)
(K−1)j

)⎤
⎦ (3)

where EK − 1 = {1, · · · , n − (nK − 1 − nK ), n − nK + 1, · · · , n}
and X(h)

ai is the slice of Xai related to the coefficient βh. If βh is
involved only in the logistic function between levels a and K, then
the score statistic simplifies to:

S(h) = ∂ log P

∂βh

∣∣∣
β˜= 0

= 1

n

∑
i ∈ Ea

∑
j ∈ Ec

a

(
X(h)

ai − X(h)
aj

)
(4)

where Ea = {n1 + · · · + na−1 + 1, · · · , n1 + · · · + na} for a > 1
and E1 = {1 · · · n1}.

The advantage of expression 3 is that a closed-form expres-
sion for the variance of S(h) and the covariance of S(g) and S(h)

for coefficients βg and βh can be derived, following the steps of
Chen et al. It is also easier to interpret. When the tested coefficient
belongs to the logistic function attached to a single outcome cate-
gory and the score statistic reduces to expression 4, it is a contrast

of the value of the corresponding X term between subjects in the
outcome category and subjects in all other categories.

Letting v[S] be an estimate of the variance-covariance matrix
of S, the null hypothesis that β˜ = 0 can then be tested with the

statistic

T = S′v [S]−1S

which follows a χ2 distribution with degrees of freedom equal to
the rank of β˜ under the null.

When testing the sub null hypothesis βh1 = · · · = βhm = 0 for
any subset of indices h1, · · · , hm, the other coefficients are free
to differ from 0 and the derivation in Supplementary Material no
longer applies. We adopt here the approach Chen et al. (2009)
apply to model covariates, which is to weight the pairwise differ-
ences according to a model of the outcome Y as a function of the
predictors with free coefficients under the null hypothesis. The
score statistic for the component βh of the subset of coefficients
tested then becomes

S(h) = ∂ log P

∂βh

∣∣∣
βh1 =···= βhm =0

=
∑
i ∈ Ea

∑
j ∈ Ec

a

Cij

(
X(h)

ai − X(h)
aj

)
(5)

where the weights Cij can be derived from score equations for βh

under the pairwise formulation of Liang and Stewart (1987) (see
Supplementary Material), leading to the following functions of
the coefficients α˜ of a polytomous logistic model of Y as a func-

tion of the predictors X(c), c = {l : l /∈ (h1, · · · , hm)} when the
variability from estimating the α˜ is neglected:

Cij = 2

N

1(
1 + exp

{(
X(c)

i − X(c)
j

)′ (
α˜Yi − α˜Yj

)}) (6)

where α˜K = 0.
Adapting Chen et al. (2009)’s Equation 2 from the dichoto-

mous to the polytomous case gives the following expression for
the weights instead:

Cij = 8

N

exp

{(
X(c)

i − X(c)
j

)′ (
α˜Yi − α˜Yj

)}
(

1 + exp

{(
X(c)

i − X(c)
j

)′ (
α˜Yi − α˜Yj

)})3
(7)

We estimate the coefficients α˜ using generalized estimating equa-
tions (GEEs) with an independence working correlation matrix.
With this approach the null hypothesis that the component
βh = 0 can be tested with the statistic

Z(h) = S(h)/
√

v[S(h)]
which follows approximately a standard normal distribution
under the null, when the weights are defined in such a way that
the expectation of S(h) is 0. The weight definition will only have an
impact on power. The joint null hypothesis βh1 = · · · = βhm = 0
for any subset of indices h1, · · · , hm can be tested with the statistic

T = (Sh1 , · · · , Shm )(v[Sh1 , · · · , Shm ])−1(Sh1 , · · · , Shm )′ (8)
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which follows approximately a χ2 distribution with m degrees of
freedom under the null.

The variance of S(h) depends on whether the null hypothesis
refers only to absence of association, or to absence of genetic link-
age and association. In the first case, the null distribution of S(h)

allows genetic linkage at the locus, and the identical-by-descent
(IBD) sharing proportions in the variance estimate must be the
actual IBD sharing proportions at the locus πhij (Chen et al.,
2009). For the second case, or when IBD is unknown, πhij can
be substituted by twice the kinship coefficients φij, which is con-

stant at all loci. The general expression for the variance of S(h)

and covariance between S(h) and S(g) is given in Supplementary

Material. When S(h) takes the form 4, X(h)
ai is a main effect term,

say X1, and the actual IBD sharing proportions πhij are used then

Var[S(h)] = Var

⎡
⎣∑

i ∈ E

∑
j ∈ Ec

Cij(X(h)
ai − X(h)

aj )

⎤
⎦ (9)

=
∑

i,k ∈ E

∑
j,l ∈ Ec

CijCklCov[X(h)
ai − X(h)

aj , X(h)
ak − X(h)

al ]

=
∑

i,k ∈ E

∑
j,l ∈ Ec

CijCkl
(
Cov[X1i, X1k] + Cov[X1j, X1l]

− Cov[X1i, X1l] − Cov[X1j, X1k]
)

=
∑

i,k ∈ E

∑
j,l ∈ Ec

CijCkl
(
π1ik + π1jl − π1il − π1jk

)
σ 2

1

The within-family variance of X1, σ 2
1 , is estimated as described

in Supplementary Material to obtain the estimate v[S(h)] of
Var[S(h)]. With equal weights for all pairs, the computation
involving the IBD sharing probabilities can be simplified as
explained in Supplementary Material.

When X(h)
ai is instead a product term, say X1X2, then

Var[S(h)] = Var

⎡
⎣ 1

n

∑
i∈E

∑
j∈Ec

(X(h)
ai − X(h)

aj )

⎤
⎦

= 1

n2

∑
i∈E

∑
j∈Ec

∑
k∈E

∑
l∈Ec(

Cov[X1iX2i, X1kX2k] + Cov[X1jX2j, X1lX2l]
−Cov[X1iX2i, X1lX2l] − Cov[X1jX2j, X1kX2k]

)

= 1

n2

∑
i∈E

∑
j∈Ec

∑
k∈E

∑
l∈Ec(

π1ikπ2ik + π1jlπ2jl − π1ilπ2il − π1jkπ2jk
)
σ 2

12

where the within-family variance of the product term X1X2, σ 2
12,

is estimated as described in Supplementary Material.

2.1. APPLICATION TO THE JOINT MODELING OF TWO DICHOTOMOUS
TRAITS USING TWO-LOCUS MODELS

The joint analysis of two dichotomous traits represents an impor-
tant special case of a polytomous phenotype with four categories.

We illustrate such a phenotype by referring to a dichotomous dis-
ease trait Y2 and a dichotomous endophenotype Y1, as defined in
the introduction.

We consider here polytomous models for two markers at
unlinked loci which may interact to cause the disease and
endophenotype impairment. We assume that association of locus
1 to the endophenotype impairment Y1 = 1 and possibly to the
disease Y2 = 1 has already been established, and that we want
to detect locus 2, which is undetectable in single-locus analyses,
by conditioning on locus 1 with which it interacts. This leads to
null hypotheses on a subset of coefficients tested with a statistic as
defined in Equation 8.

A first option is to use the full model with distinct coeffi-
cients for each disease/endophenotype combination contrasted
to the reference category of absence of both the disease and
endophenotype impairment. This model is:

log

(
P[Y1 = 1, Y2 = 0|X1, X2]
P[Y1 = 0, Y2 = 0|X1, X2]

)
(10)

= β10 + β11X1 + β12X2 + β13X1X2

log

(
P[Y1 = 0, Y2 = 1|X1, X2]
P[Y1 = 0, Y2 = 0|X1, X2]

)
= β20 + β21X1 + β22X2 + β23X1X2

log

(
P[Y1 = 1, Y2 = 1|X1, X2]
P[Y1 = 0, Y2 = 0|X1, X2]

)
= β30 + β31X1 + β32X2 + β33X1X2

The null hypothesis of the conditional test of locus 2 given locus
1 under the full model is formulated as:

β12 = β13 = β22 = β23 = β32 = β33 = 0 (11)

When the null is rejected, insights on the phenotype category
driving the signal can be obtained by examining the Z statistics
for each coefficient and the p-values associated to the tests of the
subsets of coefficients (β12, β13),(β22, β23) and (β32, β33).

One can also postulate a model for a particular form of
interaction between the two loci. We consider a model which
we call the endophenotype-to-disease model where an allele at
locus 1 increases susceptibility to the endophenotype impair-
ment Y1 = 1 and possibly to the disease Y2 = 1, and an allele at
locus 2 increases susceptibility to the disease in carriers of gene
1 susceptibility genotypes (at higher risk of the endophenotype
impairment). For that model we express allele counts as propor-
tion of a given allele in a genotype, taking values 0, 1

2 and 1. The
model is then written as:

log

(
P[Y1 = 1, Y2 = 0|X1, X2]
P[Y1 = 0, Y2 = 0|X1, X2]

)
(12)

= β10 + β11X1 + βeX1(1 − X2)

log

(
P[Y1 = 0, Y2 = 1|X1, X2]
P[Y1 = 0, Y2 = 0|X1, X2]

)
= β20 + β21X1
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log

(
P[Y1 = 1, Y2 = 1|X1, X2]
P[Y1 = 0, Y2 = 0|X1, X2]

)
= β30 + β31X1 + β33X1X2

We keep the same notation for the coefficients as in the full model,
except for the coefficient βe, which represents the effect on the risk
of the endophenotype impairment in non-carriers of the locus 2
tested allele. When the endophenotype-to-disease model holds,
the coefficients β33 and βe are of the same sign. The marginal
association of X2 to the endophenotype impairment under that
model will typically be small. Its direction and magnitude depend
on the values of β33 and βe and the distribution of X1.

The null hypothesis of the conditional test of locus 2 given
locus 1 under the above model is formulated as:

βe = β33 = 0 (13)

The alternative hypothesis can be restricted to

βe > 0, β33 > 0 ∪ βe < 0, β33 < 0

or a general alternative can be considered, but the alternative
space then contains models outside of the conceptual model
formulated above.

Alternatively, detection of locus 2 can be attempted by test-
ing a single interaction parameter between X1 and X2, as in
the context of a genetic analysis conditional on an environmen-
tal exposure (Kraft et al., 2007). Here the interaction parameter
for the logistic function contrasting the disease and endophe-
notype impairment category to the reference category β33 is
the most promising to test to detect effects on the disease and
endophenotype impairment jointly.

2.2. SOFTWARE IMPLEMENTATION
We have implemented the extension of the GDT to polyto-
mous phenotypes and two loci in the R package fat2Lpoly,
standing for Family-based Association Test for 2 Loci and
Polytomous phenotypes available on the CRAN archive at
CRAN.R-project.org/package=fat2Lpoly. A function is pro-
vided to read phenotype and genotype data, variable names
and IBD sharing proportions (if applicable) from input files
in the Merlin/QTDT format (www.sph.umich.edu/csg/abecasis/
Merlin/tour/input_files.html) and convert them into R objects.
Alternatively, R objects made by the user in the same for-
mat can be provided as input. Functions are provided to
setup design matrices for the full two-locus polytomous
model, the one-locus polytomous model and the disease-to-
endophenotype model. User-defined functions setting-up cus-
tomized design matrices can be provided instead of these
pre-defined functions.

2.3. EVALUATION BY SIMULATION OF THE PROPOSED HYPOTHESIS
TESTS UNDER TWO-LOCUS MODELS

The family structure used in the simulations is a 3-generation
16-member family depicted in Figure 1. The disease and
endophenotype status of all family members was assumed to be

FIGURE 1 | Structure of simulated families with an example of

phenotype realization.

observed. We generated genotype data for genetic variants with
two alleles such as single nucleotide polymorphisms (SNPs) at
two independent loci. The genotypes of pedigree founders were
sampled under Hardy-Weinberg equilibrium using risk allele
frequencies (RAFs) of 0.1 at locus 1 and 0.3 at locus 2. The
transmission of alleles to their descendants was then simulated
following the rules of Mendelian inheritance. Two dichotomous
phenotypes Y1 and Y2 were generated in a two-step approach: we
first simulated from the distribution of Yi1 for each subject i by
summing over Yi2 in a polytomous model, then from the distri-
bution of the vector Y2|Y1. In the model to simulate Yi2|Y1, Y1 is
treated as a vector of fixed effect, with the effect of the endophe-
notype of subject h, Yh1, modulated by the kinship coefficient φih

between i and h. An additive polygenic effect on the logit of Y2

was also included. The model can be written:

log

(
P[Yi2 = 1|Y1, X, U]
P[Yi2 = 0|Y1, X, U]

)
= γ ′(Xi, Yi1) + Ui (14)

+ α

n∑
h �= i

(Yh1 − ν)φih

U ∼ N(0, σ 2�) (15)

where γ ′(Xi, Yi1) in an abbreviated expression of the model for
the disease phenotype given the genotype at major loci and
endophenotype status of subject i derived from a polytomous
model and � is the kinship matrix between the family members.
The parameter σ 2 controls the degree of polygenic dependence
between the disease status Y2 of the family members and the
parameter α the degree of genetic dependance of Y2 on Y1 not
captured by the genotype at the loci in the model. The parameter
ν, between 0 and 1, determines the relative importance of the risk
increase 1 − ν due to observing an endophenotype impairment
and the risk decrease −ν due to observing the normal level of the
endophenotype in a relative. We note this simulation scheme is
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meant to reproduce the association between disease phenotype
and endophenotype status of relatives, not to represent a causal
mechanism. Among the simulated families, we kept those with
at least a cousin pair with Y2 = 1, i.e., affected by the disease to
mimic the ascertainment process of families in a genetic study.

We simulated two scenarios of population origin of the sam-
ple: (1) homogeneity: the sample came from a single population
where the phenotypes were generated under the polytomous
model presented in Table 1. Under this models and with the
above RAFs, the disease had a population prevalence of 0.0076
and the endophenotype impairment a prevalence of 0.128; (2)
heterogeneity: the sample was a mixture of families from two
populations, both represented in equal proportions. In popula-
tion 1, all intercept coefficients in Table 1 were reduced by 0.5,
while in population 2 they were increased by 0.5. This resulted in
disease prevalences of 0.005 in population 1 and 0.012 in popu-
lation 2, and endophenotype impairment prevalences of 0.082 in
population 1 and 0.194 in population 2.

To verify the Type I error of tests of association to locus 2 under
the null hypothesis of no association to locus 2, but in presence
of genetic linkage at that locus, we generated an additional bial-
lelic variant at locus 2 independent from the causal variant at that
locus, i.e., in linkage equilibrium with it. In the homogeneous
population, the minor allele frequency of that marker was equal
to the RAF of the causal variant, but in the mixture of two popu-
lations the minor allele frequency was 0.1 in population 1 and 0.5
in population 2, creating population structure at that locus. For
the power evaluation, we tested association to the actual causal
variant at locus 2.

The tests evaluated include the tests of the null hypotheses 11
which we denote “cpoly,” 13 which we denote “(βe, β33),” and
β33 = 0. We also evaluated a single locus polytomous model

Table 1 | Regression coefficients of the example polytomous model.

Coef. Value Coef. Value Coef. Value Coef. Value

β10 −2 β11 log (2) β12 0 β13 − log (2)

β20 −5.5 β21 0 β22 0 β23 0

β30 −5.5 β31 0 β32 0 β33 log (16)

(model 11 with X2 only). The coefficients in that model are
labeled β˜(1L), and we tested the null hypotheses β˜(1L) = 0 as

well as β3(1L) = 0. For the evaluation of the Type I error, Wald
tests of the coefficients of the one locus model based on GEEs
were also performed. However, these tests were not used for the
power comparison, since they had inflated Type I error under
our heterogeneity scenario where population stratification was
present.

In presence of population stratification, previously available
valid tests are restricted to a dichotomous outcome and a single
marker. Analysis options are then limited to testing association of
a single marker to the dichotomous endophenotype Y1 and dis-
ease status Y2, either in the full sample or, in the case of Y2, in a
stratum defined by Y1. This is akin to the strategy for detecting
modifier genes conferring susceptibility to a specific phenotype
(i.e., the disease) consisting in testing association to the specific
phenotype among subjects with a broader phenotype (i.e., the
endophenotype impairment) (Bureau et al., 2012). We therefore
compared the power of various tests derived under our exten-
sion of the GDT against the single marker GDT for dichotomous
outcomes applied to the locus 2 causal variant with three phe-
notype definitions: (1) the disease status Y2 (standard analysis
noted simply GDT), (2) the disease status Y2 in the subset of
subjects with Y1 = 1 (endophenotype impairment), setting the
phenotype of other subjects to unknown (GDTc), and (3) the
endophenotype status Y1 (GDTe). We also compared our tests to
score tests of coefficients of the usual two-locus logistic model for
a dichotomous trait:

log

(
P[Y = 1|X1, X2]
P[Y = 0|X1, X2]

)
= η0 + η1X1 + η2X2 + η3X1X2 (16)

The 2 d.f. test of the null hypothesis η2 = η3 = 0 is denoted “cdis-
ease” when the phenotype tested is Y2 and “cendo” when the
phenotype tested is Y1.

3. RESULTS
3.1. EVALUATION OF THE TYPE I ERROR
The Type I error was evaluated on 1000 replicate samples of 100
families. The results of the simulation under the null hypothesis
in Table 2 show that the nominal Type I error rate was respected

Table 2 | Estimations of Type I error on 1000 replicate samples of 100 families.

GEE Conditional likelihood

Single locus Single locus Given other locusa

β3(1L) β
˜

(1L) β3(1L) β
˜

(1L) β33 (βe, β33) cpoly

HOMOGENEOUS POPULATION

α = 0.01 : 0.009 0.015 0.006 0.012 0.001 0.001 0.007

α = 0.05 : 0.053 0.060 0.051 0.045 0.019 0.003 0.029

MIXTURE OF TWO POPULATIONS

α = 0.01 : 0.102 0.762 0.012 0.010 0.002 0.001 0.007

α = 0.05 : 0.237 0.906 0.048 0.053 0.025 0.003 0.033

a subject pairs were weighted using expression 6.
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under both scenarios for all test statistics from our polytomous
extension of the GDT. The Type I error rates of the tests condi-
tional on locus 1 were similar for weight definitions 6 and 7, so
only results for the former are shown. They were both below the
nominal level, making these tests conservative. By contrast, the
Type I error of the Wald tests based on GEE estimates were at
nominal level only under the homogeneous sample scenario, and
were severely inflated under the heterogeneous sample scenario.

3.2. EVALUATION OF THE POWER
Under the simulated scenario the endophenotype-to-disease
model holds. While the test of the null hypothesis 13 has some
power, testing β33 = 0 (the interaction parameter for the com-
bination of disease and endophenotype impairment) achieves
the highest power among the tests considered (Figure 2). Using
weight definition 7 instead of 6 led to nearly identical power
(results not shown). Under this scenario, testing association for
the same phenotypic category of the allele count at locus 2
β3(1L) = 0 or the entire vector β˜(1L) = 0 does not provide a

measurable power improvement over the GDT applied to the dis-
ease status in the subset of subjects with endophenotype impair-
ment. Further comparisons of testing strategies under a variety of
scenarios will be reported elsewhere.

3.3. APPLICATION TO MAJOR PSYCHOSIS AND VISUAL EPISODIC
MEMORY

Schizophrenia (SZ) and bipolar disorder (BP) are two forms
of the spectrum of major psychosis (MP), which also includes
schizo-affective disorder. SZ and BP co-aggregate in fam-
ilies (Van Snellenberg and de Candia, 2009), and share
genetic liability (Cross-Disorder Group of the Psychiatric
Genomics Consortium, 2013). Various cognitive domains are
widely recognized as endophenotypes of MP (Bora et al., 2009;
Ivleva et al., 2010). In the Eastern Quebec kindred study, visual
episodic memory (VisEM) was found to be impaired in both
SZ and BP patients and non-affected adult relatives of these
patients (Maziade et al., 2011). In that same family sample, we
recently replicated an association between the T allele of SNP
rs1156026 and SZ that we had previously detected in another
sample (Bureau et al., 2013). All the elements required for the
application of our extension of the GDT to markers genotyped in
the family sample are present: a diagnosis within the spectrum of
MP as the disease phenotype, a VisEM mesurement dichotomized
as presence/absence of deficit as the endophenotype and the SNP
rs1156026 as the established risk locus. Given the small number
of subjects with cognitive measurements, this analysis is not suf-
ficiently powered to draw conclusions and must be considered
illustrative. The small sample size also limited us to an analysis
of MP globally, without separating SZ and BP.

VisEM was measured by the performance on the delayed recall
of the Rey figure task (Meyers and Meyers, 1995) defining the
affected status as being the 4th percentile of the distribution
of age and gender matched controls. We retained the 14 infor-
mative families defined as containing at least one MP affected
subject with a visual memory measurement and subjects in at
least one other phenotypic category. Table 3 presents the joint
distribution of MP and VisEM in the 133 genotyped subjects

FIGURE 2 | Power of various within-family score tests to detect locus 2.

See text for definitions of the acronyms of the tests. For tests conditional
on another locus, subject pairs were weighted using expression 6.

from these families along with the frequency of the rs1156026 T
allele. Although the frequency of the T allele is greatly increased
in subjects with MP and the VisEM impairment compared to
normal subjects (and this increase is statistically significant in a
population-level comparison) the within-family score test of the
corresponding coefficient has a high p-value, suggesting that the
difference in T allele frequency is mostly between families and not
so much within families.

We tested association to 80 SNPs in genomic regions where
genetic linkage to SZ, BP, or MP was previously detected in that
family sample on the p arm of chromosomes 6, 8, and 16 and
the q arm of chromosomes 12 and 18 (Maziade et al., 2005). We
applied the same tests as in the simulation study. SNPs where a
p-value < 0.05 was obtained in at least one analysis are shown in
Table 4.

The results for rs7500550 illustrate that tests of the joint MP-
VisEM phenotype conditional on the rs1156026 T allele count can
detect associations to SNPs where the test of the MP or VisEM
phenotype alone did not. In this case, the rare allele was nega-
tively associated to MP with VisEM impairment with Z statistics
of −2.66 for the X2 and −2.34 for the X1X2 terms (p = 0.0019 for
the test of the coefficients of both terms) while it was positively
associated to a lesser extent to MP without VisEM impairment
with Z statistics of 2.54 for the X2 and 2.07 for the X1X2 terms
(p = 0.005 for the test of the coefficients of both terms). The
signal was thus driven by opposite associations to these two phe-
notypic categories. The signal at rs1087266 was detected by single
locus tests with lower p-values than by tests conditioning on
rs1156026. In that case, testing association with VisEM status was
the key to detect the signal. Nonetheless, the conditional test of the
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Table 3 | Joint distribution of major psychosis and visual episodic memory deficits along with the frequency of the rs1156026 T allele.

VisEM <= 4th perc VisEM > 4th perc Total

n1 Freq T pGEE
a p1L

b n0 Freq T pGEE
a p1L

b n. Freq T

MP Yes 21 (41%) 0.52 0.0011 0.34 30 0.40 0.040 0.310 51 (38%) 0.45

No 13 (16%) 0.31 0.97 0.72 69 0.30 82 (62%) 0.30

Total 34 (26%) 0.44 99 0.33 133 0.36

ap-values of Wald tests of the coefficients of the one locus polytomous model estimated using generalized estimating equations (GEE).
bp-values of within-family score tests of the coefficients of the one locus polytomous model.

Table 4 | Results for SNPs where a p-value < 0.05 was obtained in at least one analysisa.

SNP Chr Pos (Mb) MAF (n)

Y1 = 0, Y2 = 0 Y 1 = 0, Y2 = 1 Y1 = 1, Y2 = 0 Y1 = 1, Y2 = 1

rs1087266 6 24.4 0.39 (42) 0.26 (25) 0.60 (5) 0.55 (19)
rs7500550 16 19.1 0.11 (41) 0.16 (25) 0.17 (6) 0.03 (18)

TESTS p-VALUES

SNP GDT GDTc GDTe β
˜

(1L) β33 (βe, β33) cpoly

rs1087266 0.48 0.25 0.005 0.005 0.032 0.085 0.006
rs7500550 0.52 0.17 0.57 0.040 0.019 0.064 0.015

aFor tests conditioning on rs1156026 genotypes, subject pairs were weighted using expression 6.

polytomous phenotype provides a p-value similar to the standard
GDT. Given the limited power of the analysis and the number
of SNPs tested, these results cannot be considered statistically
significant once multiple testing is taken into account.

4. DISCUSSION
We have extended the GDT, a score test of genetic association
applicable with extended families, to enable testing association
with a polytomous phenotype. Another extension is the use of
a model of association with two genetic loci, allowing to test asso-
ciation at a locus conditional on the genotype of a marker at a
known risk locus, to exploit interaction between the two. A soft-
ware implementation in the form of a R package has been made
freely available. The within-family analysis framework that we
adopted has the advantage of protecting against Type I error infla-
tion due to population stratification. Polytomous phenotypes can
be more informative than dichotomous ones to detect genetic
associations, as illustrated in our simulation study.

The proposed score tests also suffer from limitations. First,
score tests provide no estimates of the regression parameters
being tested. Conditional maximum likelihood estimation would
be applicable only with exchangeable relatives, which is not
required for the GDT as explained in Supplementary Material. We
are exploring the robustness and power of conditional maximum
likelihood estimation in sibships from extended families.

Second, within-family analysis tends to be less powerful than
population-level analysis which also exploits between family
information. Furthermore, the Type I error of score tests for
one locus conditionning on another tends to be conservative
even with the weight definition 6 neglecting variability from
estimating the α˜. Our simulation studies illustrate that power

remains limited despite large sample sizes (1600 subjects in 100
families) and large effect sizes (interaction odds ratios of 16).
Extracting the most power from the data is particularly impor-
tant when phenotypic measures are expensive to obtain, such as
the cognitive measurements in our example. Population analyses
are then attractive, with an adjustment for population structure
using genomewide SNP genotypes (Price et al., 2006). Methods
for population analysis of polytomous phenotypes are not well
developed, and will be the object of future work.
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