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Advances in research and technology has increased our quality of life, allowed us to
combat diseases, and achieve increased longevity. Unfortunately, increased longevity is
accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s
disease (AD). AD is the sixth leading cause of death, and one of the leading causes of
dementia amongst the aged population in the USA. It is a progressive neurodegenerative
disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular
neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP)
and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite
years of extensive research, the molecular mechanisms that underlie the pathology of
AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans,
present a complementary approach to addressing these questions. C. elegans has many
advantages as a model system to study AD and other neurodegenerative diseases. Like
their mammalian counterparts, they have complex biochemical pathways, most of which
are conserved. Genes in which mutations are correlated with AD have counterparts in
C. elegans, including an APP -related gene, apl-1, a tau homolog, ptl-1, and presenilin
homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has
already been established, C. elegans is also advantageous in modeling learning and
memory impairments seen during AD. This article addresses the insights C. elegans
provide in studying AD and other neurodegenerative diseases. Additionally, we explore
the advantages and drawbacks associated with using this model.
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INTRODUCTION TO ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is the 6th leading cause of death in the US
and affects more than 35 million people worldwide (Alzheimer’s
Disease International, 2014). AD is a neurodegenerative disease
characterized by a progressive loss of memory. Most cases of
AD occur sporadically in aged people (>60 years, late-onset AD)
without a clear inheritance pattern. However, in 5% of the cases
(familial or early onset AD) AD symptoms appear earlier and are
linked with gene mutations. Both forms of AD have two main
neuropathologic features: the presence of extra-neuronal amyloid
plaques, often referred to as senile plaques, and intraneuronal
neurofibrillary tangles (Kidd, 1964; Luse and Smith, 1964; Terry
et al., 1964; Krigman et al., 1965). Amyloid plaques are aggre-
gates of the beta-amyloid peptide (Aβ), a cleavage product of
the amyloid precursor protein (APP; Glenner and Wong, 1984;
Masters et al., 1985; Kang et al., 1987). Hyperphosphorylation of
the microtubule associated protein tau causes its polymeriza-
tion into paired helical filaments (PHFs) and, presumably, its
formation into neurofibrillary tangles (Goedert et al., 1989a).

Mutations in the APP gene and/or the enzymes involved
in APP processing (γ-secretase components presenilins, PSEN1
and PSEN2; Chartier-Harlin et al., 1991; Goate et al., 1991;
Murrell et al., 1991; Levy-Lahad et al., 1995; Rogaev et al., 1995;
Sherrington et al., 1995) are correlated with early onset AD. These

mutations increase the levels of toxic Aβ species and promote
neurodegeneration. By contrast, a recently identified mutation
in APP affects cleavage of APP, causing less Aβ production and
conferring neuroprotective benefits (Jonsson et al., 2012). Despite
the significant advances made using APP transgenic and knock-
out models in mammals, unraveling the cellular role of APP has
been difficult. Alternative animal models provide complementary
approaches to dissecting the function of APP and tau. In this
review, we discuss the latest uses of the nematode Caenorhab-
ditis elegans as a model system for the study of AD. We also
include a brief review of a few representative examples of how
C. elegans is being utilized to model other neurodegenerative
diseases.

C. elegans AS A MODEL FOR ALZHEIMER’S DISEASE
Caenorhabditis elegans is a free-living, non-parasitic nematode
that was first introduced as a model organism by Sydney Bren-
ner in 1963 (Brenner, 1974). It is a small (1 mm in length),
transparent roundworm, which makes it easy for manipulation,
and has a short life cycle of 3 days from egg to adult at 25◦C
(Brenner, 1974). Under suitable growing conditions, hatched ani-
mals develop through four larval stages (L1–L4), each punctuated
by a molt, to arise as an adult hermaphrodite with 959 somatic
cells (Sulston and Horvitz, 1977). Its life span is between 2 and
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3 weeks, which facilitates the study of its biology. Completion
of the C. elegans genome sequence in 1998 (C. elegans Sequencing
Consortium, 1998) demonstrated that roughly 38% of worm genes
have a human ortholog, such as APP and tau (Shaye and Green-
wald, 2011). Hence, C. elegans has many excellent advantages as
an in vivo model for the study of AD and other neurodegenerative
diseases.

MOLECULAR PATHWAYS OF APP. SIMILARITIES AND
DIFFERENCES BETWEEN MAMMALS AND C. elegans
FUNCTION AND PROCESSING OF APP: NON-AMYLOIDOGENIC AND
AMYLOIDOGENIC Aβ PATHWAY
The APP family of proteins contains three members, APP, APLP1,
and APLP2 (Wasco et al., 1992, 1993; Sprecher et al., 1993;
Sandbrink et al., 1994; Slunt et al., 1994), which are characterized
by a large extracellular region containing conserved E1 and E2
domains, a single transmembrane domain, and a small cytosolic
domain (Kang et al., 1987). APLP1 and APLP2 do not contain
the Aβ sequence and, hence, do not produce Aβ (Figure 1A;
Wasco et al., 1992, 1993). The APP gene family is required for via-
bility and brain development. APP mouse knockouts were viable,
but had behavioral and cognitive defects (Ring et al., 2007). While
knockout of APLP1 resulted in postnatal growth defects (Heber
et al., 2000), mice in which APLP2 was inactivated appeared wild
type (von Koch et al., 1997). Double knockouts of APLP2 and
either APP or APLP1, however, resulted in postnatal lethality (von
Koch et al., 1997; Heber et al., 2000); the lethality of APP/APLP2
double knockouts could be rescued by knock-in of an APP extra-
cellular fragment, sAPPα (Weyer et al., 2011), suggesting that
sAPPα is sufficient for viability. The triple knockout caused lethal-
ity and a type II lissencephaly and cortical disorganization (Herms
et al., 2004). Collectively, these results suggest that APP family
members have essential and redundant functions during develop-
ment, including proper brain development, and these functions
do not require Aβ.

In mammals, APP is processed through two proteolytic path-
ways, only one of which produces Aβ (Figure 1B; Haass et al., 1992,
1994a,b). In the non-amyloidogenic pathway, APP is first cleaved
by an α-secretase within the Aβ sequence to release an extracellu-
lar fragment, sAPPα (Figure 1B). The remaining APP fragment
(known as APP-CTFα or C83) is then cleaved by the γ-secretase
complex to release the APP intracellular domain (AICD) to the
cytosol. By contrast, in the amyloidogenic pathway, after cleavage
by the β-secretase (BACE) to release sAPPβ, the remaining APP
fragment (known as APP-CTFβ or C99) is then cleaved by the
γ-secretase complex, liberating Aβ to the lumen and AICD to the
cytosol (Gu et al., 2001; Sastre et al., 2001; Weidemann et al., 2002).
This latter pathway is likely favored in AD patients.

Mammalian γ-secretase is a protease complex consisting of
several components: presenilins 1 and 2 (PSEN1 and PSEN2),
nicastrin (NCT), anterior pharynx defective (APH-1), and the
presenilin enhancer (PEN-2; Yu et al., 2000; Francis et al., 2002).
PSEN1 and PSEN2 are the catalytic components of the γ-secretase
complex. NCT works as a stabilizing cofactor required for
γ-secretase complex assembly and trafficking (Li et al., 2003;
Zhang et al., 2005) and PEN-2 and APH-1 have a role in the mat-
uration process of PSEN1 and PSEN2 (Luo et al., 2003). Besides

APP, the γ-secretase complex is also involved in the proteolysis of
Notch receptors, and the first identification of any PEN-2 or APH-
1 ortholog was in C. elegans as the result of a genetic screen for
modifiers of the Notch pathway (Francis et al., 2002; Goutte et al.,
2002). Within the γ-secretase complex, only mutations in PSEN1
and PSEN2 have been associated with early onset AD (Levy-Lahad
et al., 1995; Rogaev et al., 1995; Sherrington et al., 1995).

PROCESSING OF C. elegans APL-1
In C. elegans there is only one APP-related gene, apl-1. Like
human APP (Kang et al., 1987), APL-1 contains a large extracellu-
lar region whose conserved E1 and E2 domains share 46 and 49%
sequence similarity to human APP, respectively, a transmembrane
domain, and a relatively small cytosolic domain, which shares
71% sequence similarity to human APP (Figure 1A; Daigle and
Li, 1993). Notably, unlike APP but similar to APLP1 and APLP2,
APL-1 does not contain the Aβ sequence (Daigle and Li, 1993).

Two α-secretase proteins are present in C. elegans, SUP-17
and ADM-4 (Jarriault and Greenwald, 2005). They work redun-
dantly in the cleavage of the C. elegans Notch homologs, LIN-12
and GLP-1 (Jarriault and Greenwald, 2005). However, no exper-
iments thus far have tested whether SUP-17 or ADM-4 cleaves
APL-1. No BACE ortholog has been identified by bioinfor-
matic searches and no β-secretase activity that cleaves human
APP has been detected in C. elegans, suggesting that APL-1 is
only processed by the α/γ-secretase processing pathway (Link,
2006). α-secretase cleavage of APL-1 releases the extracellular
fragment, sAPL-1; subsequent cleavage of APL-1-CTFα by the
γ-secretase complex liberates the intracellular domain (AICD;
Figure 1B).

The initial characterizations of human PSEN1 (then called
S182) and PSEN2 (first named E5-1) described them as novel
proteins with multiple transmembrane domains (Rogaev et al.,
1995; Sherrington et al., 1995). The cellular functions of the pre-
senilins were determined by their homology to the C. elegans
protein, SEL-12 (Levitan and Greenwald, 1995). The two C. ele-
gans Notch genes, lin-12 and glp-1, are involved in many cell
fate decisions during development, including vulval cell specifica-
tion and germline development (Greenwald et al., 1983; Lambie
and Kimble, 1991; Newman et al., 1995; Levitan et al., 1996)
sel-12/PSEN was identified in a genetic screen to isolate suppres-
sors of a dominant Lin-12/Notch multivulva phenotype (Levitan
and Greenwald, 1995). Loss of sel-12/PSEN suppressed the Lin-
12/Notch multivulva phenotype and produced a defect in egg
laying that was rescued by introducing human PSEN1 or PSEN2,
suggesting a conserved function between human and C. elegans
presenilins (Levitan and Greenwald, 1995; Levitan et al., 1996).
Like human PSENs (Thinakaran et al., 1996), SEL-12/PSEN is
cleaved to attain its final topology (Li and Greenwald, 1996).
A C. elegans PSEN gene family was identified and includes sel-
12, hop-1, and spe-4 (L’Hernault and Arduengo, 1992; Levitan
and Greenwald, 1995; Li and Greenwald, 1997; Westlund et al.,
1999); spe-4 is exclusively expressed in male gonadal cells and
will not be further discussed (Arduengo et al., 1998). Knock-
down of hop-1/PSEN in sel-12/PSEN mutants showed maternal
effect lethality, germline defects, and missing anterior pharynx,
defects associated with loss of glp-1/Notch function, suggesting
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FIGURE 1 | Similarities and differences between human APP and

Caenorhabditis elegans APL-1. (A) Schematic representation of human APP
isoforms, other members of the APP family (APLP1 and APLP2), and
C. elegans APL-1. (B) Comparison between human APP proteolytic pathways
(top) and C. elegans APL-1 proteolytic pathway (bottom). Top. APP can be
cleaved by two different pathways. In the anti-amyloidogenic pathway, APP is
first cleaved by the α-secretase to release an extracellular fragment sAPPα.
The remaining APP fragment (APP-CTFα or C83) is then cleaved by the
γ-secretase complex to release p3 extracellularly and the APP intracellular

domain (AICD) to the cytosol. In the amyloidogenic pathway, β-secretase first
cleaves APP, releasing the sAPPβ fragment. The APP-CTFβ (C99) fragment is
subsequently cleaved by the γ-secretase complex, liberating the AICD to the
cytosol and Aβ to the lumen. Aβ will aggregate to form amyloid plaques.
Bottom. In C. elegans, APL-1 is first cleaved by the α-secretase homologs
SUP-17/ADM-4, liberating the extracellular sAPL-1 that is known to regulate
worm viability and development. The γ-secretase complex will then cleave
the remaining APL-1-CTF to release AICD into the cytosol. General functions
of the APP family and APL-1 are indicated.

that sel-12 and hop-1 function redundantly in the LIN-12 and
GLP-1/Notch pathways (Westlund et al., 1999). Similarly, mice
carrying a null mutation in PSEN1 showed embryonic lethality,
skeletal defects, and disrupted somite boundaries (Shen et al.,
1997), similar to the phenotypes seen in Notch1 knockouts
(Krebs et al., 2000, 2003, 2004; Duarte et al., 2004; Gale et al.,
2004).

In screening for novel mutants showing the glp-1/Notch
phenotype of defective anterior pharynx, Goutte et al. (2000,

2002) identified two genes, aph-1 and aph-2, which encodes
the C. elegans NCT ortholog. Independently, Francis et al.
(2002) screened for enhancers of sel-12/PSEN activity and iden-
tified pen-2. aph-2/NCT, pen-2, and aph-1 are all required
for proper Notch signaling. Human PSEN, NCT, Aph1α2,
and PEN-2 were subsequently shown to physically associate
and cooperatively regulate the maturation of individual com-
ponents to form a proteolytically active γ-secretase complex
(Kimberly et al., 2003).
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FUNCTION AND REGULATION OF APL-1
Like the mammalian APP family (Slunt et al., 1994; Lorent et al.,
1995; Thinakaran et al., 1995), apl-1 is expressed in multiple tis-
sue types. apl-1 expression is observed in neurons, supporting
cells, and head muscles throughout development, while expres-
sion in vulval muscles, vulval cells, and hypodermal seam cells
is not detected until the L4 stage to adult (Hornsten et al., 2007;
Niwa et al., 2008).

Inactivation of apl-1, such as with the yn10 null allele, results
in a completely penetrant lethality during the first to second lar-
val (L1–L2) transition due to a molting defect (Hornsten et al.,
2007). apl-1 activity is also necessary for later larval transitions,
as RNAi knockdown of apl-1 in an RNAi-sensitized background
showed animals with molting defects during the L3–L4 and L4 to
adult transitions (Wiese et al., 2010). This lethality was rescued by
microinjection of an apl-1 genomic fragment or cDNA. Hence,
similar to the mammalian APP family, apl-1 has an essential
function. High levels of apl-1 expression caused an incompletely
penetrant L1 lethality (70% lethality), shortened body length, and
morphogenetic, reproductive, and locomotory defects (Hornsten
et al., 2007; Ewald et al., 2012b). These results indicate that lev-
els of APL-1 must be tightly regulated as loss of APL-1 as well as
high levels of APL-1 result in lethality. When sel-12/PSEN activity
was reduced in transgenic animals with APL-1 overexpression, the
70% lethality was partially rescued, suggesting that SEL-12/PSEN
regulates APL-1 cleavage and/or trafficking (Hornsten et al., 2007).
The underlying basis of the loss- and gain-of-function apl-1 lethal-
ity is still unclear, but is not dependent on activation of CED-3/
caspase or necrotic cell death pathways (Hornsten et al., 2007).
Characterization of apl-1 function may provide insights into the
general function and pathways of APP, of which much is still
unknown.

The apl-1(yn5) mutant, which contains a deletion of the region
encoding the APL-1 transmembrane and cytosolic domains, pro-
duces only the extracellular domain of APL-1 (APL-1EXT) and is
viable. Because APL-1EXT is not further cleaved by α-secretase,
APL-1EXT is slightly larger than sAPL-1 and is expressed at high
levels in apl-1(yn5) mutants (Hornsten et al., 2007). Hence, the
APL-1 extracellular domain is sufficient for viability, similar to
the rescue of APP/APLP2 double mutants by the knock-in of
sAPPα (Weyer et al., 2011). However, although apl-1(yn5) mutants
are viable, they display several phenotypes, including a slower
developmental progression, decreased body length, reproductive
defects, and temperature-sensitive lethality (Hornsten et al., 2007;
Ewald et al., 2012b). Because these defects can be phenocopied
by microinjection of APL-1EXT transgenes into wild-type ani-
mals, the phenotypes are due to overexpression of APL-1EXT
and not due to loss of APL-1 signaling through its cytoplas-
mic domain (Ewald et al., 2012b). Interestingly, pan-neuronal
expression of APL-1EXT, but not expression from muscle or
hypodermal cells, is sufficient to rescue the lethality observed
in apl-1 null mutants (Hornsten et al., 2007), suggesting that the
cells (i.e., neurons) from which sAPL-1 is released as well as the
extracellular milieu in which sAPL-1 travels is functionally rel-
evant. We suggest that high levels of sAPP may also contribute
to the pathology seen in AD patients. Down’s syndrome patients,
whose chromosome 21 trisomy includes trisomy of APP, display

a high incidence of AD and intellectual disability (Zigman, 2013),
perhaps contributed in small part by the high levels of APP
expression.

Decreasing apl-1 activity by RNAi resulted in hypersensitivity
to aldicarb, an acetylcholinesterase inhibitor (Wiese et al., 2010).
Using apl-1 knockouts to test different apl-1 deletion constructs,
Wiese et al. (2010) determined that lack of sAPL-1 is responsible
for the aldicarb hypersensitivity. These findings are consistent with
mammalian studies, which show that a lack of APP and APLP2
impairs synaptic function at cholinergic neuromuscular junctions
(Wang et al., 2005).

Heterochronic genes, whose differential spatiotemporal expres-
sion ensures proper progression through larval stages and tran-
sition into adulthood (Chalfie et al., 1981; Ambros and Horvitz,
1984), regulate expression of apl-1 in hypodermal seam cells (Niwa
et al., 2008). Loss of let-7 microRNA (miRNA) function caused
precocious seam cell development and vulval bursting at the adult
stage, leading to death (Reinhart et al., 2000). These let-7 pheno-
types can be rescued by knockdown of apl-1 (Niwa et al., 2008).
apl-1, however, is not a direct target of let-7 miRNA. NHR-25/Ftz-
F1, which is a nuclear hormone receptor (NHR) that is required
for completion of larval molts (Asahina et al., 2000; Gissendanner
and Sluder, 2000), binds an enhancer element in the promoter of
apl-1 to regulate apl-1 expression in seam cells (Niwa and Hada,
2010). nhr-25/Ftz-F1 transcripts are possible targets of the let-7
family of miRNAs for downregulation (Hayes et al., 2006). Regu-
lation of continued apl-1 expression in adult seam cells and other
cell types is unknown.

Pathways through which apl-1 functions
The apl-1(yn5) phenotypes require activity of the DAF-16/FOXO
transcription factor, which is negatively regulated by the insulin
pathway. C. elegans has only one insulin/IGF-1 receptor, DAF-2
(Kimura et al., 1997). Under favorable environmental conditions,
such as when adequate food is present, signaling through the
insulin pathway activates a conserved PI 3-kinase/AKT cascade
(Morris et al., 1996; Kimura et al., 1997; Paradis and Ruvkun,
1998; Paradis et al., 1999), which causes phosphorylation of DAF-
16/FOXO, thereby allowing reproductive development (Larsen
et al., 1995; Gems et al., 1998; Henderson and Johnson, 2001).
Phosphorylation of DAF-16/FOXO causes its sequestration in the
cytoplasm (Lin et al., 2001), thereby preventing it from entering
the nucleus to activate its target genes (Henderson and Johnson,
2001; Lee et al., 2001), which regulate longevity (Lin et al., 1997;
Ogg et al., 1997), stress resistance (McElwee et al., 2003, 2004;
Murphy et al., 2003), and dauer formation (Riddle et al., 1981;
Vowels and Thomas, 1992). Environmental conditions also affect
other metabolic functions, such as reproductive behavior, which is
inhibited under starvation conditions (Seidel and Kimble, 2011),
and body size. Starvation survival behavior is regulated by DAF-
16/FOXO activity (Lee and Ashrafi, 2008) and the insulin (So
et al., 2011) and DAF-7/TGFβ (Savage-Dunn et al., 2003) path-
ways work in parallel to regulate body length via daf-16/FOXO
activity.

The slowed development, decreased body size, and decreased
reproductive rates of apl-1(yn5) mutants are dependent on daf-
16/FOXO activity. At 20◦C, mutants with decreased insulin
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signaling or apl-1(yn5) mutants showed a delayed developmen-
tal progression and shorter body length, which were enhanced
when insulin signaling was decreased in apl-1(yn5) mutants [i.e.,
daf-2(e1370); apl-1(yn5) double mutants]; at 25◦C, the apl-1(yn5)
mutants with decreased insulin signaling went into L1 arrest
(Ewald et al., 2012b). By contrast, when daf-16/FOXO activity
was removed from apl-1(yn5) mutants, the delayed developmental
progression, decreased reproductive rate, and smaller body length
of apl-1(yn5) single mutants were suppressed. Furthermore, loss
of daf-16/FOXO activity in apl-1(yn5) mutants with decreased
insulin signaling rescued the short body length and L1 arrest phe-
notypes (Ewald et al., 2012b). These results suggest that sAPL-1
signals in a parallel pathway to the insulin pathway or modulates
the DAF-2/insulin/IGF-1 pathway to activate daf-16/FOXO activ-
ity to affect developmental progression, reproductive rates, and
body length (Figure 2). Mammalian sAPP may have similar roles
in development.

Activity of the daf-12/NHR signals in multiple pathways to
integrate environmental stimuli with metabolic needs and can
modulate the insulin pathway as well as function in an indepen-
dent pathway (Gerisch et al., 2001; Dumas et al., 2010). Decreasing
daf-12/NHR activity in apl-1(yn5) mutants rescued the slow
development, low reproductive rate, and decreased body length
phenotypes (Ewald et al., 2012b). Hence, decreased insulin sig-
naling and signaling through a parallel daf-12/NHR pathway
converge to activate daf-16/FOXO for the phenotypes seen in apl-
1(yn5) mutants. Noteworthy, levels of insulin/IGF-1 receptors are
decreased in AD brains (Steen et al., 2005), and APP processing
and Aβ production in vitro was modulated by insulin signaling
(Gasparini et al., 2001). Analogous to C. elegans, sAPP may also
act to modulate the insulin pathway.

Pan-neuronal APL-1 expression affects learning
In transgenic mice expressing human or mouse APP, animals
showed an increased lethality and learning defects that were
not correlated with Aβ deposition (Hsiao et al., 1995); sim-
ilarly, doubly transgenic mice carrying transgenes with APP
and PSEN1 mutations showed learning defects that were not
correlated with the number of Aβ plaques (Holcomb et al.,
1999). The mechanisms underlying these defects are unclear.
Use of the C. elegans model could be informative. C. ele-
gans has many sensory modalities, including smell and taste.
They respond to volatile and water soluble chemicals by mov-
ing toward or away from chemoattractive or chemorepulsive
stimuli, respectively. Many chemoattractants and chemorepel-
lants have been identified and the neural circuits mediating
the chemosensory response identified (Bargmann and Horvitz,
1991). For instance, when C. elegans is given the choice
between a neutral compound and a chemoattractant, such as
benzaldehyde, animals will move toward benzaldehyde; this
response is mediated by the AWC neurons (Bargmann et al.,
1993); similarly, ASEL, a gustatory neuron, mediates chemoat-
traction to sodium acetate (Bargmann and Horvitz, 1991;
Pierce-Shimomura et al., 2001).

Although apl-1 is not expressed in AWC neurons and the
morphology of sensory neurons appears wild type with GFP
markers, the overall chemoattractive response to benzaldyhyde

and sodium acetate was decreased in apl-1(yn10/+) heterozy-
gotes and transgenic animals that overexpress APL-1 [e.g.,
ynIs79 (Papl-1::apl-1::GFP)] (Ewald et al., 2012a). The chemo-
taxis response was restored in APL-1 overexpression lines [e.g.,
ynIs79 (Papl-1::apl-1::GFP)] when insulin signaling was decreased,
but not when daf-16/FOXO activity was decreased, suggest-
ing that daf-16/FOXO activity is needed for normal chemo-
taxis in transgenic lines overexpressing APL-1 (Figure 2). Pan-
neuronal expression of APL-1 or targeted overexpression of
APL-1 in the AWC or ASEL neurons resulted in wild-type
chemotaxis responses (Ewald et al., 2012a). By contrast, ectopic
expression of apl-1 with the snb-1 promoter, which drives
pan-neuronal and multi-cell type expression, resulted in no
chemotaxis response to benzaldehyde or sodium acetate (Ewald
et al., 2012a). When signaling through the DAF-2/insulin/IGF-
1 receptor, DAF-12/NHR, or DAF-7/TGFβ was decreased, the
chemotaxis response toward benzaldehyde and sodium acetate
in these transgenic lines was restored, indicating that the loss of
the chemotaxis response due to ectopic apl-1 signaling in cells
outside the nervous system is dependent on insulin and TGFβ

signaling.
In addition to chemosensory responses, C. elegans is also capa-

ble of associative chemosensory plasticity (Wen et al., 1997). For
example, when benzaldehyde was paired with starvation for as
short as 30 min, C. elegans showed a significant reduction in
preference for benzaldehyde; persistence of this plasticity was pos-
itively correlated with the length of pairing time (Colbert and
Bargmann, 1995; Tomioka et al., 2006; Lin et al., 2010), sugges-
tive of stable memory formation. Both chemotaxis and associative
plasticity are dependent on insulin signaling (Tomioka et al.,
2006; Lin et al., 2010). Little associative plasticity, however, was
observed after pairing benzaldehyde with starvation for 60 min
in animals with pan-neuronal APL-1 expression (Ewald et al.,
2012a). The plasticity could be restored when daf-16/FOXO, daf-
12/NHR, or daf-7/TGFβ activity was decreased, indicating that the
impaired associative plasticity with pan-neuronal APL-1 expres-
sion requires daf-16/FOXO, daf-12/NHR, and daf-7/TGFβ activity
(Ewald et al., 2012a).

Touch habituation is another sensory characteristic affected
by pan-neuronal APL-1 expression. When a gentle touch is
applied to the head of the animal, C. elegans responds by mov-
ing backward; conversely, when touched on the tail, the animal
moves forward (Chalfie and Sulston, 1981). This response to
gentle body touch is mediated by six mechanosensory touch
neurons (Chalfie et al., 1985). After six cycles of alternating
head/tail touches, wild-type animals habituated and became unre-
sponsive (Ewald et al., 2012a). apl-1(yn10/+) heterozygotes or
transgenic animals that overexpress APL-1 showed touch habit-
uation. By contrast, animals with pan-neuronal APL-1 expression
were slow to habituate and required more alternating head/tail
touch cycles before becoming habituated (Ewald et al., 2012a).
Collectively, these results indicate that pan-neuronal overexpres-
sion of APL-1 causes learning defects. These results parallel those
seen in mammalian models in which overexpression of APP
leads to cognitive defects, independent of Aβ aggregates (Hsiao
et al., 1995; Simón et al., 2009), thereby suggesting that sAPP
activity, in addition to Aβ aggregates, contributes to cognitive
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FIGURE 2 | Interaction between sAPL-1 and DAF-2 insulin/IGF-1 receptor

and DAF-12/NHR pathways. Schematic representation of APL-1 proteolytic
pathway and how sAPL-1 may modulate DAF-2 insulin/IGF-1 receptor and
DAF-12/NHR signaling pathways. APL-1 is cleaved by the α/γ-secretase
pathway in C. elegans. Released sAPL-1 could act as a signaling molecule in

the same cell (autocrine regulation) or in neighboring cells (paracrine
regulation) to inhibit daf-2 insulin/IGF-1 receptor and daf-12/NHR pathways to
affect worm viability and development. The exact mechanism by which
sAPL-1inhibits daf-2 insulin/IGF-1 receptor and daf-12/NHR is still unknown
and labeled as a question mark (see Ewald et al., 2012b).

defects. Whether these cognitive defects depend on the DAF-
16/FOXO transcription factor and/or TGFβ signaling remains to
be tested.

APL-1 TRAFFICKING IS IMPORTANT FOR SYNAPTIC TRANSMISSION
APL-1, like APP (Koo et al., 1990), is transported from the
cell body to synapses (Wiese et al., 2010). UNC-108, which
is a neuronally expressed GTPase and localizes to the Golgi
complex and early endosomes (Mangahas et al., 2008; Edwards
et al., 2009), is involved in the maturation of dense core vesi-
cles (Borgonovo et al., 2006; Mangahas et al., 2008; Edwards et al.,
2009; Sumakovic et al., 2009) and the packaging of APL-1 into
mature dense core vesicles (Wiese et al., 2010). Both UNC-
116/kinesin-1 and UNC-104/KIF1A/kinesin-3 are involved in the
anterograde transport of APL-1 (Wiese et al., 2010; Arimoto
et al., 2011), but only UNC-116/kinesin-1 and dynein motors are
responsible for the retrograde transport of APL-1 back to the cell
body (Arimoto et al., 2011). The rates of anterograde and ret-
rograde transport of APL-1 vesicles are 1.1 μm/s and 1.6 μm/s,
respectively (Arimoto et al., 2011). Hence, APL-1 is transported
similarly as in mammalian models where kinesin-1 is responsible
for APP axonal transport (Koo et al., 1990). Surprisingly, muta-
tions in unc-116/kinesin-1 and unc-104/KIF1A/kinesin-3 both

caused decreased levels of APL-1 expression without affecting
transcript levels, suggesting that without transport motors, APL-1
does not accumulate in cell bodies because of protein degradation
(Wiese et al., 2010; Arimoto et al., 2011). APL-1 is also inter-
nalized from the cell surface of neurons via a RAB-5-dependent
endocytosis (Wiese et al., 2010).

AICD INTRACELLULAR TRAFFICKING
The Fe65 family of proteins binds the cytoplasmic YENPTY
sequence of APP, APLP1, and APLP2, via their PTB2 domain
(Guénette et al., 1996; Zambrano et al., 1997; Duilio et al., 1998;
Russo et al., 1998). Likewise, the sole family member ortholog
in C. elegans, FEH-1, has a WW domain and PTB1 and PTB2
domains, which closely resemble those of the Fe65 family, and the
PTB2 domain of FEH-1 interacts with APL-1 (Zambrano et al.,
2002).

FEH-1 is expressed in pharyngeal muscle and neuronal pro-
cesses and is necessary for survival. Inactivation of feh-1 caused
an incompletely penetrant embryonic lethality. Survivors showed
little pharyngeal pumping and were unable to feed, thereby result-
ing in L1 arrest (Zambrano et al., 2002). Decreasing feh-1 activity
or decreasing feh-1 dosage caused pharyngeal pumping rates to
increase, suggesting that the rate of pharyngeal pumping is feh-1
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dosage dependent. However, the functional significance of FEH-1
and APL-1 interactions is unclear as apl-1(yn5) mutants, which do
not have an AICD domain, and apl-1(yn10/+) heterozygotes do
not have defective pumping rates (Ewald et al., 2012b).

INVESTIGATING THE AMYLOID HYPOTHESIS OF AD IN C. elegans
Aβ peptide, the cleavage product of APP believed to underlie the
pathology of AD (Glenner and Wong, 1984; Masters et al., 1985;
Gorevic et al., 1986; Selkoe et al., 1986), is not present in APL-
1 (Daigle and Li, 1993) nor does C. elegans possess β-secretase
activity to produce Aβ (Link, 2006). Nevertheless, C. elegans pro-
vides a powerful in vivo genetic system to study the effects of
neurotoxic Aβ through transgene analysis (Shankar et al., 2008).
Many transgenic strains have been generated in which a signal
sequence followed by the human Aβ sequence is expressed in
all cells, in all neurons, in specific subsets of neurons, or in
muscle cells (Figure 4). These strains produce either Aβ1−42 or
Aβ3−42.

AD is a late onset neurodegenerative disease. C. elegans express-
ing human Aβ3−42 in muscle tissue (Link, 1995; Link et al.,
2001) showed an age-dependent paralysis at 20◦C (Cohen et al.,
2006; McColl et al., 2009); paralysis occurred more rapidly and
more severely when Aβ1−42 was produced at 25◦C (McColl
et al., 2009). The level of muscle paralysis was significantly
decreased when insulin signaling was decreased (Cohen et al.,
2006). Furthermore, inhibiting daf-16/FOXO and hsf-1, which
encodes a heat shock protein transcription factor (Hsu et al.,
2003; Morley and Morimoto, 2004), reversed the effects of
decreased insulin signaling (Cohen et al., 2006). Hence, the paral-
ysis effects of Aβ correlates with age and is dependent on insulin
signaling.

Since aggregated Aβ is toxic to neurons (Glenner and Wong,
1984; Masters et al., 1985; Gorevic et al., 1986; Selkoe et al., 1986)
and causes muscle paralysis in C. elegans, molecules and pathways
that can prevent the formation or promote the disassembly of Aβ

aggregates can be screened for in C. elegans. For instance, when
C. elegans extracts are incubated with aggregated human Aβ3−42

in the presence or absence of protease inhibitors, disaggregation
occurred, but disaggregation did not occur when extracts were
either heated to denature proteins or incubated with proteinases
(Bieschke et al., 2009). Hence, an unidentified protein or protein
complex in C. elegans extracts can disaggregate Aβ3−42 aggregates.

Several orthologs to human heat shock (HSP) chaperone pro-
teins were found to interact directly with Aβ3−42 in C. elegans. C.
elegans HSP-16 proteins, HSP-16-1, HSP-16-2, and HSP-16–48,
orthologs of αB-crystallin, bound intracellular Aβ3−42 monomers
and soluble Aβ3−42 oligomers, but not fibrillar Aβ3−42 (Fonte
et al., 2002). Moreover, hsp-16 transcript levels were upregulated
in Aβ3−42 transgenic lines, but whether these chaperone pro-
teins protect against or promote Aβ paralysis is unclear (Fonte
et al., 2002). By contrast, increased expression of the HSP70
chaperones had a protective role by suppressing paralysis (Fonte
et al., 2008). These results are consistent with human studies
showing that HSP70 and αB-crystallin were upregulated in AD
brains (Hamos et al., 1991; Perez et al., 1991; Shinohara et al.,
1993; Renkawek et al., 1994; Yoo et al., 2001) and binds Aβ

(Liang, 2000).

Transgenic lines in which Aβ is expressed in glutamatergic neu-
rons showed age-dependent neurodegeneration, whereby 7-day
adults showed 75% glutamatergic neurodegeneration (Treusch
et al., 2011). This degeneration was suppressed when genes
involved in clathrin-mediated endocytosis, such as unc-11, unc-26,
Y44E3A.4, C. elegans RTS1 ortholog, C. elegans ADE12 ortholog,
and human CRMI, were co-expressed with Aβ, and enhanced
when a PBS2/MAP2K4 mitogen-activated protein kinase trans-
gene was co-expressed with Aβ in glutamatergic neurons (Treusch
et al., 2011). Interestingly, mutations in the C. elegans human
REST ortholog spr-4, which suppressed the sel-12/PSEN egg-laying
defect (Lakowski et al., 2003), also enhanced the degeneration seen
in the transgenic animals expressing Aβ in glutamatergic neurons
(Lu et al., 2014). Modifying clathrin-mediated endocytosis in rat
cortical neurons was similarly neuroprotective against Aβ aggre-
gates (Treusch et al., 2011). In addition, early stage AD brains
showed higher expression of REST target genes, while late stage AD
and frontotemporal dementia (FTD) brains showed lower expres-
sion (Lu et al., 2014). Hence, REST may confer neuroprotective
benefits in C. elegans and in humans (Lu et al., 2014).

The C. elegans Aβ model also proves useful in screens to
identify drugs that disaggregate Aβ. The drug PBT2, an 8-
hydroxy quinoline analog, reversed AD phenotypes in mice
within days (Adlard et al., 2008). Similarly, C. elegans express-
ing inducible Aβ1−42, which become paralyzed within 48 h after
induction, were protected against paralysis when exposed to PBT2
(McColl et al., 2012).

C. elegans lrp-1 FUNCTIONS SIMILARLY TO LRP2/MEGALIN, AN LDL
RECEPTOR FAMILY MEMBER
In mammals, the LDL receptor family is responsible for many
functions, including binding ligands for internalization and degra-
dation and cholesterol metabolism (Brown and Goldstein, 1986;
Mahley, 1988; Herz et al., 1992; Willnow et al., 1994). Binding
of LRP1 to sAPP770 or full-length APP770, one of the APP
isoforms (Figure 1), causes its internalization and degradation
(Kounnas et al., 1995; Knauer et al., 1996); disrupting cell surface
APP internalization with an LRP-antagonist increases sAPPα pro-
cessing and full-length APP at the cell surface and decreases Aβ

formation, suggesting that LRP1-APP interactions favor APP pro-
cessing through the amyloidogenic pathway (Ulery et al., 2000).
Apolipoprotein E and LRP2/megalin have also been implicated in
Aβ clearance (Zlokovic et al., 1996; Deane et al., 2004; Carro et al.,
2005).

C. elegans LRP-1 most closely resembles mammalian
LRP2/megalin (Yochem and Greenwald, 1993; Yochem et al.,
1999). C. elegans does not have the ability to synthesize cholesterol
and, therefore, must rely on dietary sources (Hieb and Rothstein,
1968). Inactivation of lrp-1 resulted in late larval lethality due to
molting defects during the L3–L4 transition (Yochem et al., 1999).
When wild-type C. elegans were grown in the absence of choles-
terol, the molting defects of the lrp-1 knockouts were phenocopied
(Yochem et al., 1998; Wiese et al., 2012), suggesting that LRP-1 is
involved in cholesterol uptake from the environment. LRP-1 is
expressed in the epithelial hypodermal cells, hyp6 and hyp7, where
it localizes to their apical surface (Yochem et al., 1999) and where
apl-1 is also expressed in adults (Niwa et al., 2008). Similarly, its
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mammalian counterpart, LRP2/megalin, is mainly expressed at
the apical surface of epithelial cells (Cui et al., 1996; Morales et al.,
1996; Willnow et al., 1996; Nielsen et al., 1998; Zheng et al., 1998;
Hermo et al., 1999; Mizuta et al., 1999).

LRP2/megalin interacts with different domains of APP
(Zlokovic et al., 1996; Pietrzik et al., 2004; Carro et al., 2005; Yoon
et al., 2005; Cam and Bu, 2006). A physical interaction between
APL-1 and LRP-1 has not been determined. Expression of LRP-1
with an N-terminal domain truncation did not rescue the lethal-
ity of apl-1 null mutants, suggesting that sAPL-1 is not activating
an lrp-1 pathway (Hornsten et al., 2007). When lrp-1 expression
is decreased or when wild-type animals are deprived of dietary
cholesterol, neurotransmission is affected (Wiese et al., 2012).
However, apl-1 null mutants die at an earlier stage in develop-
ment than lrp-1 null mutants, suggesting that apl-1 functions in
earlier developmental pathways that are necessary for survival.

C. elegans AS A MODEL FOR OTHER NEURODEGENERATIVE
DISEASES
PTL-1 AS A TAU MODEL
Accumulation of neurofibrillary tangles in cell bodies is another
hallmark characteristic of AD and other neurodegenerative dis-
orders. The major component of these tangles is tau, which
belongs to the family of microtubule-associated proteins (MAPs)
that includes MAP2 and MAP4 (Lee et al., 1988; Lewis et al.,
1988; Goedert et al., 1989b; Chapin and Bulinski, 1991). MAPs
share characteristic homology domains, including a proline-rich
domain and a region of a variable number of tandem amino
acid repeats (Figure 3A; Goedert et al., 1988, 1989a,b, 1992a; Lee
et al., 1988; Lewis et al., 1988; Aizawa et al., 1990). Tau is the pre-
dominant MAP expressed in axons, while MAP2 is expressed in
dendrites (Matus et al., 1981; Binder et al., 1985) and MAP4 is
expressed in dividing cells (Bulinski and Borisy, 1980). MAPs
bind microtubules and are responsible for promoting microtubule
assembly and stability (reviewed in Amos and Schlieper, 2005).
MAP family members appear to have redundant functions; mice
in which tau was knocked out were viable, but showed increased
levels of MAP1A (Harada et al., 1994), suggesting that upregu-
lation of MAP1A can compensate for the lack of tau in vivo.
Tau phosphorylation affects its ability to bind microtubules and
can cause a conformational change that favors tubulin assembly
(Figure 3B; Feijoo et al., 2005). Aberrant hyperphosphorylation of
tau, however, impairs its ability to bind microtubules, thus result-
ing in their disassembly (Lindwall and Cole, 1984; Biernat et al.,
1993; Bramblett et al., 1993). In addition, phosphorylated tau self-
aggregates into PHFs and presumably generates the intracellular
neurofibrillary tangles characteristic of AD patients (Figure 3B;
Goedert et al., 1992b; Alonso et al., 1996, 1997, 2001; Billingsley
and Kincaid, 1997).

Because of the functional redundancy of MAPs, their spe-
cific functions have been difficult to determine. C. elegans has
only one tau homolog protein with tau-like repeats 1 (PTL-
1; Goedert et al., 1996; McDermott et al., 1996). PTL-1 exists
as two isoforms, PTL-1A and PTL-1B, with five or four tan-
dem repeats, respectively (Goedert et al., 1996; Figure 3A).
They have a high level of sequence homology with mammalian
tau, especially in the C-terminal microtubule binding region

(Goedert et al., 1996; McDermott et al., 1996). Both PTL-1A
and PTL-1B bound microtubules in vitro and induced tubulin
polymerization (Goedert et al., 1996; McDermott et al., 1996).
PTL-1 is initially expressed embryonically in the epidermis of
elongating embryos and in head neurons; in larval and adult ani-
mals PTL-1 is expressed mainly in the mechanosensory neurons
mediating gentle body touch (Figure 3B; Goedert et al., 1996;
Gordon et al., 2008), although transcriptional fusions show a
wider expression pattern in neurons and stomatointestinal cells
(Gordon et al., 2008).

Loss of ptl-1/tau results in an incompletely penetrant lethal-
ity at the same stage of embryogenesis (Gordon et al., 2008)
at which PTL-1/tau expression is first observed (Goedert et al.,
1996). ptl-1/tau mutants that escaped lethality showed normal
development, but had a shortened lifespan, and although the
overall integrity of microtubule structure appeared unaffected at
the light microscopic level, there was a significant reduction in
gentle touch sensitivity as compared to wild-type (Gordon et al.,
2008; Chew et al., 2013). These touch defects were enhanced in
mutants with defects in β- and α-tubulin, indicating that the
absence of full-length PTL-1/tau disrupts mechanosensation, but
it does so independently of tubulin (Gordon et al., 2008). In
mutants in which only the C-terminal microtubule binding repeats
of PTL-1/tau are deleted, touch sensitivity was identical to that
of wild-type (Chew et al., 2013), suggesting that the N-terminal
domain of PTL-1/tau is sufficient for gentle touch responses.

As C. elegans ages, mechanosensory touch neurons exhibit
age-related morphological changes: cell bodies initially elaborate
branches and axons subsequently display blebbing and branching
(Pan et al., 2011; Tank et al., 2011; Toth et al., 2012). Strikingly,
mechanosensory touch neurons in ptl-1/tau mutants displayed
these aging characteristics at higher incidences and at an earlier
stage than wild-type animals; GABAergic neurons also showed
age-related phenotypes, such as ectopic branching (Chew et al.,
2013). Expression of a human tau isoform (htau40) in ptl-1/tau
mutants rescued the touch insensitivity, but not the morphologi-
cal aging defects, indicating that htau40 shares some functional
conservation with PTL-1/tau (Chew et al., 2013). Interestingly,
when ptl-1/tau was expressed in Sf9 cells, cells projected neurite-
like processes that were positive for PTL-1/tau immunoreactivity
(Goedert et al., 1996) and that were indistinguishable from those
visualized when htau40 was expressed in Sf9 cells (Knops et al.,
1991; Chen et al., 1992). Although wild-type PTL-1/tau has not
been reported to aggregate into fibrils, PTL-1/tau, like human
tau, clearly has an essential role in maintaining neuronal integrity,
controlling neuronal aging, and affecting lifespan (Goedert et al.,
1996; Gordon et al., 2008). While there are no known mutations in
tau that are associated with AD, tau mutations are associated with
FTD with parkinsonism (FTPD-17), another form of dementia
(Hutton et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998; see
Section “Frontotemporal Dementia”).

FRONTOTEMPORAL DEMENTIA
Frontotemporal dementia (FTD) is a group of neurodegenera-
tive disorders characterized by severe brain frontotemporal lobar
degeneration (reviewed in Rabinovici and Miller, 2010). In some
cases it may be hard to distinguish between FTD and AD; however,
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FIGURE 3 | Similarities and differences between human tau and

Caenorhabditis elegans PTL-1. (A) Schematic representation of human
microtubule binding proteins (MAPs) family, including tau isoforms and
C. elegans PTL-1 isoforms. (B) Comparison between tau functions in humans
(top) and C. elegans PTL-1/tau functions (bottom). Top. Tau has a physiological
role in promoting and maintaining microtubule stability. In pathological

conditions tau is hyperphosphorylated and self-aggregates into paired helical
filaments (PHFs) that can form intracellular neurofibrillary tangles (NFT).
Bottom. C. elegans PTL-1/tau binds microtubules and induces microtubule
assembly. It also affects synaptic transport through motor proteins
UNC-104/KIF1a/kinesin-3, UNC-116/kinesin-1, and DLC-1/dynein. PTL-1/tau is
also important for C. elegans mechanosensation and aging.

FTD usually develops earlier in life and is more likely to have a
genetic component (Lindau et al., 2000; Pasquier, 2005). Many
mutations can cause FTD with or without motor neuron disease
(Cruts et al., 2012). Two mutations have been well character-
ized and are associated with specific types of FTD: tau-positive
FTD linked to chromosome 17 (FTD-17) and FTD caused by
TDP43 proteinopathy (FTD-TDP43). Patients with FTD-17 suffer
behavioral changes and often Parkinson-like motor problems.
While mutations in the tau gene MAPT are not described in famil-
ial or sporadic AD, MAPT tau mutations are linked with FTD-17
(Hutton et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998).

Several transgenic lines expressing human tau harboring FTD-
17 mutations (htau-FTD-17) have been generated in C. elegans
(Figure 4B) (see also Section “PTL-1 as a Tau Model”; Kraemer
et al., 2003; Miyasaka et al., 2005; Brandt et al., 2009; Fatouros
et al., 2012). Pan-neuronal transgene expression of wild type or
htau-FTD-17 caused an uncoordinated phenotype that progres-
sively worsened with age, an accumulation of insoluble tau, and
neurodegeneration (Kraemer et al., 2003). Similarly, expression
of htau-FTD-17 in touch neurons resulted in a decrease in the
touch response due to neuritic abnormalities and tau accumu-
lation (Miyasaka et al., 2005). Using these C. elegans models of
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FIGURE 4 | Caenorhabditis elegans as a transgenic model for AD

and other neurodegenerative diseases. (A) Summary of the
Alzheimer’s disease models in C. elegans expressing human Aβ peptide
or C. elegans full-length APL-1 or APL-1 extracellular domain (APL-1
EXT). Arrow color represents the tissues where transgenes were
expressed. Phenotypes observed are next to the arrow. (B) Summary

of the C. elegans models for Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), frontotemporal dementia (FTD), and Huntington’s
disease (HD). Genes modeling PD are shown in blue boxes, ALS in
pink boxes, FTD in yellow boxes, and HD in green boxes. Arrow color
represents tissues where transgenes were expressed. Phenotypes
observed are written close to the arrow.

tauopathy in forward genetic screens, Kraemer and co-workers
identified two new factors, SUT-1 and SUT-2, that may partici-
pate in the pathological pathway activated by tau (Kraemer et al.,
2003; Kraemer and Schellenberg, 2007; Guthrie et al., 2009). More-
over, down-regulation of the human SUT-2 homolog (MSUT-2)
in mammalian cell lines caused a marked decrease in tau aggrega-
tion, suggesting that MSUT-2 may be a good candidate target
for FTD therapies (Wheeler et al., 2010; Guthrie et al., 2011).
More recently, Fatouros et al. (2012) generated two htau-FTD-
17 transgenic models: one with a pro-aggregant mutated form of
human tau (deletion of K280) and a second with mutated forms
of human tau (I277P and I308P) that prevented tau aggregation.
The tau (�K280) transgenic line had high levels of tau aggrega-
tion, which caused uncoordinated movement in adults, axonal
defects, and alterations in presynaptic structures (Fatouros et al.,
2012); the locomotory defects could be partially suppressed by a
compound of the aminothioenopyridazine (ATPZ) class cmp16,
suggesting that this compound may be neuroprotective (Fatouros
et al., 2012). The tau (I277P and I308P) transgenic lines had low
levels of tau aggregates and displayed only mild phenotypes with
significantly less morphological abnormalities.

Accumulation of TDP-43 [transactive response (TAR) DNA-
binding protein] is found in ∼50% of the cases of FTD (The
Association for Frontotemporal Degeneration, 2014) and has
numerous genetic causes. However, only one case has been
reported with mutations in the TDP-43 gene (Borroni et al., 2009).
C. elegans models overexpressing human TDP-43 or its C. ele-
gans ortholog TDP-1 recapitulates some of the FTD phenotypes,
including neurotoxicity and protein aggregation (see also Section
“Amyotrophic Lateral Sclerosis”).

C9orf72 encodes a protein that regulates endosomal traf-
ficking and autophagy in primary neurons and neuronal cells
(Farg et al., 2014). It is expressed in multiple tissue types,
including cerebellar cortex and spinal cord (DeJesus-Hernandez
et al., 2011). Hexanucleotide (GGGGCC) repeat expansions in a
non-coding region of C9orf72 are found in patients with amy-
otrophic lateral sclerosis (ALS) and FTD (DeJesus-Hernandez
et al., 2011; Renton et al., 2011; Majounie et al., 2012), provid-
ing the first genetic link between the two diseases, although
it remains unclear how C9orf72 hexanucleotide expansion
triggers ALS and FTD pathology. Mutations in the C. ele-
gans C9ORF72 ortholog alfa-1 caused age-dependent motility
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defects, leading to paralysis and degeneration of GABAergic
motoneurons (Therrien et al., 2013), suggesting that a loss-of-
function mechanism is involved in the C9ORF72-dependent
pathogenesis.

PARKINSON’S DISEASE
Parkinson’s disease (PD) is a progressive neurodegenerative dis-
order that affects the control of body movements. The impaired
motor control in PD is the result of the death of dopaminergic
(DA) neurons (Hughes et al., 1992; Fahn and Sulzer, 2004). The
disease is characterized by the accumulation of α-synuclein into
neuronal inclusions called Lewy bodies (Lewy, 1912; Tretiakoff,
1919). Most PD cases are of unknown cause. However, ∼5–10%
of PD cases are familial (Wood-Kaczmar et al., 2006) and include
mutations in the following genes: α-synuclein, parkin (PRKN),
leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative
kinase 1 (PINK1), and ATP13A2 (Hardy, 2010).

α-synuclein is a presynaptic neuronal protein whose cellular
function is not well understood, but may include controlling the
supply of synaptic vesicles in neuronal terminals and regulating
dopamine release. It is a small acidic protein (14 kDa) whose
sequence can be divided into three domains: the N-terminal
α-helical domain (amino acids 1–65), the central hydropho-
bic domain (residues 66–95), and the acidic carboxyl-terminal
domain (residues 96–140; Recchia et al., 2004). Three muta-
tions in the α-helical domain (A53T, A30P, E46K) are linked
with autosomal dominant early onset PD, suggesting that these
mutations can predispose to oligomer and fibril formation
(Polymeropoulos et al., 1997; Krüger et al., 1998; Conway et al.,
2000a,b,c; Zarranz et al., 2004). Because C. elegans has no α-
synuclein ortholog, C. elegans models are based on transgenic
worms overexpressing wild-type or mutant forms of human α-
synuclein (Figure 4B). Although different transgenic lines showed
some differences, most lines with pan-neuronal or DA neuronal
expression of wild-type or mutated α-synuclein (A53T and/or
A30P mutations) displayed locomotory defects and degenera-
tion of dopamine neurons (Lakso et al., 2003; Kuwahara et al.,
2006; Cao et al., 2010). Furthermore, downregulating the activ-
ity of the nuclease EndoG decreased α-synuclein toxicity in
DA neurons (Büttner et al., 2013). EndoG is a mitochondria-
specific endonuclease that mediates cellular death by apoptosis
(Li et al., 2001). When cell death is induced, EndoG translo-
cates from the mitochondria to the nucleus to fragment DNA
(Li et al., 2001). Approximately 50% of the dopamine neu-
rons expressing α-synuclein degenerate, whereas a mutation
in cps-6, which encodes the C. elegans EndoG ortholog, res-
cues this degeneration (Büttner et al., 2013). Similar results
were found in yeast, flies, and human cells suggesting that
EndoG is a conserved requirement for α-synuclein toxicity
(Büttner et al., 2013).

C. elegans models of α-synuclein overexpression-induced toxi-
city have also been examined by whole genome RNAi knockdown
and microarray screenings (Vartiainen et al., 2006; Hamamichi
et al., 2008; Kuwahara et al., 2008; van Ham et al., 2008). These
screens highlighted the importance of endocytosis for ame-
liorating α-synuclein-dependent neurotoxicity (Kuwahara et al.,
2008). Transgenic lines expressing α-synuclein specifically in

body wall muscle cells produced inclusions as animals aged,
resembling a feature of neurons in patients with PD; the
number of inclusions decreased when genes affecting different
biological processes, such as vesicle and lysosomal trafficking
(W08D2.5/ATP13A2), lipid metabolism, and lifespan control
(sir-2.1, lagr-1), were knocked down (van Ham et al., 2008).
In a genome-wide microarray analysis to identify genes that
were modulated in C. elegans overexpressing wild-type or A53T
human α-synuclein, seven genes encoding components of the
ubiquitin-proteasome machinery and 35 mitochondrial function
genes were found to be upregulated, while nine genes encod-
ing histones H1, H2B, and H4 were down regulated (Vartiainen
et al., 2006). These data provide support for the role of the
proteasome complex and mitochondrial proteins in mediating
neurotoxicity.

Parkin (human PARK2) is a component of an ubiquitin E3
ligase that is part of the proteasome complex (Shimura et al.,
2000). Mutations in PARK2 have been associated with early onset
recessive forms of PD (Kitada et al., 1998; Poorkaj et al., 2004).
C. elegans has a parkin ortholog, PDR-1. A truncated form of
PDR-1(�aa24–247) encoded by the in-frame deletion null allele
pdr-1(lg103) had altered solubility and propensity to aggregate
when expressed in cell lines, resembling parkin mutant proteins
in PD (Springer et al., 2005). Furthermore, pdr-1 mutants were
hypersensitive to different proteotoxic stress conditions, suggest-
ing that PDR-1/PARK2 mutations act to block the proteostasis
machinery, thereby making it easier for proteins to abnormally
fold and aggregate (Springer et al., 2005).

Mutations in LRRK2/leucine-rich repeat kinase 2 are the most
common known cause of late-onset PD. LRRK2 belongs to
the LRRK family; gain-of-function LRRK2 mutations interfere
with chaperone-mediated autophagic functions and presumably
decrease levels of α-synuclein degradation (Orenstein et al., 2013).
Transgenic worms overexpressing pathogenic mutant forms of
LRRK2 in DA neurons caused DA neurodegeneration (Liu et al.,
2011; Yao et al., 2013). Interestingly, treatment of the transgenic
worms with kinase inhibitors resulted in arrested neurodegener-
ation, suggesting that LRRK2 kinase activity is important for its
pathogenesis (Liu et al., 2011; Yao et al., 2013).

Many studies have reported a link between toxin expo-
sure and increased risk of PD. C. elegans has been used to
test different toxins and help elucidate the mechanism by
which they produce neurotoxicity. Administration of the 6-
hydroxydopamine (6-OHDA) neurotoxin to C. elegans pro-
duced specific degeneration of dopamine neurons (Nass et al.,
2002). By performing forward genetic and high-throughput
chemical screens, mutations within the dopamine transporter
dat-1 were found to suppress 6-OHDA sensitivity (Nass et al.,
2005) and bromocriptine, quinpirole, and acetaminophen, and
plant extracts from Bacopa monnieri and Uncaria tomentosa
were found to be neuroprotective (Marvanova and Nichols, 2007;
Locke et al., 2008; Ruan et al., 2010; Jadiya et al., 2011; Shi
et al., 2013). These data demonstrate that pathological char-
acteristics of PD can be recapitulated in C. elegans models
and used to investigate the mechanism by which α-synuclein
and other PD proteins produce neurotoxicity and cause motor
defects.
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AMYOTROPHIC LATERAL SCLEROSIS
Amyotrophic lateral sclerosis is a neurodegenerative disease char-
acterized by the death of motor neurons in brain and spinal cord
and progressive paralysis of the body (Hardiman et al., 2011).
Approximately 10% of ALS cases are familial and associated with
mutations in several genes. The most common mutation in famil-
ial ALS is found in the superoxide dismutase enzyme (SOD1)
with more than 160 different mutations identified (Wroe et al.,
2008). SOD1 is a ubiquitously expressed protein that converts the
toxic radical superoxide anion to hydrogen peroxide. Although
it is not clear yet how SOD1 mutations causes motor neuron
degeneration, toxicity is likely generated by a gain-of-function
mechanism (Valentine et al., 2005) and associated with misfolding
and aggregation of the enzyme (Pasinelli and Brown, 2006).

Transgenic lines expressing mutant human SOD1 proteins have
been successfully generated in C. elegans and recapitulate the
motor neuron degeneration and paralysis characteristic of ALS
patients (Figure 4B) (Witan et al., 2008; Gidalevitz et al., 2009;
Wang et al., 2009; Li et al., 2014). The locomotion defect caused
by pan-neuronal expression of the SOD1(G85R) mutant isoform
was reduced when insulin signaling was decreased (Boccitto et al.,
2012), suggesting that decreased insulin signaling increases the
capacity of cells to prevent the accumulation of toxic non-soluble
proteins and opening the possibility of finding new therapeu-
tic targets. Similarly, when wild-type or mutant SOD1(G93A)
was expressed exclusively in GABAergic motor neurons, animals
showed an age-dependent paralysis and accumulation of wild-type
and mutant SOD1(G93A), although defects were more severe in
the mutant lines; interestingly, the SOD1 aggregates were soluble
in the wild-type SOD1 lines and insoluble in the SOD1(G93A)
lines (Li et al., 2014). In addition, motor neurons showed axonal
guidance defects during development and caspase-independent
cell death in adulthood in the wild-type and SOD1(G93A) lines
(Li et al., 2014).

Other genes associated with ALS have also been modeled using
C. elegans. TDP-43 [TAR DNA-binding protein] is a 43 kDa RNA
binding protein identified as the main component of ubiquiti-
nated protein aggregates (Tsuda et al., 2008; Murakami et al., 2012;
Vaccaro et al., 2012a,b; Han et al., 2013; Therrien et al., 2013)
found in patients with sporadic ALS (Neumann et al., 2006) and
also in some cases of FTD (see Section “Frontotemporal Demen-
tia”). TDP-43 is normally located in the nucleus of neurons,
but dominant mutations in TDP-43 cause aberrant localization
of TDP-43 in the cytoplasm, thereby preventing it from func-
tioning in the nucleus (Gitcho et al., 2008; Kabashi et al., 2008;
Sreedharan et al., 2008; Van Deerlin et al., 2008; Yokoseki et al.,
2008; Ash et al., 2010). C. elegans has one TDP-43 ortholog,
TDP-1. TDP-1 controls longevity and oxidative stress in the worm
by regulating the insulin pathway (Vaccaro et al., 2012b). Over-
expression of tdp-1/TDP-43 resulted in toxicity and decreased
lifespan, analogous to the phenotypes found in ALS patients
(Vaccaro et al., 2012b). In transgenic worms expressing TDP-43
harboring ALS-associated mutations, proteotoxicity affecting neu-
ronal functions was induced. Similar results were found when
the RNA binding protein FUS with ALS-related mutations was
expressed in the nematode (Murakami et al., 2012; Vaccaro et al.,
2012b).

Excess exposure to some pesticides and chemicals, such as
the metalloid selenium, have been implicated in the etiology of
ALS (Vinceti et al., 2009; Kamel et al., 2012; Malek et al., 2012).
Exposure to high levels of sodium selenite in the worm induced
neurodegeneration and resulted in paralysis (Estevez et al., 2012,
2014). When insulin pathway activity was reduced, the adverse
effects of environmental selenium exposure was altered (Estevez
et al., 2014). Overall, the C. elegans models have highlighted the
possible importance of the insulin and autophagy pathways in the
generation of ALS.

HUNTINGTON’S DISEASE
Huntington’s disease (HD) is a progressive neurodegenerative
disorder inherited through autosomal dominant mutations of
the IT15 gene. ITI5 encodes the huntingtin protein, whose
functions remain unknown (The Huntington’s Disease Collab-
orative Research Group, 1993). The mutations result in an
N-terminal polyglutamine (polyQ) expansion (Goldberg et al.,
1996; Mangiarini et al., 1996). In normal individuals, up to 34
repeats have been reported, whereas in HD afflicted individuals, up
to 100 polyQ repeats have been recorded (The Huntington’s Dis-
ease Collaborative Research Group, 1993). The huntingtin-polyQ
(HdhQ) proteins form aggregates, whose toxicity is determined
by the length of the polyQ expansion and which cause swollen,
disorganized, and ribosome-deficient endoplasmic reticulum and
chromatin irregularities (Martindale et al., 1998). Eventually, cel-
lular defects caused by the aggregates culminate in HD symptoms,
which include involuntary movement, cognitive impairment, and
loss of neurons in the striatum and deep layers of the frontal cortex
(Martin and Gusella, 1986).

Although C. elegans does not have a huntingtin homolog,
transgenic C. elegans models that express an N-terminal human
huntingtin (htt) fragment with different numbers of CAG repeats
have been used to model HD and identify genes that prevent
polyQ aggregates (Figure 4B). The models generally express the
repeats in specific neurons, such as the ASH sensory neurons,
which are multi-modal sensory neurons that mediate avoidance
to chemo- and mechanosensory stimuli. In transgenic animals
expressing htt171 with 150 CAG repeats (htt171-Q150), 13% of
the ASH neurons began to lose function after 8 days, suggest-
ing an age-dependent degeneration (Faber et al., 1999). This loss
of ASH function was reversed in a ced-3/caspase (Faber et al.,
1999) or hda-3/HDAC (Bates et al., 2006) mutant background,
suggesting that processes characteristic of apoptotic cell death and
histone deacetylases play a role in HD (Dragunow et al., 1995). By
contrast, the number of htt171-Q150 aggregates and neurodegen-
eration were enhanced when genes mediating autophagy, CREB,
CREB binding proteins, and pqe-1 were disrupted, suggesting that
autophagy and activation of CREB target genes decreases htt171-
Q150 aggregation and are neuroprotective (Faber et al., 2002;
Bates et al., 2006; Jia et al., 2007). Transgenic animals expressing
fewer CAG repeats (2, 23, and 95 polyQ) showed normal ASH
function (Faber et al., 1999). The onset of behavioral defects are
consistent with most cases of HD, in which symptoms usually
appear during midlife (Vonsattel et al., 1985; Martin and Gusella,
1986; Strong et al., 1993; The Huntington’s Disease Collabora-
tive Research Group, 1993; Gusella and MacDonald, 1995) and
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fewer than 10% of reported cases occur before the age of 21
(Farrer and Conneally, 1985; van Dijk et al., 1986; Nance, 1997;
Siesling et al., 1997).

In a different HD model, htt57-Q128 was expressed in the touch
mechanosensory neurons (Parker et al., 2001). These transgenic
animals did not show neurodegeneration, but had a significantly
reduced response to posterior touch and a milder defect in ante-
rior touch response (Parker et al., 2001). The touch neurons
contained polyQ aggregates and morphological abnormalities pri-
marily along axonal processes (Parker et al., 2001). The touch
insensitivity could be rescued by activating Sir2 sirtuins (Parker
et al., 2005), which act through the DAF-16/FOXO transcription
factor to promote longevity (Tissenbaum and Guarente, 2001).
Similarly, in neuronal cell lines derived from knockin HdhQ111
mice, activation of sirtuins reduced the level of cell death (Parker
et al., 2005). Additionally, in an RNAi based screen for genes that
suppressed htt57-Q128 defects, identified C. elegans genes were
also upregulated in the striatum of mouse HD models (Lejeune
et al.,2012). Thus, C. elegans is a useful model to identify additional
genes that may protect against or contribute to defects caused by
polyQ expansions.

RNAi knockdown of dnj-27/ERdj5, an ER luminal protein
upregulated in response to ER stress, exacerbated the impaired
mobility observed when a Q40 transgene is expressed in body wall
muscles, suggesting that dnj-27 interacts with polyQ and protects
against polyQ induced paralysis (Muñoz-Lobato et al., 2014).

C. elegans has the advantage that it is transparent, allowing visu-
alization of the formation of that aggregates, including aggregates
made by shorter polyQ tracts, whereas only longer tracts are visi-
ble in mammals (Brignull et al., 2006). To determine the threshold
number of polyQ repeats needed to elicit a morphological and
behavioral response, varying lengths of polyQ repeats were tested
in C. elegans. Pan-neuronal expression of more than 40 polyQ led
to variable protein aggregation and paralysis (Brignull et al., 2006).
These data suggest that 40 polyQ may be the critical number of
repeats to elicit HD symptoms and are consistent with unaffected
humans who have up to 34 polyQ repeats and HD patients who
have as few as 42 repeats (The Huntington’s Disease Collaborative
Research Group, 1993).

Overall, C. elegans HD models illustrate that human hunt-
ingtin polyQs disrupt the morphology and function of sensory
neurons. The genetic and RNAi screens highlight candidate genes
that may be involved in HD pathogenesis in mammalian models
and provide insights into genes that may serve a protective role
against polyQ toxicity. In addition to HD, other diseases caused
by polyQ repeats include spinocerebellar ataxias and spinal and
bulbar muscular atrophy (Orr and Zoghbi, 2007). Hence, using
C. elegans provides another approach toward determining how
polyQ pathogenicity contributes to neurodegeneration.

ADVANTAGES AND LIMITATIONS OF THE C. elegans MODEL
The use of C. elegans to study AD and other neurodegenerative dis-
eases has, as many other models, many advantages as well as some
drawbacks. Major advantages of C. elegans include the ability to
perform forward genetic, RNAi, and high throughput chemical
screens and the ease of generating transgenic lines. These ben-
efits have been effective in informing the role of APP and the

presenilins and identifying components of the γ-secretase com-
plex. The function of APP and the pathways in which it acts
are still unclear. C. elegans presents a complementary system to
understand the function and pathways of an APP-related protein,
APL-1. Furthermore, overexpression of APL-1 by mutation or by
transgene induces phenotypes that converge on the insulin/DAF-
16/FOXO pathways, similar to what has been found in mammals.
Although APL-1 does not contain the Aβ sequence and C. elegans
does not have β-secretase activity, transgenic lines that produce
Aβ expression pan-neuronally or in muscle are being used to iden-
tify pathways that detoxify the Aβ aggregates, some of which also
involve the insulin/DAF-16/FOXO pathways. Whether these mod-
els are relevant to human pathology or whether the pathways will
be conserved in humans are unknown; however, they present alter-
native approaches to understanding neurodegenerative diseases
for which there are currently few effective therapies. Human tau,
as well as mutant tau isoforms, have also been expressed in the
worm to recapitulate AD and FTD phenotypes. Recent findings
have shown that PTL-1 regulates neuronal aging in the worm.
These findings may be important to link aging and tau pathology
in AD and FTD patients. Although C. elegans transgene models
have many advantages, they also have several disadvantages. In C.
elegans, transgenes are present as extrachromosomal arrays and
are not integrated into the genome as they are in other systems; a
few copies to several hundred copies of the transgene are present
in the arrays, so the level of overexpression can be much higher
than what is found in vivo. Fortunately, methods for single copy
insertions have now been developed (Frøkjaer-Jensen et al., 2008).

AD is considered a multifactorial disease in which other risk fac-
tors, such as neuroinflammation, head trauma, and diabetes, may
be important in the development of the disease. The C. elegans
nervous system is simple compared to the human nervous system.
This simplicity allows researchers to study neuronal function and
neural circuits in a tractable system. However, the complex net-
work of connections and cell interactions found in humans is not
mimicked in C. elegans and this complexity may underlie some of
the pathology of neurodegenerative diseases. Nevertheless, most of
the pathways and signaling molecules in C. elegans are conserved
between worms and mammals. The goal is to translate some of the
C. elegans insights into understanding the pathology of AD and
other neurodegenerative diseases and designing effective strategies
to treat the diseases.
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