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A major goal in infectious disease research is to identify the human and pathogenic
genetic variants that explain differences in microbial pathogenesis. However, neither
pathogenic strain nor human genetic variation in isolation has proven adequate to explain
the heterogeneity of disease pathology. We suggest that disrupted co-evolution between a
pathogen and its human host can explain variation in disease outcomes, and that genome-
by-genome interactions should therefore be incorporated into genetic models of disease
caused by infectious agents. Genetic epidemiological studies that fail to take both the
pathogen and host into account can lead to false and misleading conclusions about disease
etiology. We discuss our model in the context of three pathogens, Helicobacter pylori,
Mycobacterium tuberculosis and human papillomavirus, and generalize the conditions
under which it may be applicable.
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INTRODUCTION
Human response to infectious agents is known to be highly herita-
ble, but identifying the genetic variants responsible for differences
in disease susceptibility has proven difficult. Pathogenic variation
has, in some cases, become a better predictor of disease outcome,
but it too does not sufficiently predict whether a given individual
or class of individuals will present with disease. Thus far, genetic
epidemiological studies of infectious disease have typically sought
to explain the inter-individual variation in disease phenotypes by
assessing genetic factors in humans or pathogens alone, under
the implicit assumption that these factors have effects that are
essentially independent of each other. Here, we argue that genome-
by-genome interactions between host and pathogen are likely to
play a major role in infectious disease etiology, and as such, should
be incorporated into genetic epidemiological models. In short,
insofar as host and pathogen jointly determine disease pheno-
types, no genetic variant in either should be considered harmful
without taking the context of the other into account.

The term “interaction” has two related but distinct meanings
in the context of infectious disease, one molecular, and one statis-
tical. Here we refer mainly to the statistical meaning of the term.
At the individual level, all aspects of pathogenesis involve molecu-
lar interactions of varying importance, e.g., between a pathogenic
epitope and a host receptor. Such interactions can be detected
statistically, however, only when multiple variants exist in a popu-
lation and when specific pairings lead to different effects. In some
cases, pathogenic variants may function independently of host
variation, and vice versa. However, because many pathogens have
co-existed with their human hosts for millennia and have likely
co-evolved with them, we argue here that statistical interactions,
where appropriately sought, will often be found, with profound
biomedical implications.

Recent advances in genomics have provided both the
impetus and the means to evaluate human–pathogen co-
evolutionary hypotheses directly. Whole-genome sequencing of
many pathogenic species has substantially improved the resolu-
tion with which we classify strains, and facilitated the detection of
potentially virulent genetic variants. A clearer picture of microbial
evolution has also emerged, marked by selective mechanisms such
as rapid gene gain/loss and horizontal gene transfer (Pallen and
Wren, 2007). Overlaying human genetic variation onto this emerg-
ing evolutionary picture of microbial diversity offers the potential
to make the pathogenic process more transparent.

The past few decades have also seen an explosion in studies
seeking to identify human susceptibility loci for infectious dis-
eases (Rowell et al., 2012). Candidate gene and family based linkage
studies have identified several common polymorphisms with clin-
ical significance at the population level, such as the CCR5 deletion
that protects against HIV (Samson et al., 1996; Picard et al., 2006;
Casanova and Abel, 2007). However, most human susceptibility is
in fact polygenic, with individual polymorphisms conferring small
marginal effects (Hill, 2001). Where infectious disease phenotypes
deviate from the “one susceptibility locus – one infection” model,
elucidating the genetic architecture underlying inter-individual
variation has proven elusive.

While genome-wide association studies (GWAS) may be bet-
ter designed to accommodate multifactorial phenotypes, those
performed thus far on infectious diseases have typically been
less informative than GWAS performed on complex non-
communicable diseases (Jallow et al., 2009; Hill, 2012; Ko and
Urban, 2013). A major challenge facing the GWAS of infectious
disease has been the recruitment of a sufficient number of cases
and matched controls to achieve adequate statistical power (Hill,
2012; Ko and Urban, 2013). Another potential drawback, and the
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one that concerns us here, is the fact that many infectious disease
phenotypes depend on complex interactions between host and
pathogen genomes. In such cases, the pooling together of human
samples infected with even subtly different pathogenic strains can
obscure genetic associations (Hill, 2012; Ko and Urban, 2013). A
problem common to all GWAS is that the statistical effect sizes of
biologically meaningful polymorphisms are often too small to pass
significance thresholds after correction for multiple testing. This
problem is exacerbated, however, when human polymorphisms
(or networks of polymorphisms) (Wilfert and Schmid-Hempel,
2008) confer variable, or even opposite effects in the context of
different pathogenic strains within the same study cohort. In this
regard, it is perhaps telling that the most successful GWAS per-
formed on infectious disease susceptibility to date have been on
leprosy; the signal-to-noise ratios in these association studies may
be higher because Mycobacterium leprae exhibits substantially less
genetic heterogeneity than many other pathogens (Monot et al.,
2009; Hill, 2012).

There is in fact strong empirical and theoretical justification
for the hypothesis that the effects of susceptibility and virulence
alleles in the respective gene pools of humans and pathogens are
often contingent upon each other. The evolution of virulence is
a dynamic process, easily perturbed by extrinsic variables over
space and time, and therefore unlikely to follow the same tra-
jectory in every population. For example, a spike in the density
of hosts available for transmission can select for increased viru-
lence, by reducing the cost of lethal harm (Anderson and May,
1982). If a pathogen is transmitted vertically (parent to child),
the genetic factors that affect pathogenicity are “co-inherited” by
host and pathogen, often promoting commensalism (Frank, 1996;
Messenger et al., 1999). Even in these cases, the adventitious intro-
duction of a microbial competitor can induce a commensal species
to evolve a defensive toxin that harms the host, if only incidentally
(Blaser and Kirschner, 2007; Frank and Schmid-Hempel, 2008).
The evolution of defenses against pathogenic harm must also navi-
gate fitness tradeoffs that vary with population, including tradeoffs
pertaining to the correlated nature of complex traits (Lambrechts
et al., 2006). As pathogens evolve rapidly, exerting strong selec-
tive pressures on different human populations, host phenotypes
will respond in the ad hoc manner typical of evolution, limited
by the available genetic variation at hand (Jacob, 1977). Whether
the result is a steady-state equilibrium due to a perpetual “arms
race” or a commensal detente, the same genes and pathways are
unlikely to be involved in every population. As a consequence,
when humans and pathogens migrate to new environments or
admix, the ensuing disruption of co-evolutionary equilibria and
loss of complementarity between host and pathogen genotypes
may yield unpredictable and potentially deleterious biomedical
consequences.

Our emphasis on the significance of mismatched traits is con-
sistent with the genetic mosaic theory of co-evolution, which
aims to account for why virtually all co-evolutionary interac-
tions observed in natural populations show spatial variation in
outcomes (Thompson et al., 2002; Thompson, 2014). The theory
posits that co-evolution occurs in the context of geographically
distinct“selection mosaics,” each characterized by a unique genetic
and environmental profile, where environmental variables can

include both biotic and abiotic factors. Every selection mosaic
progresses toward its own co-evolutionary equilibrium, while gene
flow between selection mosaics ensures that patterns of maladap-
tation will be common and detectable where properly studied
(Thompson et al., 2002; Ridenhour and Nuismer, 2007).

Despite the likely etiological importance of human–pathogen
co-evolution, attempts at empirical confirmation have been rare.
Indeed, “proof” of co-evolution poses a formidable challenge,
requiring a demonstration of increased reproductive fitness in
each species driven by reciprocal changes in two genomes over
time (Woolhouse et al., 2002). Although these criteria have
been met in laboratory studies and in some natural popula-
tions (Lenski and Levin, 1985; Little, 2002; Little et al., 2006), a
similarly rigorous assessment of human–pathogen co-evolution
must accommodate long generation times and the genetic and
phenotypic complexity of the human traits under selection.
Nonetheless, substantial phenomenological evidence consistent
with human–pathogen co-evolution now exists, including evi-
dence of spatial patterns of parallel genetic variation between
species, and of correlated functional changes at the molecu-
lar level (Kraaijeveld et al., 1998; Lively and Dybdahl, 2000;
Funk et al., 2000; Woolhouse et al., 2002). The collection of
high-density genomic data in paired human–pathogen samples
and improvements in phenotypic data, as well as advances in
pathogen genomics, should soon enable more explicit tests of the
concept.

Our aim here is to summarize the growing body of evidence
in favor of the hypothesis that genetic interactions driven by host
and pathogen co-evolution can have significant implications for
genetic epidemiological studies and biomedicine. While this is
not a novel hypothesis, it remains understudied. We also under-
score how recent advances in genomic technology provide new
opportunities to test for genome-by-genome interactions, and
offer suggestions on how to incorporate them into more accurate
genetic models of disease.

HELICOBACTER PYLORI
Studies of Helicobacter pylori provide perhaps the best evidence in
favor of human–pathogen co-evolution, and distinctly illustrate
the power of the modern genetic toolkit to investigate it. H. pylori
chronically infects the gastric epithelia of half the world’s pop-
ulation, causing peptic ulcers in 10–20% of those infected, and
distal gastric carcinoma in ∼1% (Peek and Blaser, 2002; Jemal
et al., 2011). The majority of individuals infected, however, suffer
only from superficial gastritis in adulthood, while likely gain-
ing protection against diseases such as esophageal cancer and
reflux esophagitis, and more controversially, childhood asthma
and diarrhea (Rothenbacher et al., 2000; Vaezi et al., 2000; Blaser
et al., 2008). That H. pylori should have a largely innocuous and
potentially symbiotic relationship with its host follows from co-
evolutionary theory, based on its vertical mode of transmission, its
long-term colonization of a single host, and its ∼50,000 year asso-
ciation with Homo sapiens (Rothenbacher et al., 2002; Moodley
et al., 2012). Why a fraction of individuals develop life-threatening
clinical disease, on the other hand, requires explanation, with one
possibility being the disruption of long-standing co-evolutionary
relationships.
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Although H. pylori-mediated diseases often advance to the clin-
ical stage in late adulthood, their onset typically occurs during
reproductive years (Correa et al., 1976; Susser and Stein, 2002).
Importantly, a disease need not have an especially large selection
coefficient to shape allele frequency distributions in populations,
especially over thousands of years (Ewald and Cochran, 2000). In
fact, the historical fitness load of peptic ulcers, obtained by mul-
tiplying prevalence by selection coefficient, has been estimated
to be similar to those for infectious diseases such as menin-
gitis and rubella (Cochran et al., 2000). Also consistent with
co-evolutionary theory is the fact that H. pylori-mediated gastric
diseases occur disproportionately in men (Susser and Stein, 2002;
Engel et al., 2003); H. pylori is usually, but not necessarily, trans-
mitted by the mother, such that female fitness has likely exerted a
stronger constraint against H. pylori virulence.

Some H. pylori virulence factors appear to increase the risk
of serious clinical outcome regardless of host genotype. The cag
pathogenicity island, present in some strains, encodes a type IV
secretion system, and VacA encodes a pore-forming cytotoxin.
Both have been implicated as carcinogenic risk factors, though
neither is a necessary nor sufficient one (Wroblewski et al., 2010).
Other virulence factors released by H. pylori include urease, which
facilitates neutralization of the otherwise forbidding acidity of the
gastric mucosa; NAP, which enables iron uptake; and arginase,
which helps H. pylori subvert host macrophages. These, like most
H. pylori virulence factors, operate to create a basal inflammatory
state without generating an excessive immune response. Serious
clinical disease reflects a disturbance of this balance (Baldari et al.,
2005; Blaser and Kirschner, 2007; Salama et al., 2013).

The maintenance of this balance also depends partly on
human genetic factors (Lichtenstein et al., 2000; Chiba et al.,
2006; Mayerle et al., 2013a). Candidate gene studies on H. pylori-
mediated diseases have implicated several gene polymorphisms
that appear to affect risk, most notably in the interleukin-1 (IL-1)
family of cytokines (Schneider et al., 2008). Recently, two GWAS
assessing susceptibility to gastric cancer and H. pylori infection
identified SNPs with odds ratios ranging from 1.3 to 1.4, mostly
of uncertain biological function (Shi et al., 2011; El-Omar, 2013;
Mayerle et al., 2013b, Table 1). These polymorphisms account for
only a small proportion of the estimated heritability of disease
phenotypes.

Studies of human or H. pylori genetics in isolation have gener-
ally failed to explain why populations with similar rates of H. pylori
infection exhibit strikingly different susceptibilities to gastric can-
cer. For example, in many African and South Asian countries,
the low incidences of gastric cancer in the presence of almost
universal rates of H. pylori infection remain a source of much
speculation, and have been referred to collectively as the “African
enigma”and the“Asian enigma”(Holcombe, 1992; Campbell et al.,
2001; Ghoshal et al., 2007). In Latin America, where H. pylori
strains native to Amerindian populations have been largely dis-
placed by European strains (Dominguez-Bello et al., 2008; Correa
and Piazuelo, 2012), the predominantly Amerindian populations
living at high altitudes suffer disproportionately from gastric can-
cer relative to other populations with similar infection rates (de
Sablet et al., 2011; Torres et al., 2013). These and other points of
evidence raise the possibility that the pathogenicity of a given H.

pylori strain may vary with human genomic variation, and that
some individuals may be better adapted to their infecting strains
than others.

Modern genomic techniques have made the assessment of such
hypotheses feasible. Over the past two decades, a comprehensive
phylogeography of H. pylori has been constructed using multilocus
sequence typing (MLST), a procedure by which polymorphisms in
fragments from housekeeping genes are used to characterize bacte-
rial isolates (Maiden et al., 1998). Analyses of samples from around
the world have revealed a strong concordance between H. pylori
phylogenetic clusters and the geographical locations from which
they are derived (Falush et al., 2003; Moodley and Linz, 2009;
Moodley et al., 2009). Ancestral H. pylori sequences inferred using
MLST data also correspond to geographically defined human
populations (Falush et al., 2003; Moodley et al., 2012). The typ-
ical modern H. pylori chromosome is now understood to be an
amalgam of fragments from multiple ancestral sequences, a con-
sequence of H. pylori’s high recombinogenicity (Suerbaum et al.,
1998; Falush et al., 2003). The genome of an H. pylori isolate can
thus be quantitatively resolved into ancestral proportions, which
correlate with proportions of human ancestry in admixed popu-
lations (Kodaman et al., 2014). In some cases, the ancestries of H.
pylori isolates outperform human mitochondria in differentiating
ethnic groups (Wirth et al., 2004).

These shared patterns of ancestry are unlikely to have arisen
merely from parallel divergence due to founder effects or neutral
drift. Certainly, the well-documented evolvability of functional
loci within H. pylori strains, even within single individuals over
a 6 year span, argues for the importance of adaptive microevolu-
tion (Israel et al., 2001; Dorer et al., 2009). Furthermore, at least
25% of known genes, including genes involved in mucosal adher-
ence and the evasion of host immunity, are absent in some H.
pylori strains isolated from different ethnic groups (Salama et al.,
2000; Gressmann et al., 2005). In at least one case, variants of
an H. pylori gene (babA2) encode adhesion proteins that exhibit
host-specific effects, a hallmark of co-evolution. BabA binds to
blood group antigens, triggering the release of proinflammatory
cytokines. Notably, Amerindians, who almost all carry blood
group O, harbor strains with a BabA variant that has up to a 1500-
fold greater binding affinity to blood group O (Aspholm-Hurtig
et al., 2004).

If we conclude from these patterns of genetic covariation that
co-evolution between humans and H. pylori has occurred and that
it has promoted commensalism, then we may ask whether individ-
uals who develop serious clinical disease have inherited mutually
ill-adapted sets of host and pathogen alleles. Under this hypothesis,
we should expect to find significant interactions between specific
pairs of host and pathogen loci in disease models. Toward this
end, candidate pairs of loci can be tested based on biochemical
evidence of protein–protein interactions, such as those between
the adhesin BabA and the Lewis(b) antigen, its epithelial recep-
tor (Backstrom et al., 2004). However, the effect size of any single
two-locus interaction may be relatively small, as gastric disease eti-
ology is phenotypically heterogeneous, and likely to be influenced
by a large number of human and H. pylori genes (El-Omar, 2013).
Thus, characterizing the relevant loci in a biologically meaningful
way will ultimately require a systems biological approach.
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Table 1 | Genetic variants identified by GWAS for phenotypes related to infection by H. pylori, M. tuberculosis, and human papillomavirus.

Disease/trait Gene SNP Cases/controls Population p-value OR1 95% CI2 Reference

Gastric cancer ZBTB20 rs9841504 1006/2273 Chinese 1.7E-09 0.76 [0.69–0.83] Shi et al. (2011)

Gastric cancer PRKAA1 rs13361707 1006/2273 Chinese 7.6E-29 1.41 [1.32–1.49] Shi et al. (2011)

H. pylori serologic

status

TLR10 rs10004195 2623/7862 European 1.4E-18 0.70 [0.65–0.76] Mayerle et al. (2013b)

H. pylori serologic

status

FCGR2A rs368433 2623/7862 European 2.1E-08 0.73 [0.65–0.85] Mayerle et al. (2013b)

Tuberculosis RCN1–WT1 rs2057178 2127/5636 African 2.6E-09 0.77 [0.71–0.84] Thye et al. (2012)

Tuberculosis RPS4XP18–UBE2CP2 rs4331426 2237/3122 African 6.8E-09 1.19 [1.13–1.27] Thye et al. (2010)

Cervical cancer EXOC1 rs13117307 1364/3028 Chinese 9.7E-09 1.26 [1.16–1.36] Shi et al. (2013)

Cervical cancer HLA-DPB2 rs4282438 1364/3028 Chinese 4.5E-27 0.75 [0.71–0.79] Shi et al. (2013)

Cervical cancer ZPBP2–GSDMB rs8067378 1364/3028 Chinese 2.0E-08 1.18 [1.11–1.25] Shi et al. (2013)

Cervical cancer – rs9277952 1364/3028 Chinese 2.3E-09 0.85 [0.81–0.90] Shi et al. (2013)

Cervical cancer MICA rs2516448 2174/5002 European 1.6E-18 1.42 [1.31–1.54] Chen et al. (2013)

Cervical cancer HLA-DRB1–HLA-DQA1 rs9272143 2174/5006 European 9.3E-24 0.67 [0.62–0.72] Chen et al. (2013)

Cervical cancer HLA-DPB2 rs3117027 2171/4986 European 4.9E-08 1.25 [1.15–1.35] Chen et al. (2013)

1OR, odds ratio.
2CI, confidence interval.

We recently took a broad-based view to assess the impact
of human – H. pylori co-evolution on gastric disease, using
ancestry estimates from both humans and their H. pylori iso-
lates in the absence of knowledge of specific interacting loci
(Kodaman et al., 2014). Our study participants were recruited
from two Colombian populations with highly different rates of
gastric cancer, despite a nearly universal prevalence of H. pylori
infection in both. We found that the low-risk human, coastal
population was of admixed African, European, and Amerindian
ancestry, whereas the high-risk, Andean population was mainly
of Amerindian ancestry, with a minority of European ances-
try. Severity of gastric disease correlated with the proportion of
African H. pylori ancestry in patients with primarily Amerindian
ancestry. On the other hand, patients with a large proportion
of African human ancestry infected by African H. pylori strains
had the best prognoses, consistent with ancestral coadaptation,
and likely pertinent to the “African enigma.” The interaction
between Amerindian human ancestry and African H. pylori ances-
try accounted for the difference in disease risk between mountain
and coastal populations, whereas even the well-known viru-
lence factor, CagA, did not. These findings are thus consistent
with the idea that neither human nor H. pylori genetic varia-
tion confers susceptibility or virulence per se, but only in context
(Figure 1).

These findings also bring to light how understanding co-
evolutionary interactions can inform and improve public health
measures. It has been suggested that because H. pylori dominates
the gastric microbiome in infected persons and has been shown
to confer some beneficial effects, large-scale antibiotic eradica-
tion programs may not be warranted (Bik et al., 2006; Hung and
Wong, 2009). Simply estimating ancestry from human samples
and H. pylori isolates may help to identify individuals at greatest

FIGURE 1 | Gastric histopathology as a function of Amerindian human

and African H. pylori ancestry in a Colombian population (N = 121,

age > 39). Histopathology was scored on a continuous scale, with 2 (blue)
representing gastritis and 5 (red) representing dysplasia. Data from
Kodaman et al. (2014). Reference samples from the 1000 Genomes Project
(Abecasis et al., 2012), HapMap (The International HapMap Consortium,
2005), and the Human Genome Diversity Project (Cavalli-Sforza, 2005)
were used to calculate human ancestry, and from the MLST database
(Maiden et al., 1998) to calculate H. pylori ancestry.

risk for gastric cancer, for whom antibiotic treatment may be most
appropriate.

MYCOBACTERIUM TUBERCULOSIS COMPLEX
Another interesting candidate to study from a co-evolutionary per-
spective is Mycobacterium tuberculosis (Mtb) and closely related
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species, believed to have co-existed with anatomically modern
humans for ∼70,000 years (Comas et al., 2013). Since the advent
of antibiotics, tuberculosis (TB) has ceased to be as common a
cause of human mortality as it once was, but it remains among the
most deadly infectious diseases worldwide, with immunocom-
promised individuals at particularly high risk (Dye and Williams,
2010; Fenner et al., 2013). As with H. pylori, the majority of Mtb
infections do not develop into clinical disease: 90% of cases are
asymptomatic with only latent infection. However, 10% of indi-
viduals with latent infections develop TB over their lifetime, for
mostly unknown reasons (Barry et al., 2009).

In contrast to H. pylori, Mtb is transmitted horizontally, and
must cause active disease to be transmitted (e.g., via coughing
or sneezing). Because Mtb transmission increases with virulence,
evolutionary theory predicts that strong selective pressures should
favor increased virulence until the number of transmissions per
infected host reaches a fitness-reducing limit (Knolle, 1989; Frank
and Schmid-Hempel, 2008). Such a limit necessarily depends on
population-specific parameters, of which host density is proba-
bly the most important (Comas et al., 2013). Thus, the limited
pathogenicity and chronicity of Mtb likely reflect its historical
adaptation to isolated, low-density human populations. These his-
torical conditions remain relevant in part because Mtb reproduces
clonally and without lateral gene transfer; evolution only through
point mutations and irreversible gene deletions limits a pathogen’s
ability to shift virulence strategies rapidly in response to changing
population parameters (Achtman, 2008; Galagan, 2014).

Before advances in genotyping technology improved strain
classification, the apparent genetic homogeneity of Mtb led inves-
tigators to believe that variation in disease outcome depended
primarily on environmental and human genetic factors (Galagan,
2014). Twin and adoption studies provided compelling evidence
for the involvement of human genetic variation as a risk modi-
fier (Comstock, 1978). The most recent analyses have calculated
the heritable component of Mtb-related immune response phe-
notypes to range from 30 to 71% (Moller and Hoal, 2010). These
findings have motivated a large number of linkage and candidate
gene association studies seeking to identify relevant susceptibility
loci, but results have often been inconclusive or, worse, contradic-
tory. Many biologically plausible genes, such as those that encode
vitamin-D-binding protein (Lewis et al., 2005; Gao et al., 2010),
the phagolysomal membrane protein NRAMP/SLC11A1 (Hoal
et al., 2004; Velez et al., 2009), and the dendritic adhesion molecule
DC-SIGN (Barreiro et al., 2006; Olesen et al., 2007), appear to
associate with TB in some human populations, but not others.
Inconsistent replication across ethnic groups has also beset the
handful of GWAS performed on TB (Chimusa et al., 2014). The
few loci that have passed genome-wide significance thresholds
also lack clear biological interpretability and fail to explain more
than a trivial portion of the estimated heritable component of TB
susceptibility (Thye et al., 2010, 2012, Table 1).

Since the advent of PCR-based genotyping techniques, it has
become increasingly clear that Mtb genetic variation is non-trivial
and clinically consequential (Malik and Godfrey-Faussett, 2005;
Nicol and Wilkinson, 2008). Most notably, strains now recognized
as part of the “Beijing family,” first genotyped in the 1990s follow-
ing several drug-resistant outbreaks, have been found to exhibit

greater efficiency of transmission and to cause more severe disease
phenotypes in many animal models (Glynn et al., 2002; Reed et al.,
2004; Parwati et al., 2010). Whole-genome sequencing of a large
number of clinical Mtb isolates has since revealed over 30,000 Mtb
SNPs, a large proportion of which are non-synonymous (Comas
et al., 2013; Stucki and Gagneux, 2013). It has been shown that
even a few such SNPs can shift a strain from avirulent to virulent
(Reiling et al., 2013).

High-throughput sequence data have also enabled the con-
struction of a robust phylogenetic tree, the major branches of
which parallel human mitochondrial phylogeny (Comas et al.,
2013). Seven major human-adapted Mtb lineages have now been
identified, which can be classified as “ancient” or “modern”
(Hershberg et al., 2008; Comas et al., 2013). The Beijing family
of strains, which causes 50% of infections in East Asia and 13%
worldwide, belongs to the most modern lineage. In contrast,
Mycobacterium africanum, which causes up to half of TB cases
in West Africa, belongs to the most ancient Mtb clade, its diver-
gence predating the human migration out of Africa (de Jong et al.,
2010). Although strains within all major Mtb lineages induce an
overlapping range of immune responses, clade-specific patterns of
virulence are emerging. For example, evolutionarily modern lin-
eages appear to induce a less severe early inflammatory response,
which possibly increases the efficiency of transmission (Moller and
Hoal, 2010; Portevin et al., 2011). A large number of studies in
experimental models have also confirmed that diverse Mtb strains
reflect substantial functional diversity (Coscolla and Gagneux,
2010).

It is thus likely that genetic factors in both Mtb and humans
influence a wide range of TB phenotypes, including those per-
taining to infectivity, progression from latent to active disease,
and effectiveness of treatment (de Jong et al., 2008; Comas and
Gagneux, 2011). However, whether Mtb genetic variation influ-
ences disease outcome independently of human genetic variation,
and vice versa, is a question that has only recently been addressed
(Gagneux, 2012). The mirrored pattern of human and Mtb phy-
logeography indicates that co-evolution has likely occurred, and
consequently, that genome-by-genome interactions may be signif-
icant. However, identifying these interactions and assessing their
clinical relevance requires the demonstration of heterogeneous
outcomes in paired human and Mtb samples of multiple geno-
typic backgrounds. A small number of published studies to date
have met this criterion, assessing previously implicated loci (e.g.,
in immunogenicity pathways). A study in a Vietnamese cohort
found that a variant of the Toll-interleukin 2 receptor (TLR2),
known to trigger a cytokine cascade upon recognition of Mtb,
increased TB susceptibility only in patients infected with a Beijing
strain (Caws et al., 2008). In a Ghanaian cohort, a polymorphism
in the immunity-related GTPase M (IRGM) gene conferred pro-
tection against the European lineage of M. tuberculosis, but not
M. africanum (Intemann et al., 2009). Perhaps of consequence,
a gene deletion in the European Mtb strains increases their vul-
nerability to the autophagy pathway, mediated by IRGM. Thus,
the high frequency of the human IRGM polymorphism in West
Africa has been proposed to explain the competitive advantage of
M. africanum there (Intemann et al., 2009). The innate immunity-
related genes ALOX5 and MBL have also been shown to influence
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the infectivity of M. africanum, but not other strains, in Ghanaian
populations (Herb et al., 2008; Thye et al., 2011).

Despite being an ancient strain with ample opportunity
to spread beyond West Africa, M. africanum has not done
so, possibly indicating host-specific adaptation (de Jong et al.,
2010; Gagneux, 2012). Other Mtb lineages also appear to asso-
ciate preferentially with particular human populations, though
not as exclusively. A study of ethnically diverse, US-born
patients in San Francisco showed that such preferential asso-
ciations with Mtb lineages persisted even in a cosmopolitan
setting (Gagneux et al., 2006). Interestingly, when TB trans-
mission in non-sympatric populations did occur, patients were
significantly more likely to be immunocompromised, indicat-
ing that non-sympatric Mtb lineages may require some degree
of host immunosuppression to compete with sympatric lin-
eages. Mechanisms of Mtb immune evasion, therefore, may have
been shaped by population-specific variation in human immune
response.

While the above discussion has focused mainly on pulmonary
TB, we note here that extra-pulmonary TB, a less common and
more severe form of disease, may be especially amenable to anal-
yses guided by co-evolutionary hypotheses. This form of the
disease leads more quickly to fatality and results in fewer trans-
missions than the pulmonary form (Sharma and Mohan, 2004),
which probably represents a non-optimal outcome in terms of
Mtb fitness. However, data on extra-pulmonary TB to support
co-evolutionary hypotheses – especially historical data pre-dating
the antibiotic era and the HIV epidemic – are at present lacking
(Tiemersma et al., 2011).

HUMAN PAPILLOMAVIRUS
Human papillomavirus (HPV) is the most common sexually trans-
mitted infectious agent in the world, and the second most common
infectious cause of cancer after H. pylori (de Martel et al., 2012).
Cervical cancer is the major source of mortality associated with
HPV, but the virus also causes cancers of the anus, vagina, penis,
and oropharynx (zur Hausen, 1989; zur Hausen, 1991; Carter et al.,
2001; de Martel et al., 2012). Although over 100 types of papillo-
maviruses infect humans, only a fraction of them are carcinogenic
(Bernard et al., 2010). Infection with two specific types, HPV 16
and HPV 18, account for approximately 70% of cervical cancer
cases worldwide, with the remainder of cases largely attributable to
14 other types (Bernard et al., 2010). Nevertheless, the great major-
ity of infections with even carcinogenic HPV types are ultimately
benign, demonstrating that HPV infection, although necessary, is
not sufficient to cause of cervical cancer (Schiffman et al., 2005;
Plummer et al., 2007).

Papillomaviruses (PVs) are notable for their slow rate of evo-
lution relative to other pathogens – only an order of magnitude
higher than humans, in the case of HPV (Ong et al., 1993; Rector
et al., 2007; Shah et al., 2010). This is commonly attributed to their
use of high-fidelity host replication mechanisms (Van Doorslaer,
2013). A slow evolutionary rate precludes rapid adaptation to new
hosts, and PV strains correspondingly show little evidence of inter-
species transmission or related horizontal gene transfer (Herbst
et al., 2009; Shah et al., 2010; Van Doorslaer, 2013). All carcino-
genic types of HPV belong to a single genus of papillomaviruses

that diverged from a common ancestor about 75 million years ago,
predating the primate lineage (Rector et al., 2007; Van Doorslaer,
2013). By the emergence of H. sapiens, the common ancestor of
HPV 16 and HPV 18 had diverged into separate species, and in
fact HPV 16 and HPV 18 had already diverged from all other
HPV types within their respective species clades (Lewin, 1993;
Ong et al., 1993). Given this combination of early divergence, slow
evolution, and strict host specialization, we would expect variants
within HPV types independently to have similar phylogeographic
patterns to that of H. sapiens. Global data collected for the two
most frequently sexually transmitted types, HPV 16 and 18, reflect
such a pattern (Bernard, 1994). The subtypes and variants of HPV
16 cluster into five major branches of a phylogenetic tree: Euro-
pean (E), Asian/American (AA), East Asian (As), and two African
(Af1 and Af2) (Ho et al., 1993; Ong et al., 1993). Subtypes and
variants of HPV-18 clustering into three major branches: African
(Af), European (E), and Asian + American Indian (As+AI) (Ong
et al., 1993).

Biochemical and bioinformatic analyses indicate that HPV evo-
lution has not been entirely neutral. Viral genes expressed early
during a PV infection, for example, appear to have evolved at dif-
ferent rates than those expressed late (Garcia-Vallve et al., 2005;
Rector et al., 2007). Although most PV genes show signs of strong
purifying selection, the exceptions appear to be important (DeFil-
ippis et al., 2002; Chen et al., 2005; Carvajal-Rodriguez, 2008). Two
genes under diversifying selection, E6 and E7, are essential for
viral replication. They induce cell cycle progression in host cells,
and encode proteins that, in the high-risk HPVs, are oncogenic
(White et al.,1994; Doorbar,2006; Klingelhutz and Roman, 2012).
Of note, E6 and E7 interfere with the human tumor sup-
pressor proteins, pRB and p53 (Dyson et al., 1989; Huibregtse
et al., 1993a,b; Storey et al., 1998; Munger et al., 2004; Door-
bar, 2006). In turn, polymorphisms in the human p53 gene
were shown to modulate the tumorigenicity of HPV 16 and
18 (Storey et al., 1998). Patients homozygous for the p53Arg
mutation were seven times more likely to develop cervical can-
cer than individuals with 1 or 2 p53Pro alleles (Storey et al.,
1998). Other human polymorphisms, such as those in the genes
RPS and TYMS, influence HPV transmissibility. In a study of
high-risk HPV infections in Nigerian women, variants in these
genes were shown to modulate risk of infection with HPV 16
and 18. Despite the effects described above, genetic variation
in neither the host nor the pathogen has been successful in
explaining most heritable risk of HPV-associated disease, when
considered in isolation (Magnusson et al., 2000; Hildesheim and
Wang, 2002; Wheeler, 2008; Chen et al., 2013; Shi et al., 2013,
Table 1).

Because the integration of the HPV genome within the human
genome is permanent, death of the host ends all possibility of
viral multiplication and transmission. Even strains that damage
the health of the host sufficiently to reduce human-to-human
sexual contact can suffer a competitive disadvantage. Therefore,
both host and pathogen should cooperate to prevent severe dis-
ease. As with H. pylori and MTB, there is some empirical evidence
supporting the idea that humans and HPV types co-evolved to
limit tumorigenesis, and that evolutionarily mismatched strains
may be driving severe clinical outcomes. A study of high-grade
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cervical intraepithelial neoplasia (CIN) and invasive cervical can-
cer in an Italian cohort of Caucasian women demonstrated that
non-European variants of HPV16, Af1 and AA, were found at an
increased frequency in invasive lesions (Tornesello et al., 2004).
A separate study of mostly Caucasian (81%) female university
students in the United States showed that those infected with non-
European HPV 16 variants were 6.5 times more likely to develop
high-grade CIN than those with European variants (Xi et al., 1997).
The same study demonstrated a similar HPV 16-related risk profile
(4.5 relative risk) in a predominantly Caucasian (79%) population
of women presenting at a sexually transmitted disease clinic (Xi
et al., 1997). Finally, at the molecular level, there is some evidence
that variants of the HPV 16 E6 protein, described above, may
be better adapted for replication within specific hosts (DeFilippis
et al., 2002).

DISCUSSION
Taken together, the three examples above illustrate how co-
evolution can promote a reduction in antagonism between
pathogen and host, and in doing so leave discernible signatures on
the genomes of both species. If, as we argue here, the disruption
of historical co-evolutionary relationships can explain many dif-
ferences in disease outcomes, knowledge of the conditions under
which such relationships arise and dissolve will be helpful in defin-
ing genetic architecture of disease etiology. The applicability of
this model depends, to a large extent, on the degree of integra-
tion between host and pathogen genomes, which can take many
forms.

A long-standing association between humans and pathogens
may be a necessary factor for cross-genomic integration, as with
the three pathogens we have discussed. In contrast, many infec-
tious diseases that occur epidemically are caused by zoonotic
pathogens for which the human host is an evolutionary dead end,
such as Salmonella enterica and Borrelia burgdorferi (Sokurenko
et al., 2006; Falush, 2009). Other pathogens have had limited
occasion to co-evolve with humans, because they cause disease
primarily on an opportunistic basis (e.g., Streptococcus pneu-
monia or Clostridium difficile) or over a broad range of hosts
(e.g., Toxoplasma gondii) (Ajzenberg et al., 2004; Sokurenko et al.,
2006). The epidemic outbreaks caused by these pathogens may
leave detectable signatures on the human genome, but reciprocal
evolution in the pathogen need not occur.

For human-specific pathogens that cause endemic diseases and
are not recent, the likelihood that severe disease is the outcome
of a co-evolutionary mismatch should increase with the overlap
between host and pathogen fitness. The pathogenicity of vertically
transmitted pathogens, for example, should decrease over time,
because such pathogens often depend on host survival (and pos-
sibly reproduction) for transmission. However, a strong overlap
between host and pathogen fitness can also exist in the absence of
vertical transmission. A horizontally transmitted pathogen, such
as HPV, can evolve to be largely benign insofar as it depends on a
healthy host for transmission.

When a pathogen’s fitness depends on its ability to cause
damage to its human host, as with Mtb, attenuated antagonism
becomes a special case, and its disruption becomes more difficult
to detect and requires more evidence to confirm. While Mtb

strains that increase the duration of a transmissible state will
generally have a competitive advantage, the optimal duration can
be expected to vary based on many population-level parameters,
such as host density. This probably explains why modern Mtb lin-
eages that are more common in high-density urban populations
exhibit greater virulence. On the other hand, if horizontal transfer
is confined to small, isolated populations, it may be considered
effectively vertical. With such pathogens, a better understanding
of the co-evolutionary history will be necessary to infer whether
severe disease is caused by disrupted co-evolution or by another
factor, such as infection by a universally more virulent strain or an
opportunistic infection in an immunosuppressed patient.

The life history of the pathogen is also important in assessing
the possibility and nature of co-evolution. A pathogen typi-
cally faces a tradeoff between fecundity and longevity. Increased
fecundity within a host increases the probability (or rate) of
transmission, but may negatively affect host lifespan or mobility
(Frank and Schmid-Hempel, 2008). Therefore, a pathogen’s posi-
tion on the continuum between greater fecundity and increased
longevity will often reflect the degree to which its fitness depends
on the health of the host. The case of HPV is somewhat of an
exception in this regard. Host immune responses can induce
diverse strategies, creating HPV types that are highly fecund, or
less fecund with few virions per host. Whereas highly fecund
types are more likely to transmit, they are also more likely to
induce a vigorous immune response leading to clearance. Low
fecundity types on the other hand, are more likely to persist as
subclinical infections that can lead to prolonged inflammation
and eventually cancer (DeFilippis et al., 2002). However, human
populations that co-evolved with specific variants of these per-
sistent types may be less likely to develop cancer, as described
above.

Another factor influencing the applicability of the model we
propose is a pathogen’s recombinogenicity. In theory, a pathogen
that recombines freely is more likely to be panmictic, and hence
less likely to co-evolve with a particular human host population
(Bull et al., 1991). In fact, epidemic disease outbreaks often fol-
low recombination events, and the pathogens responsible for the
epidemics often appear superficially clonal, likely reflecting the
rapid proliferation of especially successful recombinant strains
(Grigg et al., 2001; Heitman, 2006). A case in point is Neisseria
meningitides (Falush, 2009), as well as the eukaryotic parasites
Toxoplasma gondii and Plasmodium falciparum, which though
able to recombine sexually, exhibit surprisingly limited genetic
diversity (Grigg et al., 2001). On the other hand, the strict clon-
ality of Mtb and HPV has likely favored co-evolution, leading to
reduced antagonism, while recombination in H. pylori can disrupt
the co-evolutionary relationship favored by vertical transmission.

Recombination can also occur via horizontal gene transfer, as
among species within the microbiome (Smillie et al., 2011; Ravel
et al., 2011; Liu et al., 2012). This would suggest that co-evolution
might be a relatively weak force in shaping microbiotal genetic
variation. However, data possibly supporting human–microbiome
co-evolution exist; for example, the strongest correlate of an
individual’s microbiotal identity is ethnicity (Benson et al., 2010;
Human Microbiome Project Consortium, 2012). The extent to
which this correlation is driven by mutual genetic factors is unclear,
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as recurring environmental exposure and frequent vertical trans-
mission may also account for most, if not all of it (Turnbaugh
et al., 2009). Assessing whether the genomes of the microbiome
and humans are integrated will be a key area of research, as
it relates to co-evolution and disease risk (McFall-Ngai et al.,
2013).

CONCLUSION
While the prospect of introducing co-evolutionary interactions
into genetic epidemiology models may appear to add a new layer
of complexity to an already difficult problem, a co-evolutionary
perspective should help us construct more precise and accurate
hypotheses, improving our ability to find real and reproducible
results. Importantly, co-evolved genes will not be neutral in either
species, which may make their identification easier. Although
many methods exist to find loci that are candidates to have
evolved under selection (Aguileta et al., 2009; Karlsson et al.,
2014), and these methods can assess the strength, timing, and
direction of selection (e.g., balancing or positive), they are
not at present well adapted to the study of joint patterns of
selection.

If the ultimate goal is to find interacting genes that have
co-evolved to be benign and are subsequently disrupted in dis-
ease, we will need to identify differential patterns of concerted
selection in paired human and pathogenic loci from different
populations. The limiting factor to the development of appro-
priate methods toward this end has probably been the lack
of prospectively collected paired genetic data for humans and
pathogens. Once these data are available, existing methods to
detect epistasis within a species can be adapted for cross-species
analyses in the absence of a priori biological hypotheses. Where
evidence for selection exists, genetic variants can be filtered
prior to analyses to detect epistasis. Framing hypotheses in the
context of biochemical and bioinformatic functional evidence
or pre-existing evidence for association can hone study design
even further. For example, using paired data and pathogenic
genetic variation as the outcome variable, novel epitopes have
been discovered in association studies (Bartha et al., 2013). Such
data can be used to mitigate the immense multiple testing bur-
den incurred by a hypothesis-free approach to detecting genetic
interactions.

Finally, we should note that the ultimate impact of this
approach may extend beyond infectious diseases to what are tra-
ditionally considered non-communicable diseases. For example,
we now recognize that both gastric and cervical cancers, as well as
atherosclerosis, may have origins in infection (Libby et al., 2002;
Porta et al., 2011). The number of such examples will certainly
expand.
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