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The detection of “signatures of selection” is now possible on a genome-wide scale in
many plant and animal species, and can be performed in a population-specific manner
due to the wealth of per-population genome-wide genotype data that is available. With
genomic regions that exhibit evidence of having been under selection shown to also be
enriched for genes associated with biologically important traits, detection of evidence of
selective pressure is emerging as an additional approach for identifying novel gene-trait
associations. While high-density genotype data is now relatively easy to obtain, for many
researchers it is not immediately obvious how to go about identifying signatures of
selection in these data sets. Here we describe a basic workflow, constructed from open
source tools, for detecting and examining evidence of selection in genomic data. Code
to install and implement the pipeline components, and instructions to run a basic analysis
using the workflow described here, can be downloaded from our public GitHub repository:
http://www.github.com/smilefreak/selectionTools/
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INTRODUCTION
With the increased availability of whole-genome genotype data, it
is possible to identify regions of the genome that exhibit evidence
of having been subjected to selective pressure (e.g., Sabeti et al.,
2002, 2007). While these “signatures of selection” can help to shed
light on the evolutionary pressures experienced throughout his-
tory, they have also been shown to be associated with regions of
the genome that are enriched for genes involved in cultural dif-
ferentiation and complex disease in humans (Laland et al., 2010;
Lappalainen et al., 2010) and traits of adaptive and/or commercial
significance in plant and animal species. Examples include forest
trees (see reviews by Gonzalez-Martinez et al., 2011; Neale and
Kremer, 2011), wheat (Cavanagh et al., 2013), horses (Gu et al.,
2009), sheep (Moradi et al., 2012), and domesticated dairy cat-
tle (e.g., Qanbari et al., 2011). As a result, methods for detecting
evidence of selection also provide a mechanism for highlight-
ing genomic regions that may be associated with biologically
important traits.

Recently Pybus et al. (2014) described the “Selection Browser
1.0,” a web-based tool for investigating selection in the human
genome, based on a subset of data available from the 1000
Genomes Project (The 1000 Genomes Project Consortium, 2010).
This resource delivers easy and intuitive access to pre-computed
results from a number of tests for selection, applied to the avail-
able data, and thus provides an excellent example of the type of
selection-specific information that can be extracted from low-
coverage resequencing studies. For researchers wishing to inves-
tigate selection in other human cohorts or populations (or other

organisms), however, a non-trivial amount of data manipulation
and subsequent computation is required in order to extract this
type of information from the available data.

Although detection of putative selective pressure offers a useful
approach for identifying regions of interest in the genome, a num-
ber of steps are required to move from genome-wide (re)sequence
or genotype data (e.g., as can easily be obtained using high-
throughput microarray-based or sequencing technologies) to
identifying specific genomic regions that exhibit evidence of hav-
ing been under selection. The steps required reflect to some extent
the series of advances that have been made in genomics technolo-
gies in recent years, with traditional file formats and software
requiring manipulation and translation as part of the analysis
workflow. While the process is not complex, for researchers unfa-
miliar with the required tools and data formats, the path from
genotypes to signatures of selection can be a difficult one.

Here we provide a brief overview of a relatively simple work-
flow for taking high-density genotype data, and using it to
identify evidence of selective pressure in regions of the genome.
This pipeline is applicable to any diploid species where genome-
wide (re)sequence and/or genotypic data are available (e.g.,
genomic/transcriptomic sequencing, whole genome SNP arrays),
along with an ancestral reference genome and either a genetic or
physical map.

METHODS FOR DETECTING EVIDENCE OF SELECTION
The tools used to detect evidence of selection are dependent on
the nature of the selective signature being investigated, which
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itself depends on the time scale over which the selection occurred
(Sabeti et al., 2006). Traditionally the FST statistic has been a
popular choice for investigating selection, utilizing differences in
allele frequency between populations to infer selective pressure
in one population relative to the other, and allowing detection
of potential selection occurring in the range 50,000 to 75,000
years prior for human populations (Sabeti et al., 2006), equiv-
alent to approximately 2000 to 3000 generations. A thorough
review of the use of the FST statistic is provided by Holsinger
and Weir (2009), with recent modifications able to account for
genotypic uncertainty associated with more modern technolo-
gies (Fumagalli et al., 2013). Differences in FST estimates have
been discussed by Bhatia et al. (2013), who examined the effect of
choosing different estimation methods and SNP sets on estimates
of FST. Both of these aspects were found to impact FST estimates,
and the authors recommend that care be taken in the choice of
both the estimators, and the SNPs being used.

Analysis of the reduction in genetic diversity provides another
approach to examining selection, allowing the detection of pos-
sible “selective sweeps” which have resulted in regions where
an allele conferring a selective advantage has risen in frequency
in a population, carrying other variants in linkage disequilib-
rium to similarly increased frequencies, and thus reduced levels
of diversity at that genomic locus. Tajima’s D statistic (Tajima,
1989) provides a popular method for identifying such regions
(see reviews by Sabeti et al., 2006; Barrett and Hoekstra, 2011;
Iskow et al., 2012). More recently, modified methods have been
developed to account for ascertainment bias in SNP microarrays
(Ramírez-Soriano and Nielsen, 2009). Tajima’s D is suitable for
detecting evidence of positive selection in human populations
occurring within the past 250,000 years (Sabeti et al., 2006) or
approximately 10,000 generations, and operates by identifying an
excess of low-to-intermediate frequency variants. Another com-
monly used measure is Fay and Wu’s H (Fay and Wu, 2000) which
is useful for detecting evidence of more recent positive selection
(<80,000 years: Sabeti et al., 2006, or approximately 3000 genera-
tions), particularly for intermediate-high frequency variants, and
thus complements Tajima’s D and other methods (see Fay and
Wu, 2000).

The advent of genome-wide genotyping technologies has facil-
itated the creation of whole genome haplotype maps, exemplified
by the efforts of the HapMap Consortium (International HapMap
Consortium, 2003) for studying natural variation in humans,
and with more recent initiatives extending this approach to other
species including bovine (The Bovine HapMap Consortium,
2009), maize (Gore et al., 2009), and rice (Huang et al., 2010).
Analysis of haplotypes provides another mechanism for identi-
fying evidence of selection, with a number of methods utilizing
the Extended Haplotype Homozygosity (EHH) concept (Sabeti
et al., 2002). One of the more popular of these approaches is
the Integrated Haplotype Homozygosity Score (iHS) method-
ology, which provides a standardized measure of the decay in
EHH around a point (e.g., a SNP) from the derived allele rela-
tive to the ancestral allele (Voight et al., 2006). Regions of slowly
decaying haplotype homozygosity in the derived allele (i.e., longer
than expected haplotypes, relative to the ancestral allele) are thus
indicative of selection at that locus.

Underlying all of these tools are a number of demographic
assumptions about the population(s) of interest, which must be
considered when attempting to detect evidence of selection. In
particular, for each method it is assumed that the existence of
selective pressure is the most likely explanation for the generation
of a statistically significant result. If present, other potential mod-
ifiers of variant frequency in a population can cause these tests
to generate significant results, even in the absence of selection.
Specific examples include: random drift, population bottlenecks,
and population expansion, all of which can modify variant and
haplotype frequencies in ways similar to selection. Some knowl-
edge of the evolutionary history of the populations under study is
therefore essential when considering the results generated when
testing for evidence of selection.

APPLYING SELECTION TOOLS TO GENOMIC DATA
A number of software tools exist which implement the vari-
ous methods described above for detecting evidence of selection.
In order to use a specific tool, however, the data in question
must be in an appropriate format. Both the FST statistic, and
Tajima’s D, can be calculated using standard genotype data (e.g.,
SNP genotypes per individual). The iHS methodology, however,
requires the use of haplotypes, and thus genotype data obtained
from heterozgoygous populations must be phased prior to cal-
culation of iHS. Various software applications exist for phasing
genotype data (e.g., see Browning and Browning, 2011), although
large differences in accuracy and speed exist between the vari-
ous algorithms (Williams et al., 2012). Traditionally the Beagle
algorithm has been a popular choice for phasing (Browning and
Browning, 2007), although a number of recently developed algo-
rithms are offering increased speed and accuracy (Williams et al.,
2012; Delaneau et al., 2013).

Once phasing is complete, the rehh package (Gautier and
Vitalis, 2012) provides a relatively simple interface for imple-
menting various EHH-based analyses (including iHS) within the
R computing environment (R Core Team, 2014). Additionally,
rehh provides tools for visualizing loci under selection, such as
haplotype bifurcation plots (Sabeti et al., 2002).

BIOINFORMATICS WORKFLOW
In order to simplify the process of analysing genomewide geno-
type data to identify selection signatures, we have developed a
collection of scripts that implement the various tools described
above. These scripts are publicly available via GitHub, and include
instructions for installation and usage, as well as a detailed
manual containing a worked example using a downloadable
data set. The following sections describe the analytical processes
implemented in the workflow.

DATA PROCESSING AND ANALYSIS VIA COMMAND LINE TOOLS
The analysis pipeline described here runs within a standard Linux
operating system (in our case, Ubuntu 13.04, although almost any
Linux-based system would be suitable), and requires the instal-
lation of a relatively small number of software tools (Table 1).
The starting point of the analysis is a variant call format (VCF)
file of the genotype data of interest (Danecek et al., 2011). This
is a text file containing (at a minimum) information about
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Table 1 | Software tools used in the selection analysis workflow.

Application and version Use in workflow Website

R ≥ v3.0 rehh http://www.r-project.org

Perl ≥ v5.0 Vcftools modules vcf-subset and vcf-merge http://www.perl.org/

Python ≥ v2.6 Running pipeline, haps file filtering and ancestral
allele annotation

https://www.python.org/

rehh v1.11 Calculating iHS (and other EHH-based measures) http://cran.r-project.org/package=rehh

vcftools v1.11 Conversion of VCF genotype data to PLINK format,
and calculation of FST and Tajima’s D

http://vcftools.sourceforge.net

SHAPEIT v2.r790 Phasing the PLINK formatted data to produce
phased haplotype file

http://www.shapeit.fr

Beagle v4 r1274 Phasing un-phased VCF data to produce phased
haplotype file

http://faculty.washington.edu/browning/beagle/beagle.html

PLINK v1.07 Remove SNPs with too many genotypes missing,
filter on HWE and MAF

http://pngu.mgh.harvard.edu/∼purcell/plink

tabix/bgzip v0.2.5 Required to get VCF into compressed and indexed
format for vcftools

http://samtools.sourceforge.net/tabix.shtml

Multicore v0.1-7 R multicore package used to parallelise rehh runs http://cran.r-project.org/web/packages/multicore/index.html

impute2 v2.3.1 Imputing genotypes from phased haplotype data http://mathgen.stats.ox.ac.uk/impute/imputev2.html

Pyfasta v0.5.2 Required to process ancestral fasta files https://github.com/brentp/pyfasta

PyVcf v0.6.0 Required to process VCF files in python scripts https://github.com/jamescasbon/PyVCF

Variscan v2.0.3 Calculation of Fay and Wu’s H http://www.ub.edu/softevol/variscan/

variant positions, reference and alternative bases, and genotypes
per sample. In order to permit calculation of measures compar-
ing selection between multiple populations (e.g., FST), samples
from at least two populations are required to be present in the
VCF file. Additionally, a file listing the subject identifiers for each
population is also required, along with a genetic map of the chro-
mosome(s) of interest in either SHAPEIT (Delaneau et al., 2013)
or PLINK (Purcell et al., 2007) format. As a genetic map may
not contain distances for all markers present in the VCF file,
the genetic distance is inferred by linear interpolation (Nievergelt
et al., 2004). If a genetic map is not available for the organ-
ism under study, a physical map (e.g., a reference genome) can
be substituted, an approach that has recently been used in cat-
tle (Gautier and Naves, 2011). Alternatively, if a representative
sample of the species of interest is available, the LDHat soft-
ware (McVean, 2014) can be used to generate recombination rate
estimates, allowing conversion of physical distance to genetic dis-
tance, as was done in a recent analysis in Arabidopsis (Meijón et al.,
2013).

ANALYSIS OF A SINGLE POPULATION
For a population VCF file that contains phase information, indels
are first removed using the vcftools software (Danecek et al., 2011),
as ancestral allele data are only available for SNP genotypes. The
VCF is then converted to the Haps format (phased haplotypes:
SNP genotypes per haplotype, per individual).

For a population VCF file without phased information, the
file is converted to PLINK format (ped/map files) using vcftools.
The Ped file contains relatedness information (if any) between
subjects, affection status (e.g., for human case/control studies),
and genotype data, while the “Map” file contains the genomic
location of each variant (e.g., SNPs). PLINK is then used to fil-
ter the data based on multiple criteria (missingness, minor allele

frequency, Hardy Weinberg Equilibrium, indels), and phasing is
performed via SHAPEIT v2 (Delaneau et al., 2013) to produce a
“Haps” file of phased haplotypes (SNP genotypes per haplotype,
per individual) and a “Sample” file (genotype-specific informa-
tion). Alternatively (or if a physical map is used), Beagle can be
used to phase the data (Browning and Browning, 2007). If impu-
tation is required, then impute2 (Howie et al., 2009) is used,
followed by a second round of indel filtering (to remove any indels
introduced by the imputation process).

The phased data are annotated with ancestral allele informa-
tion (via a custom Python script). These data are then analyzed
in R (R Core Team, 2014) where the R package rehh (Gautier
and Vitalis, 2012) is used to calculate EHH, and integrated
EHH (iES).

ANALYSIS OF MULTIPLE POPULATIONS
If genotype data from multiple populations are available, then
the data from the VCF file are used to calculate FST between
each pair of populations using vcftools. FST is calculated using
both the method of Weir and Cockerham (1984), and the
method developed as part of the HapMap project (International
HapMap Consortium, 2005). The genotype data are then split
into per-population VCF files, and the analysis of each popula-
tion proceeds as described above (“Analysis of a single popula-
tion”), producing filtered phased data, and EHH and iHS values.
Calculation of iHS requires knowledge of the ancestral allele relat-
ing to the SNP of interest. For human data, this information
was traditionally generated through direct comparison of DNA
to that of a close phylogenetic relative, such as the chimpanzee.
More recently, however, phylogenetic trees have been used to
derive ancestral alleles in humans, based on DNA sequence data
from related species. The ancestral information used here comes
from the ancestral FASTA files provided by the 1000 Genomes
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Project and derived 6-way Enredo-Pecan-Ortheus (EPO) align-
ment (Paten et al., 2008a,b) from the Ensembl Compara 59
database (Flicek et al., 2012). For non-human species, a FASTA
file containing ancestral allele information is required. These are
also available via Ensembl for some animal species (along with the
6-way EPO alignment for humans) from: http://www.ensembl.
org/info/genome/compara/analyses.html

Alternatively, the EPO pipeline can be used locally to generate
an ancestral reference, or a two-way alignment can be performed
between the genome of interest, and that of a species with which a
recent common ancestor is shared. This approach has previously
been applied to human and chimpanzee by Voight et al. (2006)
and to Arabidopsis thaliana and A. lyrata by Meijón et al. (2013).
The script used here can annotate either a phased haps file or a
phased VCF file using the ancestral allele information. Finally, for
each pair of populations, Rsb (the standardized ratio of iES from
two populations) is calculated using the rehh package in R (Voight
et al., 2006; Tang et al., 2007).

VISUALIZING THE OUTPUTS—INVESTIGATING SELECTION AT THE
HUMAN LACTASE GENE LOCUS AS AN EXAMPLE
Once the various measures of selection have been calculated in
a genotype data set from one or more populations, it is helpful
to visualize the results. As mentioned above, the public GitHub
repository for the pipeline includes a worked example of run-
ning the code on a human data set. The data set used relates
to a subset of genotype data from chromosome 2 of the human
genome, derived from data downloaded from the 1000 Genomes
Project. Of interest is the region around the gene encoding lactase
(LCT - HG19 chr2: 136,545,410–136,594,750), which has shown
evidence of selection over the past 5000–10,000 years (Bersaglieri
et al., 2004). The CEU (European) and YRI (Yoruban) popu-
lations were used for the analysis here, comprising 85 and 88
samples respectively.

The analysis pipeline produced results for the following statis-
tics: FST, Rsb, iHS, Fay and Wu’s H, and Tajima’s D. A window
size of 30 Kbp was used for calculating FST and Fay and Wu’s
H (with a sliding window of 3 Kbp for the latter), and a 3 Kbp
window was used for Tajima’s D. Figure 1 contains plots of Rsb
and iHS for the CEU and YRI populations (chromosome-wide,
and zoomed-in around the LCT gene), generated in R using
the ggplot2 package (Wickham, 2009). The plots show clear evi-
dence for differing degrees of selective pressure in the LCT gene
between the CEU and YRI populations (i.e., selection in the CEU
population), supporting previous observations in the literature
(e.g., Bersaglieri et al., 2004). Not all of the measures of selec-
tion generated by the pipeline support this conclusion, however,
with similar plots for FST (Figure S1), Tajima’s D (Figure S2),
and Fay and Wu’s H (Figure S3), providing little evidence of
selection in this region. These results (which agree with those
for LCT available via the “Selection Browser 1.0” application of
Pybus et al., 2014) highlight the importance of utilizing multiple
measures for investigating selection, with different methodologies
producing quite different results when applied to the same data.
This again reinforces the fact that the various methods are utiliz-
ing different patterns of genetic variation to identify evidence of
selection.

DISCUSSION
Here we present a simple workflow, and an associated collec-
tion of shell and R scripts, for identifying signatures of selection
in diploid organisms. The workflow allows researchers to start
from a collection of genome-wide genotype data for multiple
individuals, and use a collection of freely available software tools
to identify regions that exhibit evidence of having undergone
selection. A range of tools have been developed for specific anal-
yses of smaller data sets (e.g., Librado and Rozas, 2009; Delport
et al., 2010), however the workflow presented here has the abil-
ity to analyze large data sets using multiple analytical methods
to detect evidence of selection. An additional benefit of this tool
set is our incorporation of parallelization capability into some of
the tools to speed up analyses. These include rehh, vcf-subset,
SHAPEIT, and IMPUTE2. We have also included a version of
rehh which invokes the R multicore package (Urbanek, 2011) to
allow utilization of multiple CPU cores. Other tools could poten-
tially be parallelized should they become bottlenecks in analytical
performance in larger data sets. The example analysis of chro-
mosome two presented here required approximately 12.5 h of
computation, running on 10 cores of a recent multicore linux
server.

The methods described here fall broadly into three categories:
frequency-based methods (Tajima’s D and Fay and Wu’s H),
linkage disequilibrium-based methods (Rsb and iHS), and pop-
ulation differentiation-based methods (FST), as reviewed by Vitti
et al. (2013). By using each of these approaches, the differing
characteristics of each method provide users with the ability to
identify patterns of selective pressure arising in distinct con-
texts. As noted earlier, the time scale over which selection has
occurred has a major impact on the ability of each method to
detect evidence of its presence, with the frequency-based and
population differentiation-based methods best suited to detecting
events occurring further in the past. This is because these meth-
ods rely on the accumulation of additional mutations around the
causal variant. In situations where the fitness advantage of the
selected variant is small (particularly if it is recessive), then the
time taken for the selected variant to rise to a detectable fre-
quency in the population will be much longer, thus reducing
the power of these methods. In situations where a new mutation
(or a previously neutral variant encountering an environment of
altered selective pressure) provides a fitness advantage and rises
in frequency in the population without achieving fixation, link-
age disequilibrium-based approaches provide increased power for
detecting evidence of selection (Ferrer-Admetlla et al., 2014).

The differences in the results produced here for the human
LCT example reflect the underlying methods of detection
employed by each of the approaches, with time scale likely hav-
ing a major impact. The three methods which found no evidence
to support selection (FST, Tajima’s D, and Fay and Wu’s H) are all
better placed to detect evidence of selection in the more distant
past, well before the time at which the LCT gene was subjected to
selective pressure. It is perhaps not surprising, therefore, that only
the linkage disequilibrium-based methods (iHS and Rsb) provide
any evidence of selection in this region.

As part of providing access to this computational workflow, it
is important to mention the caveats associated with performing
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FIGURE 1 | Plots of Rsb (top row) and iHS (middle and bottom

rows) values across chromosome 2 (whole chromosome in the left

column, and the region around the LCT gene in the right column)

based on 1000 Genomes Project data for the CEU and YRI

populations. Blue vertical lines/boxes on the plots indicate the location
of the LCT gene, and the red horizontal lines denote a p-value of less
than 5% for any Rsb value above the line. The marked deviation of

iHS away from zero in the CEU population provides evidence for the
region around the LCT gene having been under selective pressure in
the past. In contrast, there is no such evidence in the YRI population,
which is also communicated by the Rsb statistic, which examines the
relative evidence for selection in the two populations, here indicating
that there is stronger evidence for this region having been under
selective pressure in the CEU cohort.

selection analyses. Reviews by Nielsen (2005) and Vitti et al.
(2013) provide an excellent overview of these and other issues
associated with the detection of evidence of selection using
genetic data. All of the tools implemented in this pipeline are

designed to elucidate patterns of genotypic variation that are con-
sistent with the presence of selective pressure at some time in the
past. However, even when such patterns are identified, there is no
guarantee that they are the result of selection, rather than other
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unrelated ancestral events. For example, Tajima’s D is known
to be sensitive to population growth (Simonsen et al., 1995),
whereas methods that assess changes in linkage disequilibrium
and/or haplotype frequencies can be influenced by differences in
recombination rates across the genome (Nielsen, 2005). Even in
the case where selective pressure has led to changes in haplotype
frequencies, it may not be possible to identify the type of selec-
tion involved. For example, positive selection (e.g., via hard or
soft sweeps) may leave a genomic footprint that is indistinguish-
able from that created by background selection against deleterious
mutations (Vitti et al., 2013).

There are a number of improvements that could be made to
this workflow. In terms of the various measures of selection that
we have employed, we note that calculation of the FST statistic
is dependent on window size and step size, while calculation of
Tajima’s D statistic is dependent on window size. Ongoing work
will examine how best to implement these methods on multiple
scales, and allow the results to be combined. Incorporating a mea-
sure of the statistical significance of the FST statistic would also be
an improvement, along with appropriate adjustment for multiple
hypothesis testing. Similarly, our pipeline could be extended to
incorporate probabilistic measures of genotype, particularly rele-
vant for modern genotyping-by-sequencing (GBS) technologies
(e.g., Elshire et al., 2011; Majewski et al., 2011) where there is
uncertainty in genotype calls (Li, 2011; Li et al., 2011), and for
situations where SNP selection methods result in ascertainment
bias (Ramírez-Soriano and Nielsen, 2009).

In addition to improving the algorithmic aspects of the
pipeline, additional benefit could be gained through the inclu-
sion of support for indel variants. Currently calculation of Fay
and Wu’s H, iHS and Tajima’s D are not carried out for indels.
Adding support for this feature would be difficult for human anal-
yses involving iHS and Fay and Wu’s H, as the available ancestral
FASTA files do not contain any indel information. The inclu-
sion of indels in the Tajima’s D calculations is possible, however,
and would require a reorganization of the pipeline to ensure
indels are preserved until the point at which the D statistic is
generated.

The pipeline is also flexible regarding input data types and
biological contexts. The entrée into this pipeline is via VCF
formatted files, and it can therefore be used to analyse whole
genome (re)sequence, transcriptome-derived data, exomes or
specific gene candidates of interest on very large samples. More
recently, several more computationally-intensive analytical meth-
ods have been developed (e.g., Grossman et al., 2010; Ronen et al.,
2013) which could potentially be integrated into workflows such
as those presented here.

Despite the potential for ongoing enhancement, we believe
that in its current state this workflow provides researchers with
a valuable tool for investigating selection within a collection of
individuals for which high-density genotype data are available,
and we hope that the research community is able to make good
use of these tools. To that end we have made the pipeline software
publicly available as a GitHub repository at: https://github.com/
smilefreak/selectionTools

The repository includes an automated installation script, and
a detailed manual containing an example analysis that can be

followed by new users. The pipeline version corresponding to this
publication is 1.0. As additions and refinements are made, these
changes will be versioned and commented. However, using the
functionality of GitHub, researchers will always be able to access
the original published versions of the scripts that are referred
to here.
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Figure S1 | Plot of FST values across chromosome 2 (whole chromosome,

and the region around the LCT gene) based on 1000 Genomes Project data

for the CEU and YRI populations. A 3 Kbp window was used for

calculations. Blue vertical lines/boxes on the plots indicate the location of

the LCT gene, and the red horizontal lines denote the mean plus three

standard deviations for all the FST window calculations. Although there is

an indication from the whole chromosome plot that regions of this

chromosome may have been under selection, there is little support for this

in the region of the LCT gene.

Figure S2 | Plot of Tajima’s D values across chromosome 2 (whole

chromosome, and the region around the LCT gene) based on 1000

Genomes Project data for the CEU and YRI populations. A 3 Kbp window

was used for calculations. Blue vertical lines/boxes on the plots indicate

the location of the LCT gene. Based on the values of the statistic around

the LCT gene, there is no evidence of this region having been under

selection in either the CEU or YRI populations.

Figure S3 | Plot of Fay and Wu’s H values across chromosome 2 (whole

chromosome, and region around LCT gene) based on 1000 Genomes

Project data for the CEU and YRI populations. While there appears to be

some evidence for regions of the chromosome having been subjected to

selective pressure, when the area around the LCT gene is examined, for

both populations the values of H in this region are unremarkable relative

to those in the remainder of the chromosome.
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