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DNA repair must take place in the context of chromatin, and chromatin modifications and
DNA repair are intimately linked. The study of double-strand break repair has revealed
numerous histone modifications that occur after induction of a DSB, and modification of
the repair factors themselves can also occur. In some cases the function of the modification
is at least partially understood, but in many cases it is not yet clear. Although DSB repair
is a crucial activity for cell survival, DSBs account for only a small percentage of the
DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks,
stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin
context. There is increasing evidence that these repair pathways are also regulated by
histone modifications and chromatin remodeling. In this review, we will summarize the
current state of knowledge of chromatin modifications that occur during non-DSB repair,
highlighting similarities and differences to DSB repair as well as remaining questions.
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INTRODUCTION
Assaults to the genome are common throughout the lifetime of a
cell and DNA damage can occur by endogenous factors, such as
reactive oxygen species, base mismatches, and alternative (non-B
form) DNA structures, or exogenous factors, such as ultraviolet
(UV) radiation and environmental toxins. At the occurrence of a
DNA lesion, the cell will initiate repair to protect the integrity of
the genetic material. As the genome is condensed into chromatin,
repair must work within the context of the chromatin structure to
access and repair the damaged DNA.

One mechanism to alter chromatin structure is to modify
histone residues by the addition of chemical groups such as a
phosphate, acetyl, or one or more methyl groups. Small pep-
tides such as ubiquitin and SUMO can also be added to lysine
residues. These histone modifications can change nucleosome-
DNA or nucleosome–nucleosome interactions to either open or
condense the chromatin structure. For example, acetylation of his-
tone H4 at lysine 16 (H4K16ac) reduces the interaction between
the H4 tail and the H2A acidic pocket, inhibiting higher-order
nucleosomal folding and resulting in a more open chromatin
confirmation (Shogren-Knaak et al., 2006; Robinson et al., 2008).
Alternatively, histone modifications that occur upon DNA damage
can alter the interaction of non-histone proteins with chromatin
to facilitate direct recruitment of repair factors and contribute
to checkpoint initiation and termination (Humpal et al., 2009).
ATP-dependent chromatin remodelers are also actively alter-
ing the chromatin landscape to promote repair (Seeber et al.,
2013). Remodelers can slide nucleosomes, evict whole or par-
tial nucleosomes, or alter the interaction between nucleosomes
and DNA (Seeber et al., 2013). Still, in many cases, the details
of how histone modifications and chromatin remodeling are
affecting the formation, or progression of repair intermediates

is not well understood. These intermediates include replication
fork stabilization, strand resection, gap filling, and strand inva-
sion or extension. The efficiency of formation or resolution
of repair intermediates could ultimately dictate repair-pathway
choice.

DNA double-strand breaks (DSBs) are considered to be the
most lethal type of DNA damage and the chromatin factors
mediating repair of these lesions have been extensively studied.
However, DSBs are rare, and more common threats to the genome
include single-strand DNA gaps, nicks, base lesions, stalled repli-
cation forks, and non-canonical DNA topology that can interfere
with replication and repair. The chromatin modifications that
are occurring during these other types of DNA repair pathways
remain less well-characterized than DSB repair because of the
technical difficulty associated with studying a site-specific, non-
DSB lesion compared to robust DSB-inducing systems. However,
studies have started to elucidate the contribution of histone mod-
ifications to non-DSB lesions (Figure 1). This review will focus
on the chromatin modifications known to date to contribute to
repair of single-strand DNA gaps, stalled forks, DNA structures,
base lesions and mismatches, and will compare and contrast these
marks to those known to occur during DSB repair.

CHROMATIN MODIFICATIONS AND REMODELING DURING
DSB REPAIR
At the occurrence of a DSB, the MRN (MRX in yeast)
complex binds the broken DNA ends, which recruits the
PIKK kinases, ATR/ATM (Mec1/Tel1 in yeast); alternatively,
the broken ends are bound by the Ku70/Ku80 heterodimer,
which recruits DNA-PK (Gottlieb and Jackson, 1993; Mahaney
et al., 2009). These kinases phosphorylate H2AX, thus form-
ing γH2AX and initiating the chromatin response to DNA
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FIGURE 1 | Histone modifications associated with repair of

single-stranded lesions. Histone phosphorylation (yellow circle), acetylation
(red diamond), methylation (blue square), and ubiquitination (purple hexagon)
have all been implicated in repair outside of DSBs. Numbering of modified
residues is according to the organism in which the modification was identified
in the referenced work. Dotted lines indicate uncertainty of pathway
association. (A) Histone modifications documented to occur in response to
stalled replication forks. There is overlap with modifications associated with
DSBs, and future data may provide further distinction between stalled and
collapsed forks. (B) Modifications associated with sister chromatid
recombination in response to gaps or DSBs. While the H3 modifications have
been implicated in DSB SCR, the H2A and H4 modifications have been
associated with the fidelity of gap-induced SCR. (C) H4-K12ac, and H4-K16ac
have been implicated in error-free PRR. H2B-K123ub, H3-K4me, H3-K79me
are dependent on Rad6, which is required for PRR. However, they have not
yet been shown to be necessary for PRR and may contribute to other

homology-mediate repair events. (D) Histone modifications associated with
structured DNA. These modifications also impact the fidelity with which the
DNA is repaired. (E) Histone modifications occurring during nucleotide
excision repair. A decrease in H3-K9me is indicated by the downward facing
blue square. H3-K36 methylation may be associated with transcription and/or
TCR. (F) The only histone modification shown to be necessary so far for
mismatch repair is H3K36 methylation. 1Cobb et al. (2005), 2Szilard et al.
(2010), 3Ward and Chen (2001), 4Sirbu et al. (2011), 5Faucher and Wellinger
(2010), 6Kim et al. (2008), 7Baker et al. (2010), 8Wurtele et al. (2012), 9House
et al. (2014), 10Conde et al. (2009), 11Munoz-Galvan et al. (2013), 12Game et al.
(2006), 13Toh et al. (2006), 14Grenon et al. (2007), 15Entezam and Usdin
(2008), 16Yang and Freudenreich (2010), 17O’Driscoll et al. (2003),
18Kapetanaki et al. (2006), 19Bergink et al. (2006), 20Yu et al. (2005), 21Guo
et al. (2011), 22Rubbi and Milner (2003), 23Palomera-Sanchez et al. (2010),
24Malik et al. (2010), 25Evans et al. (2008), 26Bostelman et al. (2007),
27Chaudhuri et al. (2009), 28Tatum and Li (2011), 29Li et al. (2013).

damage (Rogakou et al., 1998; Downs et al., 2004; Ataian and
Krebs, 2006; Bao, 2011). The histone modifications documented
to occur during DSB repair will be briefly summarized here
in order to provide context for comparison to other repair
pathways. For recent, more detailed reviews, see Chubb and
Rea (2010), Zhu and Wani (2010), Bao (2011), Greenberg
(2011), Miller and Jackson (2012), Seeber et al. (2013), Price and
D’Andrea (2013), and Tsabar and Haber (2013).

γH2AX AT DSBs
γH2AX (H2AX-S139ph in mammals; H2A-S129ph in yeast) is
the most well-documented histone modification in response to
a DNA DSB and occurs within minutes of break induction
(Rogakou et al., 1998; Shroff et al., 2004; Stiff et al., 2004, 2006).
The γH2AX domains are established by a positive feedback loop
whereby γH2AX recruits the mammalian repair mediator MDC1,
which in turn recruits additional MRN that will stimulate further
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phosphorylation of H2AX by ATM (Uziel et al., 2003; Lukas et al.,
2004; Lee and Paull, 2005; Stucki et al., 2005; Lou et al., 2006). This
MDC1-ATM pathway to amplify the γH2AX signal increases the
density of γH2AX proximal to the break site; however, subsequent
spreading of γH2AX to create large domains is dependent on the
action of ATM, but not MDC1 (Savic et al., 2009). Earlier data in
yeast indicated that the γH2AX modification is necessary for the
recruitment of chromatin modifying enzymes, including INO80
and SWR1 remodelers (Downs et al., 2004; Morrison et al., 2004;
van Attikum et al., 2004), which can alter the chromatin structure
to allow access by other repair proteins, such as 53BP1, Rad51,
and BRCA1 (Paull et al., 2000; Celeste et al., 2003a,b; Murr et al.,
2006; Shi and Oberdoerffer, 2012; Scully and Xie, 2013). However,
recent work in yeast demonstrated that the γH2AX modification is
dispensable for recruitment of the chromatin modifying enzymes
INO80, SWR-C, NuA4, SWI/SNF, or RSC to DSBs during homol-
ogous recombination in G2 cells (Bennett et al., 2013), suggesting
that the repair proteins are not necessarily directly recruited by
an interaction with γH2AX. Instead, recruitment of chromatin
modifiers and remodelers in G2 is tightly coupled to homolo-
gous recombination, and the Rad51 filament itself may play a
role (Bennett et al., 2013). In any case, γH2AX modification is
an early step in a cascade of chromatin modifications, includ-
ing nucleosome remodeling and other post-translational histone
modifications, which allows for subsequent recruitment and reten-
tion of repair factors. Although many histone modifications that
contribute to DSB repair have been identified, the order of events
is only partially understood (Bao, 2011).

In addition to γH2AX, other histone modifications are required
for efficient repair of DSBs, including acetylation, methylation,
and ubiquitination of lysine residues. The modification of amino
acid residues can be influenced by existing histone modifica-
tions. For example, H4-S1 phosphorylation after DNA damage
is required for H4 N-tail lysine deacetylation (Cheung et al., 2005;
Utley et al., 2005), and H2B ubiquitination is required for H3
methylation (Game and Chernikova, 2009; discussed below). This
presents the interesting possibility that ordered progression of
modifications could allow for regulation of repair events or be
important in promoting proper repair.

HISTONE METHYLATION
Defective methylation of H3-K79 and H3-K36 results in ionizing
radiation (IR) sensitivity in yeast cells (Game et al., 2005, 2006;
Grenon et al., 2007; Game and Chernikova, 2009). In mammalian
cells, H3-K79 methylation, along with H4-K20 dimethylation, are
recognized by 53BP1 in relaxed chromatin at the DSB (Hartlerode
et al., 2012; Wakeman et al., 2012; Hsiao and Mizzen, 2013).
H3-K9me3, on the other hand, stimulates TIP60 histone acetyl-
transferase (HAT) activity at the break site, resulting in acetylation
of both histones and ATM, the latter activating the kinase to fur-
ther stimulate γH2AX formation (Ikura et al., 2000; Murr et al.,
2006; Xu et al., 2010, 2012; Bao, 2011; Xu and Price, 2011).

HISTONE UBIQUITINATION
Histone ubiquitination has been implicated in several steps of
DSB repair (Bao, 2011). H2AX-K119 ubiquitination is induced
upon IR treatment (Xie et al., 2010) and is required for histone

turnover at the site of damage (Ikura et al., 2007). H2A/H2A.X
ubiquitination by RNF8 and RNF168 is also required for accumu-
lation and retention of 53BP1 and BRCA1 at the break (Huen
et al., 2007; Kolas et al., 2007; Mailand et al., 2007; Doil et al.,
2009). H3 and H4 ubiquitination have also been shown to facili-
tate the recruitment of repair factors to a DSB, and in mammalian
cells monoubiquitination of H2B-K120 is required for recruit-
ment of both HR and NHEJ repair factors and may contribute to
chromatin decompaction to promote repair (Wang et al., 2006;
Moyal et al., 2011). In yeast, ubiquitination of H2B-K123 is a
prerequisite for H3-K4 and H3-K79 methylation and is neces-
sary for Rad53 phosphorylation in response to DNA damage
(Giannattasio et al., 2005).

HISTONE ACETYLATION AND DEACETYLATION
Histone acetylation flanking a DSB is required for repair and cel-
lular survival after DNA damage in both yeast and mammalian
cells (Bird et al., 2002; Downs et al., 2004; Tamburini and Tyler,
2005; Murr et al., 2006; Xu et al., 2010). In yeast, histone lysine
residues are acetylated at DSB sites by Gnc5, an H3-specific HAT
recruited by γH2AX (Lee et al., 2010); in mammalian cells, his-
tones are acetylated by TIP60, the NuA4 complex HAT that is
recruited to a DSB by a physical interaction with the MRN com-
plex (Chailleux et al., 2010). An additional mammalian HAT,
MOF, acetylates histone H4-K16 and this modification is required
for the recruitment of repair factors to an irradiation-induced
break site, including MDC1, 53BP1, and Brca1 (Li et al., 2010;
Krishnan et al., 2011).

As histone modifications are required to alter the chromatin
environment to facilitate repair, additional modifications are
required to reset the chromatin state once repair is complete.
Histone deacetylases (HDACs) are recruited to remove histone
acetyl marks and restore the chromatin structure in yeast (Tam-
burini and Tyler, 2005). However, HDACs may also play a more
direct role in the repair process, as in mammalian cells HDACs
are recruited to a DSB early in the repair process (Bao, 2011;
Xu and Price, 2011). In mammalian cells, the HDAC SIRT1 is
recruited to an I-SceI DSB (Oberdoerffer et al., 2008), and the
HDAC complex NuRD, which includes HDAC1 and HDAC2, is
recruited to a microirradiation-induced DSB to deacetylate H3-
K56 (Miller et al., 2010), a histone modification that promotes
nucleosome assembly during replication and repair (Chen et al.,
2008; Li et al., 2008).

CHROMATIN REMODELERS
Chromatin remodelers have also been shown to play an important
role in DSB repair. Interestingly, the NuRD HDAC complex con-
tains a chromatin remodeler subunit (MTA1 or 2), and the NuA4
HAT complex contains the chromatin remodeler p400 (Xu and
Price, 2011; Price and D’Andrea, 2013), intimately linking the role
of histone modifications and chromatin remodeling. p400 (SWR1
in yeast) has recently been shown to catalyze the exchange of the
H2A variant H2A.Z onto the chromatin at DSBs, which leads to
a more open chromatin structure and promotes further histone
modifications at the site of damage (Xu et al., 2012). Once at the
site of damage, SWR1 stimulates the exchange of H2A.Z onto the
chromatin and this exchange is promoted by both H2A and H4
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acetylation (Altaf et al., 2010). In yeast, the direction of exchange
(H2AX for H2A.Z or H2A.Z for H2AX) is influenced by H3-K56
acetylation state: SWR-C preferentially removes H2A.Z from the
nucleosome when H3 is acetylated at K56 (H3-K56Q acetyl-mimic
mutant), and thus the specific catalytic activity of the SWR-C
remodeler is determined by histone modification state to promote
turnover of histone variants (Watanabe et al., 2013). SWR1 also
facilitates Ku80 binding at the break, thereby promoting NHEJ
(van Attikum et al., 2007; Bao, 2011).

Chromatin remodelers appear to play a key role during repair,
but the exact function of many remodelers remains unknown.
What DNA topological substrate is specifying remodeler recruit-
ment or action and how histone modifications contribute to this
process or remodeler function remain to be elucidated. Chromatin
remodelers may be required during repair to open the damaged
DNA to other repair proteins; alternatively, remodelers could be
important to downregulate transcription in the vicinity of the
break to limit collisions between the repair machinery and tran-
scription machinery, allowing repair to progress properly (Kruhlak
et al., 2007; Shanbhag et al., 2010). More generally, a transient
repressive chromatin state may be important for stabilization of
the chromatin fiber for efficient repair, as was a proposed role for
H3-K9me3 at a DSB (Ayrapetov et al., 2014). In addition to physi-
cally altering the chromatin to facilitate proper access to the DNA
template, remodelers could be more directly involved in the sub-
sequent cascade of damage signaling by directly interacting with
other repair factors, perhaps acting as recruitment platforms or
mediators.

CHROMATIN MODIFICATIONS ASSOCIATED WITH STALLED
REPLICATION FORKS
Stalled replication forks can be protective to genomic integrity,
given that the stall can avoid replication through damaged DNA
and signal the location of DNA damage to be repaired. However,
if the damage is not repaired or bypassed, or if a single-strand
break is in the template, the stalled fork can collapse, leading to a
DSB. For example, low doses of aphidicolin can induce replication
stress that will stall forks and leave single-strand gaps, eventually
resulting in DSBs (Freudenreich, 2007). Interestingly, aphidicolin
treatment during S phase induces γH2AX-dependent 53BP1 foci
in the next G1 phase, indicating that a fork stall not resolved by
mitosis can lead to a DSB in the next cell cycle (Harrigan et al.,
2011; Lukas et al., 2011).

To prevent DSB formation, damage tolerance pathways can
be invoked, leaving the damage to be resolved through post-
replication repair (PRR). Error-prone PRR occurs by recruitment
of a translesion synthesis (TLS) polymerase that can bypass the
lesion. Alternatively, a template switch involving sister chromatid
annealing can allow the polymerase to copy the homologous
sequence information from the sister chromatid and continue
replication, or sister chromatid recombination (SCR) can be
used to repair a gap left after fork passage. Thus, since fork
stalling can lead to TLS, template switching, SCR, or a DSB,
it can be experimentally difficult to distinguish the chromatin
modifications that are specific to the initial fork stall or to each
subsequent repair pathway. Stalling replication forks with low
levels of hydroxyurea (HU) or inducing site-specific stalls with

DNA-bound proteins or known fork-stalling DNA sequences,
such as CGG repeats, can be effective strategies to uncover chro-
matin modifications associated with stalled replication forks.
In addition, co-localization experiments using ChIP or isola-
tion of proteins on nascent DNA (iPOND, Sirbu et al., 2012;
see below) have been productive in linking replication fork-
associated factors with chromatin-associated factors. This section
will focus on the histone modifications and chromatin remod-
elers known to-date to be associated with stalled replication
forks.

Stalled replication forks are marked in the chromatin as DNA
damage, as γH2AX domains form at stalled replication forks
(Figure 1A). In yeast, phosphorylated H2A (γH2A) was found
to co-localize with HU stalled forks and Pol ε by ChIP, and this
event was dependent on the Mec1 but not the Tel1 kinase, dis-
tinguishing the modification from γH2A at a DSB which can
be phosphorylated by both Mec1 and Tel1 (Cobb et al., 2005).
Indeed, genome-wide mapping of γH2A-rich loci using ChIP
technology revealed that γH2A is enriched at sites of natural repli-
cation fork stalling, including the rDNA locus, tRNA genes, LTRs,
telomeres, and DNA replication origins (Szilard et al., 2010). Inter-
estingly, the average size of the γH2A domain at these natural pause
sites was 1255 bp, in contrast to the 50 kb domain detected at an
HO endonuclease-induced DSB in yeast cells. Functionally, H2A
modification is required to promote replication fork progression,
as measured by total DNA content after release from G1 in mec1-ts
mutants, and prevent DSB formation, as measured by pulsed-field
gel electrophoresis (Cha and Kleckner, 2002).

In mammalian cells, γH2AX is induced when DNA replica-
tion is inhibited by HU, forming foci that co-localize with PCNA
in S phase cells, and this response is also dependent on ATR but
not ATM (Ward and Chen, 2001). Using iPOND technology to
monitor protein dynamics at sites of newly synthesized DNA in
live mammalian cells, γH2AX was detected at a stalled replica-
tion fork within 10 min after HU addition, becoming maximal
at 30 min (Sirbu et al., 2011). These early time points were not
accompanied by markers of DSBs such as Mre11, DNA-PK, or
Ku70/Ku80 which appeared at later time points 2–4 h after HU
addition, indicating that the early γH2AX is not marking col-
lapsed forks or DSBs. The γH2AX domain spread from the site of
fork stalling over time, reaching tens of thousands of base pairs
by 1 h. Again, initial γH2AX formation at an HU-stalled repli-
cation fork was ATR-dependent; but maintenance of the γH2AX
domain at later time points was ATM-dependent, likely occur-
ring once the persistently stalled fork had collapsed into a DSB
(Sirbu et al., 2011).

While both DSBs and stalled forks are marked by an initial
γH2AX histone modification, subsequent chromatin modifica-
tions dependent on either ATM or ATR could produce chromatin
environments specific to the lesion type, directing repair to the
appropriate pathway or influencing the repair process itself. The
histone modifications important for turning off the DNA dam-
age response at a stalled fork may also be different than at a
DSB. To turn off the DSB-induced checkpoint, mammalian ser-
ine/threonine phosphatase complexes PP2A and PP4 and the yeast
PP4C ortholog Pph3 dephosphorylate γH2AX, leading to inactiva-
tion of Rad53 (Chowdhury et al., 2005; Keogh et al., 2006; Nakada
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et al., 2008). However, another phosphatase, PP1 (Glc7), has been
shown to dephosphorylate γH2AX and contribute to Rad53 inac-
tivation and replication fork restart after HU treatment (Bazzi
et al., 2010). Of note, PP4 in mammalian cells appears to be
especially important for resolution of DNA damage that occurs
during replication, specifically dephosphorylating ATR (but not
ATM)-modified γH2AX (Chowdhury et al., 2008).

Although much research has focused on γH2AX at stalled
replication forks, other histone modifications are likely occur-
ring to influence replication fork recovery or repair (Figure 1A).
One such modification is phosphorylation of H3-T45 in yeast,
a modification observed in response to prolonged replication
stress in HU treated cells that is independent of the Mec1
and Tel1 kinases and is instead regulated by the Cdc7-Dbf4
kinase complex (Baker et al., 2010). The authors conclude that
this modification is specific to replication stress, as treatment
with DNA alkylating agent MMS did not increase H3-T45
phosphorylation. Further, the H3-T45A mutant was not sen-
sitive to MMS, but was sensitive to HU and CPT, a topoiso-
merase I inhibitor, as measured by cell survival in a spot assay
(Baker et al., 2010). However, prolonged exposure to HU and
CPT will lead to DSB formation and therefore this modifica-
tion could mark DSBs, although in a Mec1/Tel1-independent
manner.

In addition to histone phosphorylation, histone acetylation,
methylation, and ubiquitination likely play a role in signaling
replication stress (Figure 1A). In human T-cell lymphoma cells,
HDAC3 is localized to replication forks by iPOND, linking chang-
ing acetylation state with newly synthesized DNA (Wells et al.,
2013). Further, HDAC3 inhibition resulted in decreased replica-
tion fork velocity and increased apoptosis that was associated with
increased DNA damage and an S phase defect (Wells et al., 2013).
In budding yeast, H3-K56 acetylation is required to complete
replication in the presence of lesions caused by MMS (Wurtele
et al., 2012). In fission yeast, the absence of Clr4 and Set2, the
methyltranferases for H3-K9 and H3-K36, respectively, leads to
a decrease in HU-induced phosphorylation of Cdc2 and Mik1,
downstream actors in the Rad3 (human ATM) checkpoint path-
way. Therefore, the authors conclude that the HU replication stress
checkpoint requires H3 methylation by Clr4 and Set2 (Kim et al.,
2008). H3-K4 trimethylation may also contribute to repair of S
phase damage in S. cerevisiae, as the absence of Set1, the HMT
responsible for H3-K4 trimethylation, leads to an S phase progres-
sion defect, in addition to the role of Set1 in NHEJ (Faucher and
Wellinger, 2010). Histone H3-K4 and K79 methylation, regulated
by H2B-123 ubiquitination, may also play a role in PRR, which
would be initiated after a replication fork stalling event (discussed
in next section).

Chromatin remodeling is also important in resolving the dam-
age at a stalled replication fork (Table 1). INO80 is implicated
in recovery from stalled replication in both budding yeast and
mammalian cells. In mammalian cells, ino80 mutants are HU
sensitive, display defective S phase progression, and are defective
in recovery from replication stress (Hur et al., 2010; Min et al.,
2013; Vassileva et al., 2014). In yeast, Ino80 is enriched at stalled
replication forks, as detected by ChIP (Papamichos-Chronakis
and Peterson, 2008; Shimada et al., 2008). In addition, recovery

from replication fork stalling after HU treatment is impaired in
an ino80 mutant, resulting in DSBs (Shimada et al., 2008), and
Ino80 promotes replication restart after MMS treatment (Falbo
et al., 2009). In the absence of both an intact INO80 complex
and the chromatin remodeler Isw2, recovery from the S phase
checkpoint response is defective (Au et al., 2011). The chromatin
remodeler RSC2 may also play a role in recovery from stalled repli-
cation or be involved in PRR. In S. cerevisiae, RSC2 is found near
replication forks by ChIP, and PCNA ubiqutination is significantly
decreased in a rsc2� mutant after MMS, UV, and HU treatments
(Niimi et al., 2012). Similarly, depletion of the human homolog
BAF180 of the PBAF complex led to a decrease in fork progres-
sion by IdU incorporation (DNA fiber) analysis and decreased
chromatin bound unmodified and ubiquitin-modified PCNA and
Rad18 (Niimi et al., 2012). Other remodelers are found at repli-
cating forks irrespective of a stall, but may also play a role at
stalled forks (Vincent et al., 2008; Au et al., 2011; Bhaskara et al.,
2013).

It is likely that additional histone modifications are asso-
ciated with recovery from stalled replication forks, but they
remain to be identified. Histone modifications could influ-
ence several steps of recovery from stalled replication, including
marking the location of a stalled fork, recruitment of repli-
cation restart factors or replication bypass factors (including
translesion synthesis polymerases), establishing sister chromatid
cohesion for homology-mediated PRR, and finally the recruit-
ment of chromatin modifying enzymes to reset the chromatin
structure.

CHROMATIN MODIFICATIONS IN RESPONSE TO
SINGLE-STRAND GAPS REPAIRED BY SISTER CHROMATID
RECOMBINATION OR TEMPLATE SWITCHING
More common than DSBs are single strand DNA lesions that
can occur during replication and repair. Single strand gaps
that occur during replication will activate the DNA damage
checkpoint (Branzei and Foiani, 2008). These gaps activate the
kinase ATR, not ATM, and the intensity of the checkpoint
response increases with increasing gap length, as monitored
by Chk1 phosphorylation (MacDougall et al., 2007). To pre-
vent gaps from becoming DSBs, Rad6-Rad18 dependent damage
tolerant replication can be invoked to allow replication to con-
tinue, followed by subsequent repair of the template-strand
lesion in a process that has been termed PRR. Single-stranded
gaps that occur during replication must be resolved before the
following S phase to prevent the formation of DSBs. Base
damage, for example by alkylating agents such as MMS, result
in unreplicated gaps left after fork passage (Hashimoto et al.,
2010). It is probable that repair of nicks and gaps will have
overlapping histone modifications with DSB repair, particularly
if the lesion induces a checkpoint response. However, it is
also likely that different combinations of histone modifications
will distinguish nick and gap repair pathways from repair of
a DSB.

POST-REPLICATION REPAIR
Post-replication repair can be divided into two Rad6-dependent,
damage tolerant pathways: error-prone TLS and error-free PRR.
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Table 1 | Chromatin remodelers associated with repair pathways outside of DSB repair.

Repair pathway Remodeling complex Implicated subunit System Reference

Stalled Replication INO80 Ino80 Yeast Papamichos-Chronakis and Peterson (2008),

Shimada et al. (2008), Falbo et al. (2009)

Human Hur et al. (2010), Vassileva et al. (2014)

Mouse Min et al. (2013)

ISW2 Isw2 Yeast Vincent et al. (2008), Au et al. (2011)

RSC Rsc2 Yeast Niimi et al. (2012)

PBAF(RSC ortholog) BAF180 Human cells Niimi et al. (2012)

SCR RSC Rsc1 Yeast House et al. (2014)

Rsc2 Yeast Baetz et al. (2004), Oum et al. (2011), House

et al. (2014)

Rsc7 Yeast Oum et al. (2011)

PRR RSC Rsc2 Yeast Niimi et al. (2012), House et al. (2014)

Structured DNA RSC Rsc1 Yeast House et al. (2014)

Rsc2 Yeast House et al. (2014)

SWR1 Bdf1 Yeast House et al. (2014)

GGR SWI/SNF Snf2 Yeast Yu et al. (2005)

Snf5 Yeast Gong et al. (2006)

Human cells Ray et al. (2009), Zhao et al. (2009), Zhang et al.

(2009)

Snf6 Yeast Gong et al. (2006)

BRG1 Human cells Zhao et al. (2009), Zhang et al. (2009)

SWI/SNF-like Rad16 Yeast Ramsey et al. (2004), Yu et al. (2011)

ALC1 Human cells Pines et al. (2012)

INO80 Ino80 Yeast Sarkar et al. (2010)

Ino80, Arp5 Human cells Jiang et al. (2010)

ISWI ACF in vitro (Drosophila) Ura et al. (2001)

TCR SWI/SNF-like CSB in vitro (Human) Citterio et al. (2000)

Rad26 Yeast Gregory and Sweder (2001)

ISW1 SMARCA5/SNF2H,

WSTF, ACF

Human cells Aydin et al. (2014)

BER ISW1, ISW2 Isw1, Isw2 in vitro (yeast) Nakanishi et al. (2007)

RSC Sth1 Yeast Czaja et al. (2014)

SWI/SNF Complex in vitro (yeast) Menoni et al. (2007)

TLS is initiated by Rad6-Rad18 monoubiquitination of PCNA and
allows replication past a lesion by employing low-fidelity transle-
sion polymerases with large active sites that can accommodate
bulky lesions. Rad6 is the E2 ubiquitin-conjugating enzyme that
cooperates with the E3 ubiquitin ligase Rad18 to modify PCNA
to initiate PRR. However, with the E3 ubiquitin ligase Bre1, Rad6
also plays a role in regulating histone H2B-K123 ubiquitination
(Briggs et al., 2002; Dover et al., 2002; Ng et al., 2002; Game and
Chernikova, 2009). H2B-K123 ubiquitination promotes H3-K4

and H3-K79 di- and tri-methylation by Set1 and Dot1, respec-
tively (Briggs et al., 2001; Miller et al., 2001; Shahbazian et al.,
2005; Fuchs et al., 2009; Nakanishi et al., 2009; Takahashi et al.,
2009). Given the regulation by Rad6, H2B-K123 ubiquitination
and H3-K4 and H3-K79 methylation may play a role in PRR
(Figure 1C). To date, no histone modifications are identified
to contribute specifically to the TLS branch of PRR, but the
HAT Gcn5 is required for transcription of the TLS polymerase
η (Kikuchi et al., 2012).
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Error-free PRR requires polyubiquitination of PCNA by
Ubc13-Mms2 and Rad5, which initiates a template switch to
bypass the template strand lesion and copy from the newly synthe-
sized sister chromatid. The recombination event during error-free
PRR further requires the action of Rad52 epistasis group mem-
bers (Boiteux and Jinks-Robertson, 2013). Thus, a post-replication
template switch is mechanistically very similar to gap-induced
sister chromatid recombination, and may be marked by similar
or identical histone modifications. Until recently, no particular
histone modifications had been attributed to error-free PRR or
gap-induced SCR. However, our group has recently found that
acetylation of histone H4 by the HAT Esa1 of the NuA4 com-
plex is needed for stability of CAG repeats in a Rad5-dependent
manner (Figure 1C). Furthermore, the HAT activity of NuA4 is
required for gap-induced SCR. The most important modifications
are acetylation of H4-K12 and H4-K16, known targets of Esa1
(Figure 1B). Additionally, H4-K16 acetylation at the CAG repeat
peaks during S phase, but then disappears, presumably once repair
is complete. A dynamic nature to the histone acetylation appears
to be important in maintaining genomic stability, as both HAT and
HDAC mutants displayed an increased frequency of CAG repeat
expansions. If histone acetylation was primarily acting to disrupt
higher order chromatin compaction to open the chromatin struc-
ture (Murr et al., 2006; Shogren-Knaak et al., 2006), the HDAC
mutant would have rescued genomic stability by allowing con-
stant decompaction of the chromatin. As this was not the case,
the requirement for dynamic histone H4 acetylation argues for a
model in which the modification is directly affecting recruitment
or turnover of repair factors to facilitate PRR of gaps via SCR.

SISTER CHROMATID RECOMBINATION
Sister chromatid recombination is a homology-mediated event
that contributes to both DSB repair when a sister chromatid
is available as well as post-replication single strand gap repair.
Chromatin modifications associated with SCR have been identi-
fied mostly within the context of a DSB, but since the physical
recombination event in DSB and PRR will be similar, it is rea-
sonable to expect that some histone modifications will affect
both repair pathways. One potential example of this is H3-K56
acetylation. Not only does H3-K56 acetylation respond to repli-
cation fork damage (Wurtele et al., 2012), but it also works with
Rad52 to promote SCR during repair of a DSB (Munoz-Galvan
et al., 2013; Figures 1A,B). H3-K56 acetylation was also shown
to be important in preventing CAG repeat fragility and con-
tractions during both replication and Rad52-dependent repair
events (Yang and Freudenreich, 2010; Figure 1D). In human
cells, TIP60-dependent H4 acetylation has been shown to pro-
mote BRCA1-dependent HR (Tang et al., 2013), and depletion of
the H4K16-specific HAT MOF leads to a decrease in DSB-induced
HR and sister-chromatid exchanges (Li et al., 2010; Sharma et al.,
2010), suggesting that H4 acetylation is important in facilitat-
ing homology-dependent recombination events between sister
chromatids.

Sister chromatid cohesion is necessary for proper alignment
of homologous sequences during SCR. Contributing to this pro-
cess is the RSC complex, which is required to recruit cohesin to
chromosomes (Baetz et al., 2004), and also to recruit the cohesin

subunits Smc1 and Scc1 to a DSB (Oum et al., 2011). These results
link chromatin remodeling to cohesin loading during recombi-
nation. Lending support to a role for RSC in SCR is that rsc2 or
rsc7 deletions confer sensitivity to MMS during G2 but not G1,
indicating RSC is most important after synthesis when the sis-
ter chromatid would be available as a template for repair. Indeed,
the rsc7 mutant has a decrease in spontaneous sister chromatid
exchange (Oum et al., 2011), and we found that both rsc1 and rsc2
mutants were defective in spontaneous SCR (House et al., 2014;
Table 1). Interestingly however, only Rsc2 is able to suppress an
MMS-induced increase in SCR, implicating the Rsc2 sub-complex
specifically in gap-induced SCR (Table 1; House et al., 2014).
Additionally, the Rsc2 sub-complex is detected by ChIP at an
unstable CAG repeat coincident with H4K16ac, suggesting a possi-
ble recruitment mechanism for this remodeler during gap-induced
repair from the sister chromatid (House et al., 2014). Both efficient
γH2AX modification at a break site (Kent et al., 2007) and MRX
recruitment to a DSB (Shim et al., 2007) are dependent on RSC.
Therefore, this chromatin remodeling complex may be a com-
mon component of HR repair induced by either a DSB or gap
that links the initial damage event to the subsequent chromatin
response.

In addition to histone acetylation, both histone methylation
and phosphorylation are required for proper SCR (Figure 1B). In
yeast, the histone methyltransferase Dot1 has specificity for the
H3-K79 residue and is required for DSB break repair (Game et al.,
2006; Game and Chernikova, 2009). In the absence of Dot1, cells
lose IR-induced Rad9 foci in G2, suggesting a role for this modifi-
cation in recruitment of Rad9 specifically when a sister chromatid
is present (Toh et al., 2006; Grenon et al., 2007). Further, using a
physical assay to probe for recombination intermediates and mon-
itor unequal exchange of sister chromatids upon replication of a
DSB lesion, Conde et al. (2009) found that the unphosphorylat-
able H2A-S129A mutant and the dot1� mutant are defective in
SCR and are contributing to repair by promoting sister chromatid
cohesion (Conde et al., 2009).

As the chromatin modifications and remodeling required to
promote single-strand gap repair, PRR, and SCR continue to be
defined, it is probable that more specific combinations of his-
tone modifications will be revealed to be distinct from those
required for DSB repair. Histone modifications could contribute
to altering the chromatin environment to promote recombination,
either directly by changing charge interactions between nucle-
osomes and the DNA, or indirectly through repair factor and
chromatin remodeler recruitment. Specific histone modifications
and remodelers may also contribute to the overall fidelity of repair,
as illustrated by those that are needed to promote SCR as well as
prevent CAG repeat instability (Figures 1B,D).

THE CHROMATIN RESPONSE TO STRUCTURE-FORMING DNA
Non-canonical DNA topology can lead to DNA lesions and must
be resolved to prevent the loss of genomic material. Inverted
repeats, some direct repeats, and homopyrimidine-homopurine
runs can form stable secondary structures that impede DNA
processing events, such as replication and repair, causing DNA
damage and genome instability (Freudenreich, 2007; Voineagu
et al., 2009a; Kim and Mirkin, 2013). Since DNA structures can
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cause all of the types of damage covered above, including DSBs,
stalled forks, and single-strand DNA gaps or nicks, the mod-
ifications associated with structure-forming DNA will overlap
with those found at these lesions. Indeed, structure-forming
CGG/CCG and CAG/CTG triplet repeats induce replication fork
stalling and chromosome fragility when they reach a length of 45–
70 repeats (Samadashwily et al., 1997; Freudenreich et al., 1998;
Balakumaran et al., 2000; Jankowski et al., 2000; Callahan et al.,
2003; Kerrest et al., 2009; Voineagu et al., 2009b; Sundararajan
et al., 2010), and even short triplet repeats can interfere with
nick repair (Pearson et al., 2002). DNA structures, fork stalling,
and unreplicated regions of DNA have also been associated with
common fragile sites (Zhang and Freudenreich, 2007; Ozeri-Galai
et al., 2012). Such hard-to-replicate regions will present a par-
ticular challenge to genomic integrity and histone modifications
and chromatin-associated factors will be important in maintain-
ing stability of these regions. Additionally, the properties of the
repetitive DNA can affect the chromatin structure in the region by
forming very stable nucleosomes or excluding nucleosomes (see
below). Furthermore, the outcome of a defective repair process
can be different in a repetitive DNA sequence compared to non-
repeat DNA: the built-in homology surrounding a lesion within a
repeat could facilitate repair, but also lead to changes in the repeat
number.

CAG repeats form stable DNA hairpins (Mirkin, 2007) and are
strong nucleosome positioning elements (Wang et al., 1994; Wang
and Griffith, 1995; Volle and Delaney, 2012). Long CAG repeats
can activate the checkpoint response (Lahiri et al., 2004; Voineagu
et al., 2009a,b; Sundararajan and Freudenreich, 2011), and expan-
sions of the CAG repeat can occur during DNA repair if the process
is inefficient (McMurray, 2010). We have found that lesions at an
expanded (CAG)155 repeat are marked by histone modifications.
Both γH2AX and H4 N-terminal tail acetylation at residue K16
are enriched at an expanded CAG repeat during S phase and are
required to maintain stability of a (CAG)85 repeat during SCR
(House et al., 2014), suggesting that these histone modifications
are required for high-fidelity repair of structured DNA, poten-
tially through direct recruitment of chromatin remodelers (such
as Rsc2) or other repair factors. In human cells, knockdown of class
II HDAC9 leads to an increase in CAG repeat expansion frequency
(Gannon et al., 2012). However, the opposite is true for HDAC3
and HDAC5, which promote CAG repeat expansions. Though the
relevant target for these HDACs is unknown, it was shown that
they act within the mismatch repair pathway to protect repeat
stability (Gannon et al., 2012).

Whereas CAG repeats preferentially assemble nucleosomes,
CGG repeats exclude nucleosomes (Wang, 2007; Kumari and
Usdin, 2009). Despite the exclusion of nucleosomes, ATR is
required to prevent CGG repeat expansions (Entezam and Usdin,
2008). This suggests that ATR may be phosphorylating H2AX
near the CGG repeat to initiate chromatin modifications nec-
essary for DNA repair. Given that CGG repeats are sites of
replication fork stalling and chromosomal fragility, it is not
surprising that histone modifications associated with DNA dam-
age and repair are found near these sequence elements and are
important for repeat stability (Usdin, 2008; Anand et al., 2012;
Kumari et al., 2012).

Activation of the checkpoint response by expanded trinu-
cleotide repeats indicates that the structures formed at these
sequences are causing damage that initiates a repair event. It is
possible that distinct histone modifications are contributing to
repair of structured DNA, but the particular combination of mod-
ifications that are marking such lesions are only beginning to be
identified.

CHROMATIN MODIFICATIONS IMPORTANT FOR NUCLEOTIDE
EXCISION REPAIR (NER)
The nucleotide excision repair pathway is responsible for removing
damage that distorts the DNA helix. This type of damage includes
UV-induced 6-4photoproducts (6-4PPs) and cyclobutane pyrim-
idine dimers (CPDs), and repair requires lesion identification and
excision. After lesion removal, nucleotides are re-synthesized and
the DNA ends are ligated. Chromatin structure must be altered
during the NER pathway, both by remodeling and modification
of histones, to allow access to the damaged DNA by the proteins
participating in the NER repair pathways. Important questions rel-
evant to the NER pathway are whether chromatin relaxation occurs
before or after detection of lesions, and the role of histone modifi-
cations in chromatin changes versus repair factor recruitment. In
addition, chromatin structure must be re-established at the end of
the repair process. There are two NER subpathways, and the path-
way choice depends on if the DNA damage occurred on a DNA
strand that is being actively transcribed: transcription-coupled
repair (TCR) repairs damage that occurs on the transcribed strand,
whereas global genomic repair (GGR) functions to repair damage
that occurs on the nontranscribed strand of active genes or in
inactive regions of the genome. Once the damage is recognized
and repair is initiated, the two pathways use the same set of repair
factors for the downstream events. For a more detailed review of
NER in chromatin, see Reed (2011).

GGR SUBPATHWAY: CHROMATIN MODIFICATIONS INVOLVED IN
DAMAGE RECOGNITION AND REPAIR
The GGR subpathway repairs damage that occurs on nontran-
scribed DNA strands, occurring mostly from exposure to UV
radiation. The initial evidence that chromatin modifications
occurred during the NER process came from the finding that his-
tones were quickly acetylated after UV irradiation (Ramanathan
and Smerdon, 1986). UV irradiation triggers genome-wide his-
tone H3 and H4 hyperacetylation in yeast (Yu et al., 2005). Indeed,
acetylation of histone H3, as well as other histone modifications
described below, have been shown to facilitate the GGR pathway
of NER (Figure 1E).

HISTONE ACETYLATION
After UV irradiation, histone H3-K9 and K14 were shown by ChIP
to be hyperacetylated at the repressed MFA2 promoter in yeast (Yu
et al., 2005; Figure 1E). This hyperacetylation was dependent on
the yeast HAT Gcn5, deletion of which weakened the repair of
damage at MFA2 as assayed by in vivo CPD removal (Yu et al.,
2005). In yeast, both Gcn5 binding and the resulting histone H3-
K9 and K14 acetylation require Rad16 (Teng et al., 2008), a GGR
factor with a potential function in chromatin remodeling because
it is a SWI/SNF-related family member. Interestingly, the increased
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Gcn5 binding and H3 acetylation were dependent on both the
ATPase and RING domains of Rad16, therefore both transloca-
tion and ubiquitin ligase activities are involved (Yu et al., 2011).
The resulting H3 acetylation led to a more open chromatin state,
measured by restriction enzyme accessibility, which was necessary
for GGR (Yu et al., 2011). Recently, another factor in addition to
Rad16 has been implicated in enhancing Gcn5 binding after UV
damage: the histone H2A variant H2A.Z (Yu et al., 2013). Yeast
strains that are deleted for htz1 are UV sensitive, have reduced
histone acetylation, and are defective in removal of DNA damage
caused by UV light (Yu et al., 2013). Altogether these studies sup-
port the conclusion that UV-induced histone acetylation promotes
a more open chromatin structure that is necessary for efficient
repair by the NER pathway.

A role for UV-induced histone H3-K9 acetylation during NER
has also been observed in human cells. One pathway involves
the transcription factor E2F1, which recruits the HAT Gcn5 to
UV-damaged DNA (Guo et al., 2011). siRNA-knockdown of Gcn5
impaired recruitment of NER factors XPA and XPC to sites of
damage, resulting in less efficient repair of CPDs and 6-4PPs (Guo
et al., 2011). A second pathway of histone H3-K9 acetylation dur-
ing NER has been linked to the function of p53, a tumor suppressor
gene. Localization of the HAT p300 to sites of NER was dependent
on p53, and H3-K9 acetylation after UV exposure was diminished
in p53 mutants (Rubbi and Milner, 2003). Disruption of p300
caused complete NER inhibition, indicating that it is a key HAT in
the GGR pathway. By monitoring micrococcal nuclease (MNase)
sensitivity, p53 was found to mediate global chromatin relaxation
following UV irradiation (Rubbi and Milner, 2003). Therefore, H3
acetylation by both Gcn5 and p300 together may be coordinating
chromatin relaxation during NER in human cells.

HISTONE METHYLATION
Another histone modification recently connected to efficient GGR
is histone methylation. Mono and di-methylation of histone H3-
K79 was increased in yeast strains with mutations that render
the lysines on the H4 N-terminal tail unacetylatable, and the
increase in methylation correlated with the severity of UV sen-
sitivity of the H4 K to R mutations (Evans et al., 2008). This
finding, therefore, suggests that histone H4 acetylation modu-
lates histone H3-K79 methylation levels during UV damage repair
(Figure 1E). Histone H3-K79 is methylated by the HMT Dot1,
and dot1Δ caused sensitivity to UV (Bostelman et al., 2007).
Direct evidence for a role for Dot1 and H3-K79me in GGR was
obtained by observation of defective repair of CPDs in the non-
transcribed strand of RPB2 in mutants (Tatum and Li, 2011). In
contrast, Dot1 and H3-K79 were not necessary for repair in the
TCR subpathway, as measured by repair of the transcribed strand
of RPB2 (Tatum and Li, 2011). Therefore, H3-K79 methylation
during NER is a GGR-specific modification that may signal for
recruitment of the GGR machinery to recognize damage and ini-
tiate repair. These findings contrast with a previous study that
showed that a H3-K79R yeast mutant displayed almost normal
NER at the expressed RPB2 gene, though NER at the tran-
scriptionally silent cryptic mating-type locus HML was impaired
(Chaudhuri et al., 2009). However, this study measured NER in
both strands of the different loci and did not distinguish between

the two strands, which may have therefore missed detection of the
repair defect in the nontranscribed strand of RPB2 observed by
Tatum and Li (2011).

In contrast to the increased H3-K79 methylation during GGR
observed in yeast, there is a global decrease in trimethyla-
tion of a different residue, H3-K9, following UV irradiation
in fruit flies (Palomera-Sanchez et al., 2010; Figure 1E). UV
irradiation increased levels of the histone H3-K9 demethylase,
dKDM4B, and H3-K9 demethylation is necessary for repair
of the UV lesions as repair of CPDs was impaired in flies
with mutated dKDM4B (Palomera-Sanchez et al., 2010). These
findings regarding the contrasting role of histone methylation
at different H3 residues in the GGR pathway suggest that
there may be a specific methylation pattern necessary to sig-
nal and recruit factors for repair of UV-induced DNA damage.
Intriguingly, Drosophila with p53 mutations had higher levels
of trimethylated H3-K9 after UV exposure (Palomera-Sanchez
et al., 2010). It would be interesting to determine whether
p53 mediates chromatin relaxation in flies, and whether this
affects demethylase recruitment as it does HAT recruitment (see
above).

HISTONE UBIQUITINATION
Histone ubiquitination has also been implicated in NER. In human
fibroblasts, UV-induced DNA damage resulted in monoubiquiti-
nation of H2A-K119, but this modification was not observed in
NER-deficient fibroblasts (Bergink et al., 2006; Figure 1E). As at
DSBs, the NER-induced H2A ubiquitination was dependent on
the E2-conjugating enzyme Ubc13 and the ubiquitin E3 ligase
RNF8 (Marteijn et al., 2009). Additionally, the UV-damaged DNA-
binding protein complex (UV-DDB) contains the subunit DDB2,
a ubiquitin E3 ligase that targets histone H2A (Kapetanaki et al.,
2006). Ubiquitination of H2A after exposure to UV was shown to
be defective in cells from XP group E (XP-E) patients, who have
a defect in UV-DDB (Kapetanaki et al., 2006). The ubiquitinated
H2A may serve as a recognition signal for damage repair by NER
factors that have ubiquitin-binding domains, such as RAD23B,
which forms the damage recognition complex with XPC during
the initial step of GGR (Kapetanaki et al., 2006). Overall, these
findings highlight important associations between histone H2A
ubiquitination and the NER pathway.

HISTONE PHOSPHORYLATION
A chromatin mark that is a hallmark of DSBs, γH2AX is
also induced in a NER-dependent manner in UV-exposed non-
replicating human cells (O’Driscoll et al., 2003; Figure 1E). ATR
is the primary kinase for NER-dependent γH2AX (Matsumoto
et al., 2007). The precise function of γH2AX in NER remains to
be clarified, but if it functions similarly to its role at DSBs, it may
be involved in initiating repair events necessary for recruitment of
NER factors.

TCR SUBPATHWAY: POSSIBLE ROLE FOR CHROMATIN MODIFICATIONS
The TCR pathway is activated when RNA polymerase II (RNAPII)
stalls at lesions, recruiting factors for repair. Thus some histone
modifications associated with active transcription may also have
functions in the TCR pathway.
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Cockayne syndrome group B (CSB) protein and its homolog
Rad26 in yeast are members of the SWI/SNF family of chro-
matin remodeling enzymes and are important for TCR (Guzder
et al., 1996; Selby and Sancar, 1997a). A study by Fousteri
et al. (2006) used a co-IP assay to identify proteins associated
on the same chromatin fragment after UV treatment. Inter-
actions between CSB, CSA (another TCR factor), and stalled
RNAPII were identified, along with the HAT p300 and nucle-
osome binding protein HMGN1. CSB was necessary for the
recruitment of the HAT p300 to stalled RNAPII, whereas the
recruitment of HMGN1 was mediated via both CSB and CSA.
The interaction between p300 and RNAPII was stimulated
by UV and occurred prior to incision of lesions (Fousteri
et al., 2006). Given the established role of p300 in NER (see
above), it may be that histone acetylation is also needed to
facilitate TCR.

In yeast, the association of the TCR factor Rad26 with chro-
matin is dependent on the presence of elongating RNAPII, and
Rad26 is unable to identify lesions in the absence of transcription
(Malik et al., 2010). ChIP experiments revealed that histone H3-
K36 methylation stimulated the interaction of Rad26 with DNA
(Malik et al., 2010). Though not yet tested, the association with
Rad26 suggests that H3-K36 methylation may play a role in TCR
(Figure 1E). However, since Rad26 also promotes transcriptional
elongation, it may also be needed more generally to facilitate inter-
action of Rad26 with chromatin during transcription, rather than
having any specific role during TCR.

A connection between ubiquitination and TCR was recently
discovered. The deubiquitinating enzyme USP7 is brought to
TCR complexes and stabilizes CSB. (Schwertman et al., 2012).
TCR factors, including CSB, are known to be ubiquitinated and
these could be targets of USP7 activity during TCR, potentially
to protect TCR factors from UV-induced degradation. USP7 also
deubiquitinates histone H2B and was recently implicated in base
excision repair (BER; Khoronenkova et al., 2011). With several
possible USP7 targets, the relevant ones for TCR remains to be
established.

CHROMATIN REMODELING IN THE NER PATHWAY
As touched on above, chromatin accessibility plays a key role in
NER, and histone acetylation and remodeling may work together
to increase access to lesions for repair. Chromatin remodeling dur-
ing NER has been summarized in a recent review, and compared to
remodeling during repair of DSBs by the HR and NHEJ pathways
(Lans et al., 2012). The role of chromatin remodelers in the NER
subpathways will be highlighted here.

REMODELING IN THE GGR SUBPATHWAY
In yeast, the GGR factor Rad16 is a SWI/SNF-related family mem-
ber with ATPase activity (Table 1). The ATPase activity of Rad16
is required for efficient repair (Ramsey et al., 2004; Yu et al., 2011),
and it is therefore assumed that Rad16 is acting as a chromatin
remodeler, although nucleosome displacement by Rad16 has not
been directly observed. In addition, Rad16 has been shown to pro-
mote Gcn5-dependent histone H3 acetylation during the repair of
UV damage, and this leads to increased chromatin accessibility
that is necessary for efficient damage repair (Yu et al., 2011).

A link between SWI/SNF chromatin remodeling and NER was
discovered in yeast and is now well established. The NER dam-
age recognition complex consisting of Rad4 and Rad23 (yeast
homolog of human XPC-RAD23B) co-purified with Snf6 and
Snf5, both SWI/SNF chromatin remodeling complex subunits, and
the interactions increased with UV exposure (Gong et al., 2006;
Table 1). Inactivation of SWI/SNF via snf6Δ reduced restriction
enzyme accessibility and affected the rate of CPD removal at the
silent HML locus, implying that SWI/SNF is remodeling during
NER (Gong et al., 2006). The double mutant rad16Δ snf6Δ was
more UV sensitive than the rad16Δ single mutant, suggesting that
Snf6 may have a role in TCR as well as GGR (Gong et al., 2006).
Since Snf6 interacts with Rad4–Rad23 and Rad4 functions in both
NER pathways (Verhage et al., 1994), it is possible for Snf6 to influ-
ence repair by both GGR and TCR. Additionally, following UV
irradiation, chromatin was remodeled to increase DNA accessibil-
ity at MFA2, measured by restriction enzyme accessibility, which
was partially dependent on the activity of the SWI/SNF ATPase
Snf2 (Yu et al., 2005; Table 1). Overall, these findings support a
function for SWI/SNF remodeling in the NER pathway.

Evidence for SWI/SNF chromatin remodeling during NER
in mammals comes from BRG1 knockdown experiments that
showed reduced repair of CPDs following damage with UV radi-
ation, whereas restoring BRG1 in cells lacking the endogenous
protein showed stimulation of NER (Zhang et al., 2009; Zhao
et al., 2009; Table 1). In addition, SWI/SNF subunits BRG1 and
SNF5 have been shown to physically interact with XPC (Ray et al.,
2009; Zhao et al., 2009). In C. elegans, orthologs of mammalian
SWI/SNF, including BRG1, BRM/SMARCA2, SNF5, PBRM1, and
BAF155/SMARCC1 were implicated in survival after UV exposure
(Lans et al., 2010).

A recent study revealed a function for poly (ADP-ribosyl)ation
and chromatin remodeling during NER repair. Immunoprecip-
itation of DDB2 complexes and subsequent mass spectrometry
analysis of the interacting proteins identified PARP1 as a DDB2-
associated factor in human cells (Pines et al., 2012). This interac-
tion was dependent on UV irradiation and promoted the synthesis
of poly(ADP-ribose; PAR) chains in chromatin with UV-induced
lesions. In DDB2-deficient cells, there was substantially less PAR
immunofluorescence at UV damaged sites compared to wild-
type (Pines et al., 2012). The poly(ADP-ribosyl)ation recruited
the SWI/SNF chromatin remodeler ALC1 to sites of UV-induced
DNA lesions. Knockdown of ALC1 using shRNA resulted in
UV-sensitive cells that had deficient repair of CPDs and 6-4PPs,
indicating that ALC1 activity is critical to the GGR/NER pathway
(Pines et al., 2012; Table 1).

Chromatin remodeling by INO80 is also implicated in NER
(Table 1). Yeast ino80Δ mutants and mammalian cells with RNAi
knockdown of Ino80 are UV sensitive (Shen et al., 2000; Wu et al.,
2007). In yeast, UV-induced recruitment of Ino80 to chromatin
occurs through interactions with the Rad4–Rad23 NER damage
recognition complex (Sarkar et al., 2010). In mammals, Ino80 is
recruited to UV-damaged chromatin, and deletion of two INO80
complex subunits, INO80 and ARP5, resulted in defective repair
of UV lesions (Jiang et al., 2010). In addition, INO80-deficient
cells failed to recruit the NER factors XPC and XPA, suggesting
that INO80 chromatin remodeling may be necessary for lesion
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recognition and incision (Jiang et al., 2010). The links between
Ino80 and NER in both yeast and mammalian systems, the UV
repair defects, and the direct interactions with NER factors all
support the conclusion that Ino80 is another chromatin remodeler
with an important role in the NER pathway.

REMODELING IN THE TCR SUBPATHWAY
Cockayne syndrome group B and its homolog Rad26 in yeast
are DNA-dependent ATPases of the SWI/SNF family of ATP-
dependent chromatin remodeling enzymes acting in the TCR
pathway (Guzder et al., 1996; Selby and Sancar, 1997a). Both
CSB and Rad26 have been shown to affect chromatin structure,
based on in vitro experiments for CSB, and mutant phenotypes for
Rad26 (Citterio et al., 2000; Gregory and Sweder, 2001; Table 1).
In addition, both CSB and Rad26 enhance transcriptional elon-
gation (Selby and Sancar, 1997b; Lee et al., 2001, 2002). CSB
has been shown to be necessary for recruitment of repair fac-
tors to sites of damage repaired by the TCR pathway (Fousteri
et al., 2006). Recently, Rad26 was found to promote ejection
of the H2A-H2B dimer during transcription of the GAL1 gene
(Malik and Bhaumik, 2012). This regulation of chromatin struc-
ture by Rad26 is critical for transcription and may be necessary
for recruitment of repair factors during TCR to allow access to
the DNA lesions. Future studies should directly address whether
the role of Rad26 in promoting H2A-H2B dimer eviction also
contributes to efficient TCR.

There are some suggestions of ISWI chromatin remodeling in
NER and/or TCR. In experiments using synthetic dinucleosomes
containing 6-4PPs, recombinant Drosophila ACF stimulated
lesion excision (Ura et al., 2001; Table 1). Also, knockdown of ISWI
in human cells and C. elegans results in a modest UV sensitive
phenotype (Lan et al., 2010; Lans et al., 2010; Sanchez-Molina
et al., 2011). Additionally, the human ISWI isoform SMARCA5
is recruited to UV-induced DNA lesions, where it promotes
binding of the TCR factor CSB and restart of damage-stalled
transcription (Aydin et al., 2014). Intriguingly, purification of the
human WICH complex (WSTF-SNF2H), an ISWI family com-
plex, identified an interaction with CSB that was confirmed by
co-immunoprecipitation (Cavellan et al., 2006), adding another
link between ISWI and TCR. Thus, ISWI remodeling may
work together with Rad26/CSB to facilitate lesion repair during
transcription.

BASE EXCISION REPAIR (BER) WITHIN CHROMATIN
DNA bases damaged by, for example, oxidation and alkylation,
are repaired through BER. The damage repaired by BER does
not significantly distort the DNA and therefore does not stall
the replication or transcription machinery. The BER pathway is
initiated when a glycosylase enzyme recognizes and excises the
damaged base, leaving an abasic site. The abasic site is processed
by apyrimidinic/apurinic endonuclease (APE), which cleaves the
phosphodiester backbone, leaving a base gap. Then, DNA poly-
merase inserts the missing base(s) and DNA ligase seals the nick,
completing the BER repair process. Although the role of chro-
matin structure in the BER pathway has not been investigated in
depth, some links to histone modification and remodeling have
been identified.

There is some recent evidence for the importance of histone
modifications during BER. USP7 is a ubiquitin-specific human
protease which deubiquitinates histone H2B in vitro, though it
also targets non-histone substrates that include p53 (Li et al.,
2002). Upon siRNA knockdown of USP7, the levels and activ-
ity of BER enzymes were not changed, but the accessibility of
DNA and the repair rate of oxidative lesions were both reduced
(Khoronenkova et al., 2011). These results support their model for
H2B ubiquitination state affecting BER, though it will be impor-
tant to address whether histone H2B, or another protein substrate,
is the relevant in vivo target during BER. A connection between
acetylation and the BER pathway was observed in mammalian
cells by co-immunoprecipitation and co-localization of thymine
DNA glycosylase (TDG) and the HAT p300 (Tini et al., 2002).
P300/TDG complexes are competent for histone acetylation and
TDG itself is also acetylated by p300, therefore TDG may be the
relevant target of p300 (Tini et al., 2002). To date, no other histone
modifications have been demonstrated to affect BER and therefore
this is an interesting area for further study.

Multiple in vitro studies have investigated whether BER
enzymes can function properly in the context of a nucleosome-
containing template. Using uracil-containing oligonucleosome
arrays, the activities of uracil DNA glycosylase (UDG), which rec-
ognizes uracil in DNA, and APE, which recognizes abasic sites,
were both uninhibited, suggesting that the initial steps of BER by
UDG and APE can act efficiently in intact chromatin (Nakanishi
et al., 2007). However, synthesis by the polymerase function-
ing in BER, DNA polymerase β, was significantly reduced in
the oligonucleosome array (Nakanishi et al., 2007). This inhi-
bition was lessened upon addition of purified yeast Isw1 and
Isw2, both chromatin remodelers of the ISWI family, suggest-
ing that remodeling could be crucial for later repair events in
BER within compact chromatin (Nakanishi et al., 2007; Table 1).
The in vitro mechanism of BER has also been studied using
an 8-oxo-7, 8-dihydroguanine (8-oxoG) lesion on reconstituted
nucleosomes. Activities of murine 8-oxoguanine DNA glycosylase
(OGG1), human APE, and human polymerase β were all reduced
compared to their activity on a naked DNA substrate (Menoni
et al., 2007). The addition of the yeast SWI/SNF complex stim-
ulated the activity of all three BER enzymes in the repair of the
oxidative lesion in the nucleosomal array, to a level comparable
to their activity on naked DNA (Table 1). This effect required
SWI2/SNF2 dependent remodeling but not relocation of nucleo-
somes (Menoni et al., 2007). These two in vitro studies utilized
different types of BER lesions in the context of a nucleosome
substrate. Both concluded that chromatin remodeling promotes
polymerase β activity, however, differences were seen for the activ-
ities of the glycosylases (UDG, OGG1) and endonuclease APE on
the nucleosome substrates that were used, which may be related
to the lesion type or the nucleosome substrate itself. Overall, these
studies both point to a role for the SWI/SNF family remodelers
for efficient BER, though an in vivo role must still be estab-
lished. Recently, it was shown that depletion of STH1, the ATPase
subunit of RSC, results in sensitivity to MMS, and BER is con-
siderably inhibited in cells lacking STH1 (Czaja et al., 2014). This
establishes the first in vivo link between chromatin remodeling
and BER.
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HISTONE MODIFICATIONS AND NUCLEOSOME REMODELING
DURING MISMATCH REPAIR (MMR)
Postreplication mismatch repair (MMR) is initiated when a base
mismatch escapes the DNA polymerase proofreading machinery.
In human cells, MMR is regulated by histone H3-K36 trimethy-
lation (Figure 1F). H3-K36me3 is required in vivo to recruit
the heterodimer MSH2-MSH6 (MutSα) to chromatin through
the Pro-Trp-Trp-Pro (PWWP) domain of MSH6, a domain that
specifically interacts with H3-K36me3 (Li et al., 2013). Since H3-
K36me3 is abundant during G1 and early S phase, it is thought
that this ensures the enrichment of MutSα on DNA during the
period when mismatches are likely to arise. Cells that lack the
H3-K36 trimethyltransferase SETD2 have altered MSH6 localiza-
tion and a mutator phenotype, but are not defective in MMR in
vitro (Li et al., 2013). Whether additional histone modifications
are involved in MMR is as yet unknown; good candidates may be
those associated with the progression of DNA replication, such as
H3-K56 (Kadyrova et al., 2013).

Because nucleosomes become disassembled in front of a
replication fork, newly replicated DNA is relatively nucleosome-
poor and MMR may not need robust chromatin remodeling to
effectively compete with nucleosomes. However, fully formed
nucleosomes have been observed about 250 bp from a replica-
tion fork, and there are intermediates in the assembly process
in the region in between (Sogo et al., 1986; Jackson, 1988).
Therefore, the MMR machinery is likely to encounter some
completely formed nucleosomes in addition to nucleosome
intermediates. There is some evidence for interaction between
MMR factors and the histone H3–H4 chaperone chromatin
assembly factor 1 (CAF-1). Mismatch correction reactions with
HeLa cell extracts demonstrated that replication error correction
occurs on DNA that is packaged into nucleosomes by CAF-1
(Kadyrova et al., 2011). However, in a combined in vitro MMR
and nucleosome assembly assay, a mismatch in a nicked plas-
mid substrate delayed loading of nucleosomes in a human cell
extract (Schöpf et al., 2012), suggesting that MMR interferes with
nucleosome assembly. The balance between MMR and chro-
matin reassembly may be regulated by a physical interaction
between MutSα, specifically MSH6, and the p150 subunit of CAF-1
(Schöpf et al., 2012).

In addition to these interactions between MMR and chro-
matin assembly factors, passive chromatin remodeling assists the
MMR process. Using in vitro experiments with reconstituted
nucleosomes and purified human proteins, the MMR initia-
tion heterodimer MutSα disassembles nucleosomes (Javaid et al.,
2009). Nucleosome remodeling by MutSα required a mismatch
and translocation of the complex as a sliding clamp along the
DNA (Javaid et al., 2009). The nucleosome remodeling func-
tion required ATP binding but not hydrolysis, suggesting that
the remodeling function is passive. Histone H3 acetylation or
an H3 acetylation mimic (H3-K115Ac, H3-K122Ac, H3-K56Q),
enhanced the remodeling function of MutSα (Javaid et al., 2009).
Additionally, phosphorylation of histone H3-T118 enhanced
nucleosome disassembly by MutSα by 25-fold in vitro (North et al.,
2011). However, no in vivo investigation has been done yet to
support a role for H3 phosphorylation or acetylation in MMR.
There is also evidence that passive MutSα-dependent nucleosome

disassembly may not be sufficient, as human MutSα bound poorly
to a substrate with a mismatch within a nucleosome (Li et al.,
2009). In addition, nucleosomes blocked ATP-induced sliding of
MutSα along the DNA when there was a mismatch between two
nucleosomes (Li et al., 2009). Overall, these findings indicate that
nucleosomes likely inhibit the MMR process to some degree, and
active remodeling may yet be found to play a role in MMR.

CONCLUDING REMARKS
The interplay between histone modifications and DNA repair
likely creates a diverse array of cellular responses to DNA dam-
age based on the type of lesion and the preferred pathway of repair
for a particular lesion. γH2AX is the first detectable histone mod-
ification in response to DSBs, but it appears to be a general initial
modification, acting as a broad signal of DNA damage, activat-
ing signaling cascades in response to stalled forks, gaps, DNA
structures, and UV lesions, as well as DSBs. The subsequent, down-
stream histone modifications may guide repair to the appropriate
pathway based on lesion type.

A major unanswered question for many of the histone mod-
ifications summarized here is their mechanism of action. Do
histone marks recruit specific repair factors or remodelers via
direct interaction, or change local chromatin accessibility in a
more general way, or a combination of both? Several exam-
ples of direct interactions exist, for example Arp4, a subunit of
INO80, SWR1, and NuA4 complexes, binds specifically to yeast
H2A phosphorylated at Ser129 (Downs et al., 2004). In mam-
malian cells, the repair mediator MDC1 binds directly to γH2AX
via tandem BRCT domains (Uziel et al., 2003; Lukas et al., 2004;
Stucki et al., 2005). In addition, other roles for modifications can
also be envisioned, such as repositioning of the damaged area to
another nuclear compartment to direct appropriate repair (Dion
and Gasser, 2013).

Specific combinations of histone modifications may also be
important to differentially favor the recruitment of particular
repair factors. Depending on the interaction of the repair proteins
with the histone modifications, progressive histone modifications
after DNA damage could influence repair pathway choice or pro-
gression. One example of this during DSB repair in human cells is
Tyr142 on H2AX, which is phosphorylated in the absence of DNA
damage by the WSTF kinase (Xiao et al., 2009). However, upon
DNA damage and phosphorylation of H2AX at Ser139, Tyr142
is dephosphorylated by the Eya1 and Eya3 tyrosine phosphatases
(Cook et al., 2009). While the di-phospho γH2AX can be bound
by the repair factor MCPH1, MDC1 only efficiently binds γH2AX
once it is dephosphorylated at Tyr142 (Singh et al., 2012), thus
directing binding of repair factors in an orderly fashion. In most
cases, relatively little is understood about the order of the occur-
rence of the modifications depicted in Figure 1, and whether some
work together to recruit factors, change chromatin structure, or
signal completion of repair.

It is reasonable to expect that different lesions will also require
a different chromatin environment to promote repair, and thus
unique levels and types of chromatin remodeling. End resec-
tion, D-loop extension during HR, gap filling, fork restart, and
repair of base lesions or mismatches could each require a certain
degree of nucleosome movement or displacement. For instance,
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if a homologous template is utilized for repair, chromatin remod-
eling will require the movement of several nucleosomes at the
targeted, homologous sequence to allow invasion into the tem-
plate sequence and subsequent copying, as well as at the site of
the lesion if any resection is required for repair; on the other
hand, repair of base lesions or gap filling without strand invasion
may not require as substantial of a remodeling process. Finally,
repair resolution will require reestablishment of the chromatin
state and DNA damage checkpoint recovery. Depending on the
chromatin modifications that took place during repair, the dis-
ruption to the chromatin will vary and thus may require different
factors to reestablish the normal chromatin state.

Some combinations of histone modifications that distinguish
repair pathways from one another are summarized here, but many
remain to be identified. Understanding how these histone mod-
ifications work together to contribute to repair will further our
understanding of how the DNA repair machinery functions within
the context of the chromatin structure. Additionally, roles for
chromatin modifications in designating repair choice, orderly pro-
gression of repair, turnover of repair factors, and resolution of the
damage response may be revealed.
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