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The castes of social insects provide outstanding opportunities to address the causes and
consequences of evolution of discrete phenotypes, i.e., polymorphisms. Here we focus on
recently described patterns of a positive association between the degree of caste-specific
gene expression and the rate of sequence evolution. We outline how neutral and adaptive
evolution can cause genes that are morph-biased in their expression profiles to exhibit
historical signatures of faster or slower sequence evolution compared to unbiased genes.
We conclude that evaluation of different hypotheses will benefit from (i) reconstruction of
the phylogenetic origin of biased expression and changes in rates of sequence evolution,
and (i) replicated data on gene expression variation within versus between morphs.
Although the data are limited at present, we suggest that the observed phylogenetic
and intra-population variation in gene expression lends support to the hypothesis that the
association between caste-biased expression and rate of sequence evolution largely is a
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INTRODUCTION

Polymorphic populations are comprised of distinct interbreeding
phenotypes. These include males and females, alternative male
mating morphs and different forms of resource, dispersal, or
defense polymorphisms (West-Eberhard, 2003). Notably, poly-
morphisms also include the social insect castes, such as queens
and workers. Different forms of polymorphisms vary in several
respects (Box 1), but they have in common that determination
and maintenance of morph-specific phenotypes involve differen-
tial expression of genes. Polymorphisms are outstanding model
systems for studying the relative importance of changes in reg-
ulatory versus coding sequences (Carroll, 2005; Hoekstra and
Coyne, 2007), and the interchangeability of genes and environ-
ments in phenotypic evolution (West-Eberhard, 2003; Schwander
and Leimar, 2011; Uller and Helanterd, 2011).

The recent increase in availability of large scale gene expres-
sion data through microarray and whole transcriptome sequenc-
ing has facilitated quantitative and qualitative description of
the developmental genetic basis of polymorphism. In social
insects, caste biased expression patterns have been investigated
transcriptome wide in, for example, honeybees Apis mellifera
(Grozinger et al., 2007), bumblebees Bombus terrestris (Colgan
et al., 2011), Polistes wasps (Sumner et al., 2006; Ferreira et al.,
2013) and ants such as Solenopsis invicta (Hunt et al., 2011,
2013) and Temnothorax longispinosus (Feldmeyer et al., 2014).
Comparisons can be made with data from other polymorphic sys-
tems, including males versus females of laboratory model species

with genotypic sex determination (e.g., mice and Drosophila spp,
(Ranz et al., 2003; Zhang et al., 2007; Mank et al., 2008; Meisel,
2011), and a variety of environmentally induced polymorphisms,
such as horn polymorphism in beetles (Snell-Rood et al., 2011),
feeding type polymorphism in toad tadpoles (Leichty et al., 2012),
and dispersal polymorphisms in pea aphids (Purandare et al,
2014). Sequencing methods, sampling design, pooling of sam-
ples, statistical power and definitions of what qualifies as a morph
biased expression pattern vary extensively among studies, and the
proportions of genes or transcripts that are classified as morph-
biased range from a few to several tens of percents. For example,
between 7.5% (Hunt et al., 2011) and 40% (Grozinger et al.,
2007) of studied genes have been classified as caste biased in social
insects. In males and females, Naurin et al. (2011) describe only
1.6-2.4% of genes as sex biased in two bird species, whereas as
many as 90% of genes were reported to exhibit sex biased expres-
sion in a study of Drosophila (Innocenti and Morrow, 2010).
Approximately half of the genes in the pea aphid show a biased
expression pattern according to either morph or sex (Purandare
etal., 2014). However, across all these examples, very few genes, if
any, are exclusively expressed in one morph. That is, gene expres-
sion patterns vary between morphs in degree, and not in an
on-or-off manner.

Morph-biased gene expression has a wide range of causes and
consequences that are of interest to developmental and evolu-
tionary biologists. In the rest of this commentary we focus on
the intriguing observation that worker or queen biased genes
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Box 1| Animal polymorphism.

Different forms of polymorphisms share many features, but there are also important differences that may affect how the developmental
genetic regulation of their determination and function will evolve. This is an area that would benefit strongly from theory and comparative
analyzes, and here we can only provide a brief summary of some morph features that may be important for the relationship between
patterns of gene expression and sequence evolution.

All morphs are by definition discrete phenotypes, but the degree to which morphs differ from each other varies dramatically between
systems. Queens and workers are among their more extreme polymorphisms, but even within social insects the extent to which they
differ morphologically (e.g., size and shape) and physiologically (e.g., reproductive activity, lifespan) is quite variable (Bourke, 1999). In
some systems where morphs represent, for example, alternative reproductive strategies, it is not necessarily the case that the average
difference in gene expression between morphs is greater than differences within morphs (e.g., throughout the season). Other morphs are
not even functionally different and hence might only differ consistently in gene expression during morph determination (e.g., some color
or pattern morphs).

Morphs also sometimes differ genetically. The most familiar example is the sexes in mammals. It is unclear if and how the extent to
which morph determination relies on the presence of specific genes versus specific environments should affect the evolution of morph-
biased gene expression. Comparisons of closely related species with environment- versus genotype-dependent sex or caste determination
would be informative. Related to this is the extent to which genome evolution in species with genotypic morph determination parallels
that of sex chromosome evolution, which not only affects morph-specific gene content but also the extent of antagonistic selection across
the genome (Connallon and Clark, 2010).

Polymorphisms can be maintained by different forms of selection. In some cases the average fitness of morphs may be equal when
averaged across contexts, for example due to frequency-dependent selection. In other cases one morph is adopted under poor conditions
and is therefore maintained also when it exhibits consistently lower fitness on average. The selective dynamics affect the frequency of
morphs within populations and hence the strength of selection on genes with morph-specific expression or function (Van Dyken and \Wade,
2010). But it is also possible that different forms of selection create particular signatures in terms of sequence evolution, for example their
tendency to maintain nucleotide polymorphism within populations (Nielsen, 2005). The outcome of these processes will also be affected
by the age of polymorphisms. For example, we suggest that antagonistic selection may be more common in the early stages of morph
evolution when resolution of antagonism through expression patterns has not had time to evolve yet, and neutral evolution of both
seqguence and expression pattern more common in highly canalized morphs.

Morphs are defined at the level of the individual organism. However, in social insects where the colony, or even the supercolony, can
function as an individual organism (Queller and Strassmann, 2009), it is possible that morph-biased gene expression is not analogous to,
for example, sex-specific gene expression, but more similar to the differential expression of genes among tissues. Some predictions for
the rate of sequence evolution of tissue-specific and morph-specific genes compared to constitutively expressed genes are shared, but
others differ (in particular when not all morphs are capable of reproduction). Analogously to genes that are over-expressed in one tissue,
to understand the actual strength of selection on workerbiased genes it may be necessary to understand how this expression pattern

contributes to the performance of the colony (i.e., the reproductive unit).

in ants and social bees appear to evolve faster at the sequence
level than do genes with no expression bias (Hunt et al., 2010,
2011; Feldmeyer et al., 2014). This is not just a social insect phe-
nomenon. For example, it has repeatedly been shown in fruit
flies and mice that both male and female biased genes evolve
faster than unbiased genes (for recent studies see Meisel, 2011;
Assis et al., 2012; Grath and Parsch, 2012, reviewed in Parsch
and Ellegren, 2013). The same pattern has also been found
with respect to sex-specific reproductive functions in Arabidopsis
(Gossmann et al., 2014), tadpole feeding morphs in spadefoot
toads (Leichty et al., 2012), horn polyphenisms in beetles (Snell-
Rood etal., 2011), and dispersal morphs in pea aphids (Purandare
etal., 2014).

There are a number of potential explanations for these pat-
terns. To the extent that the morphs reflect different reproductive
roles, as is the case for males and females, queens and workers,
and dispersing sexuals and sedentary asexuals, faster sequence
evolution of biased genes can partly be explained by faster evo-
lution of reproductive genes (Meisel, 2011; Wright and Mank,
2013). Fast evolution of reproductive genes has been attributed
to sexual selection, including sexual conflict and sperm competi-
tion, which is expected to increase the rate of sequence evolution
(Swanson and Vacquier, 2002). Similar arguments should apply
to the various reproductive conflicts in insect societies (Rice and

Holland, 1997). Rapid evolution of reproduction-related genes
may also be partly due to faster evolution of tissue specific genes
when the observed sex biases arise from genes that are expressed
in sex-specific reproductive tissues (Meisel, 2011). Furthermore,
when interpreting results of transcriptomes of whole individu-
als, it needs to be kept in mind that they may reflect differences
in the size or composition of tissues between morphs, rather
than differences in gene expression at a cell level. More generally,
studies in model organisms have established that a large number
of additional factors could underlie a correlation between gene
expression patterns and evolutionary rates, including expression
breadth, overall expression levels, DNA methylation patterns,
architecture of regulatory sequences, and potential for pleiotropy
(Lemos et al., 2005a; Larracuente et al., 2008; Meisel, 2011; Park
et al., 2012; Warnefors and Kaessmann, 2013). Teasing these
explanations apart is major challenge in emerging model organ-
isms such as social insects. However, the correlation between
morph biased expression pattern and fast sequence evolution rate
remains significant even if many of these are controlled for sta-
tistically (e.g., Snell-Rood et al., 2011; Grath and Parsch, 2012;
Warnefors and Kaessmann, 2013), suggesting that this relation-
ship may be a fundamental feature of the evolution of genomes.
A recent study in fire ants suggested that caste-biased
genes evolved faster at sequence level even before they became
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morph-biased or, indeed, before the evolution of the castes (as
shown by comparisons with the solitary, monomorphic wasp
Nasonia vitripennis; Hunt et al., 2011). Interestingly, a similar
pattern was found in in toads where repeated evolution of poly-
morphism has taken place within a single genus (Leichty et al.,
2012). A second interesting finding is that genes that vary in
expression levels among morphs also seem to vary extensively in
their expression levels within morphs. This is particularly well
documented in fire ants (Hunt et al., 2013), and appears to
occur also in polymorphic toads (Leichty et al., 2012), and sex
biased genes in birds and fruit flies (Mank et al., 2007; Mank
and Ellegren, 2009). As described below, both of these obser-
vations provide important pieces of evidence for addressing the
role of neutral and selective explanations for associations between
biased gene expression and rate of sequence evolution across the
genome.

In this paper, we provide an overview of five different scenarios
that predict a relationship between caste-biased gene expression
and accelerated sequence evolution. We draw from both stud-
ies of sex biased gene expression in model organisms and from
the diverse but less studied polymorphic organisms. We con-
clude that the association between caste-biased gene expression
and rate of sequence evolution will be better understood if we
address the contribution of selective and neutral processes for
both inter-individual and phylogenetic divergence in gene expres-
sion. This requires both more detailed analyzes of individual and
context-dependent variation in gene expression, and establishing
whether the strength of selection on gene sequences is a cause or
a consequence of changing patterns of gene expression.

ROUTES TO COUPLING OF MORPH-BIASED EXPRESSION
AND RATE OF SEQUENCE EVOLUTION

Contemporary patterns of variation in DNA sequence and gene
expression partly reflect a mix of selective and stochastic events
accumulating over evolutionary time (as well as current condi-
tions experienced by the focal individuals). The relative impor-
tance of neutral and adaptive evolution for genome evolution is
a contentious issue. DNA sequences diverge as a result of accu-
mulation of changes that are neutral with respect to fitness or
too weakly selected to be purged, but they also diverge because of
repeated fixation of mutations due to selection. Similarly, diver-
gence in gene regulation can represent both selection and drift.
Here we ask how these processes can cause genes with caste-biased
expression to exhibit evidence of accelerated sequence evolution.

NEUTRALITY

Assuming morphs are adaptive, at least some morph-bias in gene
expression is a result of selection. However, in many species the
number of genes that contribute to morph determination or
maintenance of morph-specific phenotypes may be quite small.
Thus, it is possible that a large proportion of variation in gene
expression between morphs is a result of neutral evolution. Genes
whose expression level is under weak selection are expected to be
less precisely regulated due to accumulation of near-neutral regu-
latory mutations (Khaitovich et al., 2005, 2006). By chance, some
of the accumulating regulatory mutations may result in morph-
biased expression. Thus, morph specific expression patterns can

arise through drift. This suggests that, in any given data set,
morph-biased expression partly reflects a history of weak purify-
ing selection on gene regulation. This can create a link between
rate of sequence evolution and biased gene expression if genes
that are under weak selection with respect to sequence are also
under weak selection in terms of expression, and consequently
more likely to have a drifted toward biased expression pattern
than constrained genes. This is likely to often be the case given
the observed correlations between gene essentiality and expres-
sion noise (Fraser et al., 2004), and expression divergence and
sequence divergence among species (Lemos et al., 2005b; Zhang
et al., 2007; Mcmanus et al., 2010).

This process should result in the pattern observed in S. invicta
(Hunt et al., 2011), where genes that presently exhibit morph-
biased expression evolved faster even before the evolution
of morphs or before morph biased expression pattern arose
(Figure 1). Also, since it implies that regulation of expression is
not under strong selection or constraint, we expect such genes to
show substantial variation in their expression both between and
within morphs—a pattern also shown in S. invicta. The temporal
and phylogenetic patterns of sequence and expression evolution
that would correspond to this scenario are shown in Figure 1A.
Assessing neutrality of gene expression is compromised by the
lack of a widely accepted neutral baseline (comparable to compar-
ison of synonymous and non-synonymous amino acid changes in
sequence data), but theory is advancing fast in this area and sev-
eral alternatives have recently been proposed (Gout et al., 2010;
Warnefors and Eyre-Walker, 2012; Rohlfs et al., 2014).

Relaxed selection due to expression bias
Interpreting a correlation between expression bias and evolu-
tionary rate in social insects is complicated by the fact that
genes expressed in workers only have indirect effects mediated
through the queen genotype (Linksvayer and Wade, 2009; Hall
and Goodisman, 2012). The strength of selection on worker
biased genes thus depends on the genetic similarity or kinship
between the worker expressing a gene, and the queen that is
reproducing in the nest. Relaxed selection may also occur in
polymorphic species where all morphs reproduce. A very gen-
eral model of polymorphic expression suggests that, all else being
equal, expression bias itself may directly contribute to evolution-
ary rate (Snell-Rood et al., 2010; Van Dyken and Wade, 2010).
This is because once expression of a gene falls below functional
levels in some individuals (e.g., one of several morphs), those
genes are under direct selection in a subset of the population and
hence under weaker selection than constitutively expressed genes.
Thus, both directional and purifying selection become relaxed
following morph-biased gene expression, which allows mildly
deleterious alleles to accumulate at a higher rate than is the case
for constitutively expressed genes. In one such scenario, a gene
under weak selection may drift to non-detectable expression lev-
els in one morph (assuming the strength of selection on sequence
and expression are correlated as in Figure 1A), leading to fur-
ther relaxation of selection and hence neutral sequence evolution
(Figure 1B).

Although this is an attractive hypothesis, the extremely low
number of genes that are morph-specific, rather than simply
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FIGURE 1 | Predicted patterns of evolutionary history of gene
expression and sequence evolution for the five scenarios outlined
in the text. The left hand column shows the expected relative
variation in expression within morphs and hypothetical changes in
morph biased gene expression over time. White bars for morph 1
and gray bars for morph 2. The second column shows how average
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A. Neutral scenario:

Ancestral state: Near neutral evolution, large expression
variability

Temporary pattern in expression variability:

large expression variation within morphs persists
Temporary pattern in evolutionary rate:

constant near-neutral sequence evolution

Phylogenetic correlation of expression bias and evolution-
ary rate: evolutionary rates do not covary with
expression patterns

C o CCw®C

B. Relaxed selection due to expression bias:

Ancestral state: Near neutral evolution, large expression
variability

Temporary pattern in expression variability: Large
expression variation persists in the expressing morph
Temporary pattern in evolutionary rate:

Both directional and purifying selection weakened when
expression bias evolves

Phylogenetic correlation of expression bias and evolution-
ary rate: Evolutionary rates more close to neutral on
branches with expression bias

C @ CCw®C

C. Co-option scenario:

Ancestral state: Near neutral evolution, large expression
variability

Temporary pattern in expression variability: Variability
decreased in the morph where new function evolves
Temporary pattern in evolutionary rate: Either purifying
or directional selection arises with expression bias
Phylogenetic correlation of expression bias and evolution-
ary rate: purifying or positive selection on the branches
with expression bias

C ®mC C wm®C

D. Weak pleiotropic constraint scenario

Ancestral state: Small expression variability, selection
either purifying or directional

Temporary pattern in expression variability:

low expression variability persists

Temporary pattern in evolutionary rate:

Selection remains as purifying or directional despite
changes in expression bias

Phylogenetic correlation of expression bias and evolution-
ary rate: Evolutionary rates do not covary with
expression patterns

C @ CCw®C

E. Antagonism scenario:

Ancestral state: small expression variability, purifying
selection due to antagonistic pleiotropic constraint
Temporary pattern in expression variability:

small variability persists in the expressing morph
Temporary pattern in evolutionary rate:

Directional selection possible after expression change
Phylogenetic correlation of expression bias and evolution-
ary rate: directional selection occurs only on branches
with expression bias

C @ C C wC

evolutionary rates are predicted to change over time (p, purifying; n,
neutral; d, directional), and the third column shows how the patterns
would be seen in a phylogeny in a group where some species show
biased expression (B) for the gene in question, whereas others do
not (U). Solid line, neutral rate; hatched line, purifying selection; dotted
line, directional selection.

morph-biased, may suggest that few genes in fact are under
relaxed selection. However, if we assume that there is a general
correlation between expression level and strength of selection (P4l
et al., 2001; Lemos et al., 2005a; Meisel, 2011), or that genes
with a low expression level may be below a threshold value for
being functional, the logic holds for genes with non-zero expres-
sion. Consistent with these predictions, genes expressed in rarer
morphs of pea aphids appear to evolve faster due to relaxed

purifying selection than genes biased toward the more com-
mon morphs (Purandare et al., 2014). Furthermore, the findings
that both queen biased and worker biased genes evolve faster
than unbiased genes (Hunt et al., 2010, 2011) suggests that fast
evolution is not only due to reproductive genes (expressed in
queens) evolving fast, which is broadly consistent with the gen-
eral theory of relaxed selection. Nevertheless, widespread positive
selection on worker biased genes in honeybees (Harpur et al.,
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2014) suggests that relaxed selection is not necessarily a major
force limiting adaptive evolution of genes with worker biased
expression.

This relaxation of selection due to gene copies in non-
expressing or non-reproducing individuals being invisible to
selection should apply to all genes with extreme expression bias
and not only those that drift to this situation. For genes that
are under positive selection before morph bias evolves, evolu-
tion could slow down and approach neutrality due to morph
bias, whereas genes historically under purifying selection could
start accumulating mutations and shift toward neutrality due to
weakened purifying selection with morph bias. As a result, many
different patterns of historical signatures of sequence evolution
are possible.

SELECTION

Consistent stabilizing (purifying) or directional (positive) selec-
tion can generate both slower and faster rates of sequence
evolution compared to the neutral expectation. Harmful muta-
tions in genes whose sequence is essential for organismal func-
tion are rapidly purged, resulting in slow rates of evolutionary
change. On the other hand, mutations in genes that cause func-
tional changes to phenotypes can be consistently and repeatedly
selected if conditions change, such as the case in evolutionary
“arms races.” Thus, if these patterns of selection covary with
expression patterns, it could contribute to the observed relation-
ship between caste-biased gene expression and the rate of gene
sequence divergence.

Co-option of neutral genes to morph specific function

Genes with high rate of sequence evolution due to weak purifying
selection may not only drift toward morph-biased expression, as
described above, but also be more likely to become co-opted for
morph specific functions. This is because weak selection enables
the accumulation of genetic variation that can become func-
tional in novel contexts (True and Carroll, 2002). Co-option can
potentially occur during morph evolution. Alternatively, genes
may become morph biased after the evolution of morphs even
if they did not play a role in their original divergence. This has
potential implications for the evolution of both the sequence
and regulation of those genes. Both positive and purifying selec-
tion following co-option are possible and can make the rate
of sequence evolution change from near-neutral toward faster
or slower or, comparing site by site, increase both the propor-
tions of sites under positive and purifying selection, respectively
(Figure 1C).

In this scenario, following evolutionary rates of gene sequences
over time should reveal a change from expectations of neu-
trality toward signatures of selection. Consequently co-opted
genes should contribute to the observed correlation of expres-
sion bias and fast sequence evolution only through those genes
that became positively selected following co-option, as only these
genes continue to evolve fast. At the level of expression, co-option
of historically “near-neutral” gene sequences should result in
further selection for precise gene regulation and hence a reduc-
tion in expression noise over evolutionary time in lineages with
morphs (Figure 1C). The role of co-option in the evolution

of morph biased gene expression has not been directly stud-
ied in social insects, and doing so requires more information
on the extent to which morph-biased genes also have morph-
biased fitness effects. For example, studies showing that weak
selection on sequence precedes morph biased expression (Hunt
et al., 2011; Leichty et al., 2012) have not demonstrated that
the subsequent expression bias reflects morph specific function
rather than continued weak selection. In contrast, positive selec-
tion of worker biased genes in honeybees is also consistent with
a co-option scenario, but the historical data on evolutionary
rates before caste biased expression evolved is lacking (Harpur
et al.,, 2014). Outside social insects it has been observed that
up-regulated expression in one morph is linked to higher fit-
ness effects in that morph (Connallon and Clark, 2011; Hall and
Goodisman, 2012), but it is unknown whether the fitness effects
caused selection for biased expression, or if biased expression
arose first followed by compensatory changes to maintain morph
fitness.

Evolution under weak pleiotropic constraint

Genes typically have multiple functional targets, which may con-
strain their evolution. Functional constraint contributes to the
overall strength of selection on sequence and expression and
is therefore implicit in much of what has already been dis-
cussed. However, the literature also emphasizes a more construc-
tive role of weak pleiotropy where it directly causes particular
fast evolving genes to become morph biased. Genes that are
expressed in a context or tissue specific manner (Duret and
Mouchiroud, 2000; Zhang and Li, 2004), are likely to have low
number of interactions with other gene products (e.g., Assis et al.,
2012) and therefore be free to evolve under directional selec-
tion. Furthermore, it has been suggested that genes that have a
regulatory architecture that allows precise regulation, which also
decreases pleiotropic constraint, are more likely to exhibit context
sensitive expression patterns (Grishkevich and Yanai, 2013), such
as morph biased expression. While the correlation of pleiotropic
constraint and expression pattern has not yet been tested in
social insects, it is supported by sex-specific gene expression pat-
terns in mice, chicken and fruit flies, where sex biased genes
appear to exhibit weak pleiotropic constraints (Mank et al., 2007;
Meisel, 2011; see also below). If precisely regulated genes, with
potentially low pleiotropic constraint, are more likely to evolve
morph biased expression patterns, this should create a consis-
tent positive correlation between morph biased expression and
high rate of sequence evolution, caused by positive selection, over
evolutionary time (Figure 1D).

Fast sequence evolution due to positive selection has been
shown to occur in worker biased genes in the honeybee (Harpur
et al., 2014), in caste biased genes in seven ant genomes (Roux
et al., 2014) and male biased genes in Drosophila (reviewed in
Wright and Mank, 2013). However, additional data is necessary
before this can be taken as support for rapid evolution due to
relaxation from pleiotropic constraints. If fast evolving genes with
expression bias are indeed only weakly constrained by pleiotropy,
we expect their evolutionary rate to be high already before the
biased expression pattern evolved. Furthermore, under highly
precise regulation we expect relatively low expression variation

www.frontiersin.org

August 2014 | Volume 5 | Article 297 | 5


http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive

Helantera and Uller

Caste-biased expression and sequence evolution

among individuals within morphs. Consistent directional selec-
tion is thought to be rare, but may be particularly likely for genes
involved in reproduction, immunity and social and reproduc-
tive conflicts (Swanson and Vacquier, 2002; Summers and Crespi,
2005; Obbard et al., 2009).Because many morphs, notably sex
and caste, have different reproductive functions the morph biased
genes that evolve fast under directional selection may largely be
composed of reproductive and conflict related genes. This could
also explain why such genes evolve fast before they become morph
biased (or before morphs evolve). In social insects such genes
may be found among genes involved in recognition and responses
to hormones, as suggested by Roux et al. (2014). Outside social
insects, genes with a conserved male biased expression, likely to
be involved in reproductive function and often expressed in sex
specific tissues, have been shown to evolve faster than other sex
biased genes in Drosophila (Grath and Parsch, 2012). The often
narrow tissue wide expression profiles of sex biased genes may
also support that genes without pleiotropic effects are more likely
to become morph biased, but without temporal data it is difficult
to tease apart what is cause and consequence for this association.

Morph antagonistic selection

One source of antagonistic selection is when an allele has benefi-
cial effects on one morph but negative effects in another morph.
This form of antagonistic selection has been discussed frequently
with respect to sex biased gene expression (Rice and Chippindale,
2001; Morrow et al., 2008; Innocenti and Morrow, 2010), but here
we emphasize that the same logic applies to any polymorphism,
including social insect castes (see Hall et al., 2013; Holman, 2014,
for specific models on caste antagonistic selection). If an allele has
opposite fitness effects in two or more morphs, selection should
favor suppression of expression in the morph(s) where it has
negative consequences (Rice and Chippindale, 2001). Following
the evolution of suppression of gene expression, antagonistic
pleiotropy is relaxed, which enables genes to respond to direc-
tional selection and exhibit fast sequence evolution (Gadagkar,
1997). This follows the general logic described above, but under
this scenario the changes in expression pattern and evolutionary
rates are predicted to occur concurrently, i.e., sequence evolu-
tion accelerates when biased expression evolves (Figure 1E). Also,
genes under positive selection should be highly regulated (Fraser
etal., 2004; Wang and Zhang, 2011), and thus vary relatively little
in their expression pattern within each morph. Many sex biased
genes do evolve under positive selection (reviewed in Wright and
Mank, 2013), and positive selection in worker biased genes has
recently been demonstrated in the honeybee (Harpur etal., 2014).
The expression history of these genes, and the timing of possible
changes in evolutionary rates, is largely uncharted. Support for
the theory would require data showing that these genes began
to evolve under positive selection following the evolution of
morph-biased expression.

Actual mapping of loci with antagonistic fitness effects is cur-
rently out of reach for any social insect system, but studies have
recently been conducted in Drosophila (Innocenti and Morrow,
2010; Parsch and Ellegren, 2013). Only a minor proportion of
genes with sex biased expression showed sexually antagonistic
fitness effects in a hemiclonal analysis (Innocenti and Morrow,

2010), which suggests that ongoing selection for suppression is
not a major explanation for biased gene expression. However,
there are several reasons why some of the antagonistic fitness
effects may go undetected in such coarse scale analyses (out-
lined in Parsch and Ellegren, 2013), and the contemporary lack
of antagonistic fitness variation in sex biased genes could be a sig-
nal of a resolved ancestral conflict (Innocenti and Morrow, 2010).
Because a considerable proportion of unbiased genes appear to
have antagonistic fitness effects (Innocenti and Morrow, 2010), it
is also possible that constraints such as intersexual genetic correla-
tion may limit an evolutionary response to sexual antagonism in
terms of biased expression. Alternatively, alleles at unbiased loci
that show antagonistic fitness effects may have arisen so recently
that the resulting conflict has not yet been resolved through
morph-biased suppression of expression.

Summary of scenarios

It is important to keep in mind that even when the scenarios make
mutually exclusive predictions (summarized in Figure 1), they
still represent processes that can co-occur and overlap. For exam-
ple, if antagonistic fitness drives the system to morph-specific
expression, this leads to relaxation of selection as well. Similarly,
co-option and relaxed selection can be seen as alternative inter-
pretations of a similar process that on the one hand allows
exploration of the phenotypic space and on the other hand may
lead to accumulation of slightly harmful mutations and “poly-
morphism load.” Finally, although weak pleiotropic constraint
can be viewed as the principal reason for why some genes become
morph biased in their expression, it is also an important determi-
nant of evolutionary rates in other scenarios simply by dictating
the overall selection on both gene sequence and expression.

DISCUSSION

Recent research provides partial support for several of the sce-
narios described above, but the data on social insects are still
very limited and it is unknown how much can be generalized
from other polymorphic systems (Box 1). It is likely that several
processes contribute to some extent. Thus, the empirical task is
assessing the relative contribution of the different processes rather
than forcing a single explanation to any given pattern. We suggest
that doing so relies on two critical types of data—gene expression
variation between and within species—both of which are limited
in published studies to date.

First, phylogenetic mapping of the rates of sequence evolu-
tion and patterns of gene expression (Figure 1) is necessary for
revealing the temporal order of changes in gene expression and
sequence divergence. To date, comparisons are typically weak
in terms of phylogenetic rigor (e.g., making use of two-species
comparisons), and availability of a number of relevant con-
trasts is clearly a major challenge for future work. With more
species, mapping rates of sequence divergence on a phyloge-
netic tree can determine whether fast-evolving genes are more
likely to show morph-biased expression than slow-evolving genes.
In cases where ancestral monomorphic populations are extant,
such comparisons can be carried out by comparing evolution-
ary rates in lineages with and without morphs (e.g., Leichty
et al.,, 2012), although in many cases replication is limited by
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the number of independent origins of morphs. For the advanced
eusocial Hymenoptera, the number of independent origins of
morphs is a serious limiting factor—but social taxa that comprise
multiple origins of sociality, such as halictid bees or snapping
shrimps, could be fruitful model systems for replicated studies.
For cases where number of independent replicates is limiting,
or where monomorphic outgroups are unavailable, the phyloge-
netic reconstruction of expression patterns has to be carried out
gene-by-gene (see e.g., Grath and Parsch, 2012). Making the com-
parisons at a relevant phylogenetic scale can reveal both the effects
of idiosyncratic features of specific polymorphic taxa, and possi-
ble convergent features shared across independent evolutionary
origins of polymorphisms.

Furthermore, separating weak purifying selection from posi-
tive selection as causes of fast sequence change places demands
on sequence data. Simple summary statistics such as the average
dn/ds ratios per gene can reveal interesting patterns of average
evolutionary rates but are unlikely to capture the complexity of
the process. McDonald-Kreitman type tests are a more powerful
and suitable method for detecting genes under positive selection
(see e.g., Harpur et al., 2014 for a recent example) when a small
number of taxa are analyzed. Furthermore, given that some of
the scenarios predict concurrent changes in both the strength of
positive and purifying selection, investigating site specific signa-
tures of selection e.g., using maximum likelihood methods (Yang,
2007) in larger phylogenetic data sets might be necessary for
thoroughly teasing apart the contributions of all the different
processes (Nielsen, 2005).

Second, we suggest that it will be necessary to establish the
patterns of variation among individuals within morphs for teas-
ing apart adaptive and non-adaptive scenarios. This is because
the processes that drive the rate of sequence divergence phy-
logenetically are also expected to generate different patterns of
variation in gene expression among individuals within popula-
tions and species. Large expression variation among individuals
in morph-biased genes would support the idea that genes become
morph-biased because they are under relatively weak selection. In
contrast, if genes evolve fast as a result of directional selection,
this should be associated with precise gene regulation and hence
biased genes should exhibit low expression variation within and
between individuals of a given morph. Individual-level data on
gene expression therefore provide one potential source of infor-
mation that can help to evaluate the reasons for biased expression,
which also sets demands for replication and careful study design
for future studies. Given the large size of many social insects, repli-
cation at an individual (see e.g., Morandin et al., 2014) and tissue
level (Johnson et al., 2013) should be feasible.

Unfortunately, interpretation of gene expression variation is
difficult. On the one hand, variation may represent lack of pre-
cise regulation, which causes noisy expression (Fraser et al., 2004).
On the other hand, gene expression data may show substantial
variation simply because of variable external or internal states
not controlled during data collection (Figure2). While it has
been shown that expression is inherently noisier in non-essential
genes in model organisms such as yeast, interpreting patterns
of expression variability that underlie complex phenotypes is
far from straightforward given the large numbers of genes that

exhibit context-dependence that is unrelated to morph-specific
function. For example, the proportions of genes that are dif-
ferently expressed across life stages (Ometto et al., 2011; Perry
et al., 2014), social environments (Manfredini et al., 2013), and
genotypes (Nipitwattanaphon et al., 2013) are sometimes com-
parable in magnitude to morph-biased proportions. It has also
been shown in studies focusing on single genes, such as vitel-
logenin, that caste bias is sensitive to seasonal and contextual
variation (Azevedo et al., 2011; Libbrecht et al., 2013; Morandin
et al., 2014). Furthermore, factors such as individual condition
in Drosophila (Wyman et al., 2010), behavior in zebrafish (Rey
et al., 2013), presence of social and sexual stimuli in swordtails
(Cummings et al., 2008), and abiotic environmental conditions
(Yampolsky et al., 2012) have been demonstrated to co-vary with
expression patterns. These results suggest that without proper
replication it cannot be assumed that all observed variation
within morphs is stochastic and a sign of weak regulation. Also
the observation that morph bias varies extensively between life
stages (Ometto et al., 2011) and tissues (Mank et al., 2008) sug-
gests that the more we understand the causes of variation in
expression patterns, the fewer genes will be consistently classified
as morph biased (Meisel, 2011).

Importantly, assessing any adaptive scenario for gene expres-
sion variation is only possible when compared against a suitable
neutral expectation. While the neutral evolution of morph biased
expression patterns has been directly assessed in only a few cases,
studies of selection acting on gene expression patterns in gen-
eral may shed some light on this issue. There are several recently
suggested neutral scenarios in the literature (Gout et al., 2010;
Warnefors and Eyre-Walker, 2012; Smith et al., 2013; Rohlfs
et al.,, 2014) but empirical studies that address neutral expec-
tations have focused on species divergence in gene expression
and not morph-biased expression. It has been suggested that
the factors that cause gene expression to diverge among species
(e.g., non-essentiality) also expose genes to evolve context spe-
cific expression patterns (Grishkevich and Yanai, 2013). Whether
general conclusions about selection on gene expression also apply
to caste specific patterns remains an open question, but we sug-
gest that they may very well do. This is supported by the finding
of enriched signatures of adaptive regulatory evolution in genes
underlying worker behavioral plasticity in honeybees (Harpur
et al., 2014), and the extensive diversification of regulatory ele-
ments in social insects in general (Simola et al., 2013). Overall, the
evidence for selection on gene expression is mixed, but a preva-
lence of stabilizing selection has been suggested (Gilad et al., 2006;
Khaitovich et al., 2006; Warnefors and Eyre-Walker, 2012). In
contrast, the relatively large turnover in the set of morph biased
genes [caste biased genes between two species of Polistes paper
wasps (Ferreira et al., 2013), between two species of Cryptotermes
termites (Weil et al., 2009), sex biased genes among species of
Drosophila (Metta et al., 2006; Zhang et al., 2007; Jiang and
Machado, 2009; Assis et al.,, 2012) and between zebra finch
Taeniopygia guttata and common whitethroat Sylvia communalis
(Naurin et al., 2011)] supports that neutral processes play a large
role, implying that genes acquire or lose morph biased expression
largely due to drift. This is consistent with studies comparing a
small numbers of genes in closely related species that have shown
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FIGURE 2 | Why variability in expression pattern may be difficult
to interpret. Boxes with solid and dotted outlines refer to

expression in two different morphs. Top row: Within contexts gene
expression that are consistently morph biased (dark gray boxes) or
morph biased in a context-dependent manner (e.g., body size, age,
past or current social experience) (white boxes) will show a morph

Context 3 Contexts pooled

biased pattern. In contrast, pooling samples across contexts makes
context-dependent expression indistinguishable from expression
variability per se (light gray boxes). Bottom row: In pooled samples
genes regulated according to context (white boxes) are
indistinguishable from genes with an expression pattern that is
un-biased but highly variable (gray boxes).

that caste biases may be evolutionarily labile (Weil et al., 2009;
Morandin et al., 2014).

CONCLUSIONS

Recent data suggests a relationship between the rate of sequence
evolution and morph-biased gene expression in social insects and
other polymorphic taxa, but its causes remain poorly understood.
Morph-biased genes can evolve faster for several reasons. We sug-
gest that the majority of morph-biased genes are under relatively
weak selection, which can also explain why those genes evolve
faster before the evolution of morphs. This suggests that adaptive
scenarios should be treated with caution unless further support-
ing evidence can be provided. However, we also suggest that genes
that ancestrally have been under weak selection, and therefore
show high accumulation of mutations, may be co-opted in morph
evolution and hence continue to evolve fast because of direc-
tional selection. Alternatively, co-option can lead to a reduction
in the rate of evolution because of purifying selection following
the onset of morph-biased expression. There are therefore several
different possible genomic signatures of the evolution of morphs.
Distinguishing between adaptive and (near-)neutral scenarios for
the coupling of the rate of sequence evolution and morph-biased
expression will require data to be replicated in several dimen-
sions (individuals, contexts, morphs, species) at a level that is
only now beginning to be possible in any taxa, including social
insects. Many of the reported correlations to date are weak, and
the patterns are likely to be refined by carefully assessing different
functional classes of genes, more detailed studies of tissue specific
expression, and studies that directly assess the evolution of gene
regulation.
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