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Multiple local structure comparison helps to identify common structural motifs or
conserved binding sites in 3D structures in distantly related proteins. Since there is no
best way to compare structures and evaluate the alignment, a wide variety of techniques
and different similarity scoring schemes have been proposed. Existing algorithms usually
compute the best superposition of two structures or attempt to solve it as an optimization
problem in a simpler setting (e.g., considering contact maps or distance matrices). Here,
we present PROPOSAL (PROteins comparison through Probabilistic Optimal Structure
local ALignment), a stochastic algorithm based on iterative sampling for multiple local
alignment of protein structures. Our method can efficiently find conserved motifs across
a set of protein structures. Only the distances between all pairs of residues in the
structures are computed. To show the accuracy and the effectiveness of PROPOSAL
we tested it on a few families of protein structures. We also compared PROPOSAL with
two state-of-the-art tools for pairwise local alignment on a dataset of manually annotated
motifs. PROPOSAL is available as a Java 2D standalone application or a command line
program at http://ferrolab.dmi.unict.it/proposal/proposal.html.
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1. INTRODUCTION

Protein function is commonly deduced by sequence analysis. On
the other hand, most protein interactions, such as catalytic activ-
ity or gene regulation (transcription, maturation, etc.), depend
on sub-regions of their 3D structures, called structural or binding
motifs. Havranek and Baker (2009) show that the identification
of protein-DNA interactions can help discover placements for
the protein backbone. This contributes to identify the desired
position and interaction of the side-chain atoms, which are
responsible for protein function.

Since the structure of many proteins is still unknown and pro-
teins with similar structural motifs often exhibit similar biological
properties even when they are distantly related, 3D structure com-
parison can help characterize the role of many proteins. As stated
in Eidhammer et al. (2000), there is no best way to make the
comparison or to evaluate the alignments. Since no notion of
common ancestor exists, there is a huge variety of plausible relat-
edness models. Forthermore, from an algorithmic standpoint, 3D
structure comparison is an NP-hard problem (Goldman et al.,
1999). Structural comparison is usually performed by local align-
ments since these are more sensitive than the global ones. Indeed,
proteins with dissimilar folds may share common binding sites or
interfaces. Some of them start from a specified motif (called tem-
plate) in a query protein structure and search for similarities in a
reference set of 3D structures.

MolLoc (Angaran et al., 2009) is a web server for comparing
known binding sites, cavities or user-defined sets of residues of

two or more molecular surfaces. The algorithm builds a structural
alignment maximizing the extension of surface superposition.
MultiBind (Shatsky et al., 2006; Peleg et al., 2008) recognizes com-
mon spatial chemical binding patterns in a set of proteins by
solving a 3D k-partite matching problem through efficient geo-
metric hashing techniques. MAPPIS (Peleg et al., 2007, 2008)
relies on a similar algorithm and performs multiple alignment of
protein-protein interfaces, predicting hot spot residues that con-
tribute to the conserved patterns of the interactions. LabelHash
(Moll et al., 2010), in a preprocessing phase, builds reference hash
sets to guarantee instant lookup of partial motif matches. Then,
these latter are expanded using a variant of the match augmen-
tation algorithm (Chen et al., 2007). In general, the matching
task can be performed with a few algorithmic techniques, such
as linear programming (Lancia et al., 2001; Wohlers et al., 2009),
dynamic programming (Orengo and Taylor, 1996; Jung and Lee,
2000; Ye and Godzik, 2003), depth-first searching (Stark and
Russell, 2003; Ausiello et al., 2005; Chen et al., 2007), graph the-
ory (Jambon et al., 2003; Spriggs et al., 2003; Hofbauer et al.,
2004; Huan et al., 2006; Weskamp et al., 2007; Najmanovich
et al., 2008; Konc and Janezic, 2010), geometric hashing (Bachar
et al., 1993; Wallace et al., 1997; Shatsky et al., 2006; Moll et al.,
2010), Markov chains and Monte Carlo methods (Holm and
Sander, 1993; Kawabata, 2003) and combinatorial optimization
(Shindyalov and Bourne, 1998; Bertolazzi et al., 2010).

Other approaches align two protein structures with no infor-
mation about the location of potentially conserved binding sites.
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Among these we have ProBiS (Konc and Janezic, 2010, 2012)
which solves the problem by making use of a maximum clique
algorithm; SMAP (Xie and Bourne, 2008; Xie et al., 2009), a soft-
ware package which includes a method to characterize protein
structures using geometric potential, and a sequence order inde-
pendent profile-profile alignment tool (SOIPPA); DaliLite (Holm
and Park, 2000; Holm et al., 2008) which computes optimal and
suboptimal structural alignments, by optimizing a scoring func-
tion given by the weighted sum of similarities of intramolecular
distances.

To establish alignment quality several similarity scoring
schemes exist. Among these the most used are the Root Mean
Square Deviation (RMSD) of the optimal rigid-body superpo-
sition (Kabsch, 1976), the distance map similarity (Holm and
Sander, 1993) and the Contact Map Overlap (CMO) (Lancia
et al., 2001; Di Lena et al., 2010).

In this paper, we present PROPOSAL (PROteins compari-
son through Probabilistic Optimal Structure local ALignment), a
stochastic algorithm for local alignment of 3D protein structures.
PROPOSAL relies on Markov Chain Monte Carlo in connection
to a Gibbs Sampling strategy which has been applied to solve
the multiple local sequence alignment problem (Lawrence et al.,
1993) as well as the multiple protein-protein interaction network
alignment (Micale et al., 2014).

We tested PROPOSAL on the J. Skolnick benchmark (Lancia
et al., 2001) and a set of known manually curated motifs, taken
from the Catalytic Site Atlas (CSA) (Furnham et al., 2013).
Results clearly show that the algorithm is accurate and identi-
fies many highly conserved substructures and known functional
binding sites across many proteins. Given its non-deterministic
nature, it is very fast even on a large number of structures.
We also compared PROPOSAL with two state-of-the-art sys-
tems, ProBiS (Konc and Janezic, 2010, 2012) and SMAP (Xie
and Bourne, 2008; Xie et al., 2009) in solving a pairwise local
alignment problem. The results clearly show that PROPOSAL
can align proteins with different degrees of sequence similarity
in reasonable time, with the highest precision.

A Java 2D standalone application with the integration of JMol
for 3D visualization of alignments is freely available for down-
load at the following URL http://ferrolab.dmi.unict.it/proposal/
proposal.html, along with a command line version of PROPOSAL
and a complete user documentation.

2. MATERIALS AND METHODS
Let P ={P;, P,, ..., Pn} be aset of N 3D protein structures and
let w be a positive integer, with w > 3. The goal of local pro-
tein structure alignment is to find N substructures of w residues,
one for each protein, such that structure similarity is locally
maximized. We call w the size of the local alignment.

PROPOSAL is able to find approximate solutions to the prob-
lem through a greedy and stochastic technique, by using a Markov
Chain Monte Carlo (MCMC) in connection to Gibbs sampling
(Geman and Geman, 1984).

PROPOSAL is an iterative method. In each iteration it tries
to find an optimal local alignment of size w, starting from a
predefined triplet of amino acids (e.g., AAC), called fingerprint.
Since the fingerprint changes at every iteration and there are 20

amino acids, the maximum number of iterations performed by
PROPOSAL has been set to 20° = 8000.

A single iteration consists of three phases. In the first one,
called bootstrap phase, Gibbs sampling is used to find a local align-
ment of N substructures (one for each protein), composed by 3
residues each. These substructures, called seeds of the alignment,
represent small potential conserved motifs shared by the N 3D
protein structures.

The quality of the seeds alignment is quantified according to
a proper scoring scheme based on the average Root Mean Square
Deviation (RMSD) between the aligned substructures, consider-
ing all possible pairs of proteins. The best alignments will have the
lowest average RMSD.

Let C={Ci,Cy,...,Ct} and D = {Dq, D,, ..., Dy} be two
sets of residues. The RMSD between C and D is given by the root
mean-square deviation of the Co atomic coordinates of residues,
after performing an optimal rigid body superposition. The RMSD
is defined as follows:

RMSD(C, D)

1 k

= lw Z ((Ci — D)? + (Cy — D) + (Cio — Diz)2>(1)

i=1

where Ciy, Cjy, Cj; and Dijy, Dy, Dj; are the 3D coordinates of
residues C; and D;, respectively, after the superposition.

We computed RMSDs using QCP (Liu et al., 2010), a recently
proposed algorithm that finds the optimal alignment by using a
Newton-Raphson quaternion-based method.

Each seeds alignment having average RMSD <1 A is extended
by adding one residue at the time, until we reach an align-
ment of N motifs, each having w residues. The extension phase
is performed stochastically through Gibbs sampling.

Finally, in the third phase, the alignment is refined, by itera-
tively removing and adding single nodes to each aligned motif.
This refinement phase produces the final local alignment (see
Figure 1). The set of local alignments is then filtered by removing
highly overlapping alignments.

2.1. BOOTSTRAP PHASE
The goal of the bootstrap phase is to find an optimal alignment of
small substructures of 3 nodes, called seeds. A seed is represented
by a triple of residues A = (A1, Az, A3).

The set of possible candidates for the initial alignment consists
of all seeds satisfying the following conditions:

a) All residues within the seed are at distance less than 10 A;
b) The residue symbols in the triple must match the fingerprint
of the corresponding iteration of PROPOSAL.

Feasible candidates are seeds satisfying both (a) and (b). If one or
more proteins contain no feasible candidates, the search stops and
a new iteration of PROPOSAL begins.

Once a set of suitable candidates is generated, PROPOSAL tries
to construct an optimal initial alignment through Gibbs Sampling
on top of a Monte Carlo Markov Chain (MCMC). In the MCMC
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Input:
P: set of N protein structures
w: size of the local alignment

4
Bootstrap phase: find an

> optimal alignment of seeds
(local alignment of size 3)

False
Average LRMSD of
the aligment is
less than 1 A

Extension phase: extend the
alignment up to size w

z
Iterative phase: iteratively remove and add nodes (k times)

Removal step: remove the
— set of aligned residues with >
minimum Goodness score

1

Extension step: extend
each aligned motif, by
adding a single residue

FIGURE 1 | Outline of PROPOSAL.

each state represents an alignment of N seeds, one from each
protein structure.

Starting from a random initial state (i.e., a random initial
alignment), the sampling method iteratively performs a transi-
tion from a state of the chain to another, by replacing a randomly
chosen seed of the current alignment with a feasible candidate
of the same protein, according to a properly defined transition
probability distribution. When Gibbs sampling stops, the last cur-
rent alignment is returned. If the sampling procedure is iterated
a sufficient number of times, it converges to a local optimum
solution.

A critical task is to establish when Gibbs sampling can be
stopped. The procedure ends when the alignment of seeds does

not change. Let P = (%)1 be the probability that a protein
structure is never selected in i consecutive iterations of Gibbs sam-
pling. The number of iterations of Gibbs sampling is determined
by the following parameter k:

— k/
k = max k’:(NN 1) >« (2)

where « is a user-defined probability threshold. If the alignment
does not change for k consecutive iterations, the Gibbs sampling

is stopped. The lower is «, the more precise and slower will be the
sampling procedure. Therefore, o represents a trade-off between
accuracy and speed of PROPOSAL.

The transition probability is defined on top of a similarity
score, based on the distances between the residues of the seeds. Let
Dist(R1, Ry) be the euclidean distance between the two residues
R; and R, of a 3D structure. Given two seeds A = (A1, Ay, A3)
and B = (By, By, B3), we define the pairwise distance between A
and B as:

3

[

i=lj=1l,i<j

PairDist(A, B) = |Dist (Ai, Aj) — Dist (B;, Bj)| (3)

Now, let S = {51, S2, ..., SN} be the alignment of seeds at the i-
th iteration of Gibbs sampling and suppose we have to replace
Sj by a feasible candidate X of the same protein. The similar-
ity score of X is defined as the inverse of the product of all
pair distances between X and the seeds of the current alignment
(except S)):

1
. (4)

Sim(X) = __
[Ti= 1, i PairDist(X, S;)

The transition probability is then computed by normalizing such
similarity scores in [0, 1].

2.2. EXTENSION OF THE ALIGNMENT
In the extension phase, the alignment of residues is extended up
to size w by iteratively adding N residues to the current alignment,
one from each protein.

Suppose that we start from a substructure alignment of size
w < w. The goal is to find an optimal alignment of N residues
Ri, Ry, ..., RN, one for each protein, and add such residues to
the substructure alignment. R; must be at distance at most equal
to 10 A from residues in the corresponding current aligned sub-
structure. At the end of this process, the alignment size will
bew + 1.

Each extension step is performed through a Gibbs sampling
strategy similar to the one used during the bootstrap phase. In
the extension phase the similarity score takes into account:

a) The symbol of a candidate residue;
b) The distances between the candidate residue and the aligned
residues of the same structure.

Let SA = {SA;, SA,, ..., SAN} be the current alignment of size
w, where each SA; = {R,',l, Riz, ..., Ri,w/} is a set of residues,
and let A" = {AT, AL ,AK’,} be the alignment of candidate
residues at the generic m-th iteration of Gibbs sampling.
Suppose we replace A]’.” with a candidate residue X. First, we
define a similarity score, SimSymb(X) which evaluates the simi-
larity between the symbol of X and the symbols of residues in A™
(except A]’."):
N
SimSymb(X) = l_[ SIMMATRIX (X, A}") (5)
k=1,i#]
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where SIMMATRIX (X, Azq) is a BLOSUM similarity score between
Xand A}".
Then, we define another similarity function, SimDist(X):

_ ! (6)

[1k=1 kjPairDist (X, A7)

SimDist(X) =

where PairDist(X) is defined as follow:

W,
PairDist (X, A}') = [ | |Dist (X, Rj.n) — Dist (A7", Re)|  (7)
h=1

Finally, the similarity score of X, Sim(X), is the product of
SimSymb(X) and SimDist(X). Again, the transition probability of
X is the normalization of Sim(X) in [0,1].

2.3. REFINEMENT PHASE

The goal of the refinement phase is to increase the quality
of the discovered alignment. An alignment of residues is iter-
atively removed from the current alignment of substructures
and replaced with a new one. The number of iterations is
bounded by a user-defined parameter called IterRefine. According
to our experimental results (Section 3.2), a good accuracy can be
achieved with relatively small values of such parameter (e.g., 10).

The replaced alignment is chosen according to a Badness
function defined below.

Let SA = {SA;, SA;, ..., SAN} be the final alignment of size w,
where each SA; = {Ri,l, Riz, ..., Ri,w} is a set of residues. We can
view the alignment SA as a matrix R[N, w], where each column
represents an alignment of residues and R[7, j] is the j-th aligned
residue of the i-th substructure. Our final goal is to compute a
Badness score for each column of SA and remove the column that
maximizes the Badness score function from SA.

First, given two aligned residues R[i, k] and R[j, k], we define
the function PairDistAligned as follows:

w

H |Dist(R[i, k1, R[i, h])
h=1h#k

— Dist(RIj, kI, R[j, iD| ~ (8)

PairDistAligned(R[i, k], R[j, k]) =

The Badness of a generic column k is:

N
Badness(k) = Z PairDistAligned(R[i, k], R[j, k]) (9)
ij=1,i<j

Once the column with the highest Badness score is removed, a new
single extension step is performed through the Gibbs sampling
procedure described in Section 2.2.

24. FILTERING OVERLAPPING ALIGNMENTS

The alignments produced by PROPOSAL are sorted according
to the average RMSD across all possible pairs of structures. This
sorted list is finally post-processed to filter highly overlapping
alignments. Let SA = {SAi , SAQ, o SA;,} be the local align-
ment of rank i in the sorted list. We define Perc(SAf() as the

percentage of residues in the substructure SA}; observed in the

previous i — 1 alignments, and Perc(SA) as the average value of
Perc(SA}() across all the aligned substructures. If Perc(SA’) is above
a given threshold Overlap, the alignment is discarded.

3. RESULTS

Three different case studies have been investigated. In the first
one we analyzed the performance of our method and the effects
of input parameters, using the 33 structures of Skolnick’s dataset
benchmark (Lancia et al., 2001), a set of large protein domains
which has been used in several recent studies related to structural
comparison of proteins (Pulim et al., 2008; Di Lena et al., 2010).

In the second case study, we compared PROPOSAL to SMAP
(Xie and Bourne, 2008; Xie et al., 2009) and ProBis (Konc and
Janezic, 2010, 2012), two algorithms for local pairwise structural
alignment, on a dataset of known motifs derived from the liter-
ature and taken from the Catalytic Site Atlas (CSA) (Furnham
et al., 2013).

In the last case study, following the work of Moll et al. (2011),
we used a subset of these CSA motifs to test PROPOSAL as a local
multiple aligner.

PROPOSAL has been implemented in Java 7 and all tests have
been performed with an Intel Core i7-2670 2.2 Ghz CPU with
8 GB of RAM.

PROPOSAL needs a few parameters to be set:

w: the size of the final alignments;

a: the probability which determines the number of Gibbs
Sampling iterations in the bootstrap and extension phases;
IterRefine: the number of iterations during the refinement
phase;

AvgOverlap: a threshold bounding the average overlapping
percentage of alignments.

The default values of parameters have been experimentally estab-
lished as follows:

o a=0.05
e IterRefine = 10.

Both « and IferRefine parameters have been chosen to guarantee
an optimal trade-off between speed and accuracy.

3.1. TESTS ON SKOLNICK DATASET

The dataset is divided into four categories, depending on similar-
ity degree and sequence length. Table 1 synthesizes the features of
each family with respect to the number of proteins, the average
sequence length and the average similarity.

To evaluate the reliability of PROPOSAL we considered dif-
ferent values of w, depending on proteins sequence similarity.
We chose w = 10 for the CheY-related proteins’ family, w = 12
for the Ferritin family, w = 15 for the Plastocyanin proteins, and
w = 20 for the TIM Barrel family. In all experiments, we set
AvgOverlap = 50% to reduce the final set of alignments. Table 2
gives the running time of PROPOSAL and the RMSD of the best
alignments.
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The best alignments have been generated through the 2D
alignment of their contact maps. A protein contact map is a 2D
matrix storing the distances between all possible amino acids
pairs of a 3D protein structure. It is represented as a graph where

Table 1 | Skolnick’s dataset families.

Family Proteins Avg_seq_length Avg_similarity (%)
Flavodoxin-like fold 8 124 15-30
CheY-related

Ferritin 6 170 7-70
Plastocyanin 8 99 35-90

TIM Barrel i 250 30-90

Table 2 | Running time and LRMSD of the best alignments on
Skolnick’s dataset.

Family w Running_time (s) Best_ RMSD (A)
Flavodoxin-like 10 33.95 1.539

fold CheY-related

Ferritin 12 46.102 0.428
Plastocyanin 15 135.936 0.575

TIM Barrel 20 1542.929 0.428

nodes are amino acids and edges connect nodes having a distance
less than a fixed cut-off, usually 7-12 A. A contact map is a sig-
nature of a protein structure with respect to its 3D coordinates
(Vassura et al., 2008).

Figures 2-5 show the 10 A cut-off contact map alignments.
It can be seen that a good structural correspondence between
proteins is guaranteed even when the value of w increases. In
most cases the absence of few edges or the presence of new links
between nodes are due to pairs of residues whose distance is very
close to the cut-off.

We analyzed label similarity of the four best alignments, by
building the sequence logos (Crooks et al., 2004) of mapped
residues (Figures 6-9). Each position contains a graphical rep-
resentation of the frequencies of residues in that position within
the final mapping. Amino acids are represented with different col-
ors, depending on their chemical properties: basic residues (K,
R, H) are colored in blue, the acidic ones (D, E) in purple, the
neutral ones (Q, N, P, S, C) in green, the hydrophobic ones (V,
L, I, W, E M, Y) in orange, and the remaining ones (G, T, A)
in red.

Sequence logos reflect the average sequence similarity of pro-
teins within each family: Plastocyanin and TIM Barrel proteins
show the best label correspondence. The alignment of Ferritin
proteins is quite interesting, since the structural similarity is
high, the average LRMSD is very low (0.428 A, Table 2), but the
corresponding sequence logo shows remarkable dissimilarities

4TMY 3CHY 1RN1 1QMP

FIGURE 2 | Best alignment of the 8 Flavodoxin-like fold CheY-related contact maps with W = 10.

INTR 1NAT 1DBW

FIGURE 3 | Best alignment of the 6 Ferritin contact maps with W = 12.
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18Y0 1KDI ININ 1PLA 2831 2PCY

FIGURE 4 | Best alignment of the 8 Plastocyanin contact maps with W = 15.

oM avel oy TR 1858 "Wz 1AM

FIGURE 5 | Best alignment of the 11 TIM Barrel contact maps with W = 20.
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FIGURE 6 | Sequence logo of mapped residues in the best alignment of the 8 Flavodoxin-like fold CheY-related proteins.
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FIGURE 7 | Sequence logo of mapped residues in the best alignment of the 6 Ferritin proteins.
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FIGURE 8 | Sequence logo of mapped residues in the best alignment of the 8 Plastocyanin proteins.
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FIGURE 9 | Sequence logo of mapped residues in the best alignment of the 11 TIM Barrel proteins.

between mapped residues. This is an example confirming that
protein structural similarity and protein sequence similarity are
not always related.

Next, we investigated the effects of varying PROPOSAL
parameters. The default values are N = 6, w = 15, = 0.05, and
IterRefine = 10. First, we analyse how parameters influence the
running time (Figure 10) by varying one parameter and leaving
the rest unchanged. Figure 10A depicts the running time vary-
ing the number N of structures. Figure 10B deals with the effect
of varying w from 1 to 20. Figure 10C reports the PROPOSAL
behavior with o ranging from 0.01 to 0.30. Finally, in Figure 10D
different values of IterRefine (from 1 to 30) are considered. As
expected, when N and w grow and alpha decreases, the running
time goes up. Such a trend is even more evident in the TIM Barrel
family which has the highest average protein sequence length and
similarity.

Figure 11 shows the influence of & and IterRefine on the global
accuracy of PROPOSAL. We measured the average RMSD over
all the computed alignments. In Figure 11A alpha varies from
0.01 to 0.30 and IferRefine is set to 10, while in Figure 11B
iterRefine varies from 1 to 30 and « is set to 0.05. Default
values (w =15 and N = 6) were assigned. As expected, the
best performance of our method are obtained with low values
of o and high values of IterRefine. However, if we also con-
sider the influence of such parameters on running time (in
particular the IterRefine parameter), the best trade-off between
speed and accuracy can be achieved with 0.01 <« < 0.1 and
IterRefine = 10.

3.2. TESTS ON PAIRWISE ALIGNMENTS

As far as we are concerned, PROPOSAL is the first algorithm
proposed for multiple local alignments of protein structures. On
the other hand a few existing tools can solve the pairwise local
structure alignment problem (Holm and Park, 2000; Xie and
Bourne, 2008; Konc and Janezic, 2010). According to the experi-
ment results reported in Konc and Janezic (2010) and Moll et al.
(2011), ProBiS and SMAP seem to be the best existing pairwise
local structure alignment methods.

In order to compare PROPOSAL with ProBiS and SMAP, we
run all the algorithms on a properly defined dataset of pairwise
alignments.

First of all, we collected a set of 346 non-redundant literature
derived small query motifs (having 4-6 residues), taken from CSA
(Catalytic Site Atlas) (Furnham et al., 2013). CSA is a database
of hand-annotated entries, containing enzyme active sites (i.e., a
set of residues thought to be directly involved in the reaction cat-
alyzed by an enzyme). The complete list of these motifs and the
corresponding PDB structures is available in the supplementary
material Table S1.

Then, we used LabelHash, which is the state-of-the-art tool
for substructure matching, to search for a match between each
query motif and the rest of the dataset. Finally we selected all
matches with RMSD < 1.5A. This resulted in a final reference
dataset of 6380 pairwise alignments (the dataset is available in the
supplementary material Table S2).

The dataset has many highly dissimilar pairs of proteins. In
order to analyse the sequence similarity between the 6380 couples
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of proteins with the lowest RMSD alignments, we run BLAST and
considered the percentage of residues with positive matches in the
shortest sequence. We call PPos the latter measure. Among the
6380 couples, 3835 (=~ 60%) have PPos < 5% and 6173 (=~ 97%)
have PPos < 15%.

For each couple, we run PROPOSAL with no overlapping filter
(AvgOverlap = 100%) and w equals to the number of residues of
the query motif. We ran SMAP and ProBi$ with default parameter
values.

We analyzed the performance of the three methods on the 6380
pairwise alignments, by taking into account three parameters:

e Query motif coverage (QMC): the highest percentage of
residues of the query motif which are present in an alignment
returned by each algorithm;

e RMSD of the alignment with highest QMC;
e Running time;

We analyzed the average values of these parameters by consider-
ing different ranges of PPos similarities. All results are plotted in
Figure 12.

PROPOSAL exhibits the highest QMC for highly dissimilar
proteins, while for medium and high PPos similarities ProBiS is
the best method (Figure 12A). However, in all the tested instances
PROPOSAL yields the lowest average RMSD with respect to both
ProBiS and SMAP. Furthermore, the difference between RMSDs
tends to increase as long as PPos decreases (Figure 12B). We also
notice that the average QMC and RMSD of PROPOSAL align-
ments are approximately constant for all values of PPos, while
ProBiS and SMAP seem to be quite sensitive to protein similarity.
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Finally, ProBiS is by far the fastest algorithm for all possible
ranges of PPos similarity values (Figure 12C), while PROPOSAL
and SMAP have similar running times (except for 80% < PPos <
100%, where SMAP is faster). It is worth noting that our method
has been designed for solving the multiple alignment problem,
while ProBiS and SMAP have been efficiently implemented for
comparing pairs of protein structures. Moreover, PROPOSAL and
SMAP have been implemented in Java, while ProBiS has been
written in C++. Interestingly, our method is faster when PPos
ranges from 10 to 30%. However, when proteins are very dissim-
ilar, the convergence of Gibbs sampling in the bootstrap phase
may be slower. On the other hand, when proteins are very simi-
lar PROPOSAL performs more extension and refinement phases,
producing more feasible alignments. A similar trend holds for
ProBiS, where the best performance is obtained when PPos ranges
from 15 to 60%.

3.3. TESTS ON MULTIPLE ALIGNMENTS
In the last case study, we run PROPOSAL on a different set of
172 motifs taken from CSA to test the capability of our method
to detect known conserved binding sites in the multiple case (see
supplementary material Table S3).

The dataset has been built by selecting literature derived motifs
of proteins belonging to fully qualified EC classes with at most 25
elements. This resulted in a final set of 172 motifs, spanning 162
distinct EC classes.

EC class (Webb, 1993) is a code having the format “EC” fol-
lowed by four numbers separated by periods. It denotes the type
of reaction catalyzed by an enzyme. An EC class is fully qualified

if all four numbers are specified (e.g., 1.1.1.149 is fully qualified,
while 1.1.1 or 1.1 are not).

For each EC family, we run PROPOSAL on the set of pro-
tein structures belonging to that family. We fixed w equals to the
number of residues in the corresponding motif and AvgOverlap =
100% (i.e., no overlapping filter). The remaining parameters were
set up to the default values.

We filtered out all alignments with average RMSD above 1 A,
taking for each query motif the local alignment with maximum
QMC. In case of ties on QMC, the alignment with minimum
average RMSD was chosen. PROPOSAL successfully completed
all the alignments in about 29 h, with an average QMC of 50.08%
and average running time of 10 min. In Table 3 we report motifs
with highest QMC and the RMSD of the corresponding align-
ment (see supplementary material Table S3 for the complete list of
results). Results clearly show the ability to identify known motifs
from scratch. Out of 172 motifs, 24 have QMC > 75% and 126
have specificity > 50%.

In Torrance et al. (2005); Moll et al. (2010), authors observed
that the EC-class coverage of a motif has not been considered for
the design of CSA. Consequently, some motifs may be not con-
served across all proteins in an EC class. This may be the origin of
failures of PROPOSAL on the alignment tasks with QMC <50%).
In some cases CSA motifs could contain one or more residues
with few global matches. Moreover, two motifs could match
mutually exclusive sets of proteins within the corresponding EC
class. These cases may cause a drastic increase of average RMSD
for that specific motif. Examples of such CSA motifs are reported
in Moll et al. (2010). In order to overcome these problems,
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Table 3 | CSA motifs with QMC > 75%.

Protein  EC_class Motif QMC (%)  Avg_RMSD
1YBV 1.1.1.252 [138, 182, 164, 178] 100 0.06814209
1QRR 3.13.11 [183, 186, 145, 182] 75 0.032653827
TMRQ 1.1.1.149 [50, 117, 84, 55] 75 0.063025678
1GQ8 311N [136, 157 113, 135] 75 0.075239285
2JXR 3.4.23.25 [215, 32, 218, 33] 75 0.088753575
1RK2 2.71.15 [252, 253, 255, 254] 75 0.092735469
2PGD 1.1.1.44 [187 190, 130, 183] 75 0.119390475
1VAS 3.1.25.1 [22, 26, 23, 2] 75 0.126902935
1CZF 3.2.1.15 [180, 201, 202, 223] 75 0.15027138
1PJB 1.4.1.1 [269, 117, 95, 74] 75 0.178174017
TRPX 5.1.3.1 [185, 43, 41, 74] 75 0.222043962
1L1L 1.174.2 [119, 408, 419, 410] 75 0.226235418
1DB3 4.2.1.47 [134, 160, 132, 156] 75 0.252066199
1IM5 3.5.1.19 [129, 10, 133, 94] 75 0.294630848
10DT 3.1.1.41 [181, 269, 182, 298] 75 0.40228864
1PVD 4.1.1.1 [28, 477,114, 115] 75 0.454688806
1UsU 4.2.1.92 [137 67 66, 193] 75 0.613085033
1E94 3.4.252 [45, 33, 124, 1] 75 0.617527201
1Z9H 5.3.99.3 [110, 113, 112, 107] 75 0.677534589
1B66 4.2.3.12 [88, 42, 133, 89] 75 0.7033398
2NAC 1.2.1.2 [284, 146, 313, 332] 75 0.78435381
1QTN 3.4.22.61 [258, 360, 350, 317] 75 0.798793943
1P4R 2.1.2.3 [431, 267 592, 266] 75 0.936798151
1BWZ 5.1.1.7 [217, 73, 208, 159] 75 0.941959894

Each motif is represented as a list of residue ids of the corresponding reference
protein.

methods like Geometric Sieving (Chen et al., 2007) can be applied
to refine a given motif and increase sensitivity while keeping high
specificity values.

4. DISCUSSION

PROPOSAL is a stochastic algorithm for local alignment of 3D
protein structures relying on Markov Chain Monte Carlo in con-
nection to a Gibbs Sampling strategy. PROPOSAL is a parameter-
based algorithm. In our experimental analysis on the Skolnick’s
dataset (see Section 3.1) we showed that the most critical ones are
« and IterRefine, because these influence both speed and accu-
racy. The best trade-off is achieved with « ranging from 0.01
to 0.1 and IferRefine set to 10. Therefore, default values for the
algorithm are set to @ = 0.05 and IferRefine = 10. The running
time of PROPOSAL on Skolnick’s dataset resulted sublinear (with
respect to the number of proteins, w, « and IterRefine) for fam-
ily of proteins with low and medium similarity (CheY-related,
Ferritin and Plastocyanin) and linear for highly similar and long
proteins (TIM Barrel).

Since PROPOSAL is the first multiple structure local align-
ment method, we compared it with two pairwise local alignment
algorithms (ProBiS and SMAP) on a dataset of couples of query
motifs and target proteins (see Section 3.2). The accuracy of
PROPOSAL is defined by the highest percentage of residues of the
query motif which are present in an alignment returned by each

algorithm (query motif coverage), together with the quality of the
alignment (RMSD score).

PROPOSAL strongly outperforms the other methods on the
quality of the alignments, independently of proteins’ similarity.
Concerning the coverage, it is constant on proteins’ similar-
ity, whereas SMAP and ProBiS have low coverage for dissimilar
proteins. However, ProBiS is 5 times faster than PROPOSAL
and SMAP.

Finally, we run PROPOSAL as a multiple aligner on a subset of
the above query motifs (see Section 3.3). Once again, PROPOSAL
yields high quality alignments with coverage scores comparable
to those obtained in the pairwise local case. Experiments also
show that PROPOSAL is a valuable alternative algorithm to both
identify new motifs and refine existing ones.
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