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INTRODUCTION

The search for clinically useful protein biomarkers using advanced mass spectrometry
approaches represents a major focus in cancer research. However, the direct analysis of
human samples may be challenging due to limited availability, the absence of appropriate
control samples, or the large background variability observed in patient material. As
an alternative approach, human tumors orthotopically implanted into a different species
(xenografts) are clinically relevant models that have proven their utility in pre-clinical
research. Patient derived xenografts for glioblastoma have been extensively characterized
in our laboratory and have been shown to retain the characteristics of the parental tumor
at the phenotypic and genetic level. Such models were also found to adequately mimic the
behavior and treatment response of human tumors. The reproducibility of such xenograft
models, the possibility to identify their host background and perform tumorhost interaction
studies, are major advantages over the direct analysis of human samples. At the proteome
level, the analysis of xenograft samples is challenged by the presence of proteins from
two different species which, depending on tumor size, type or location, often appear
at variable ratios. Any proteomics approach aimed at quantifying proteins within such
samples must consider the identification of species specific peptides in order to avoid
biases introduced by the host proteome. Here, we present an in-house methodology
and tool developed to select peptides used as surrogates for protein candidates from a
defined proteome (e.g., human) in a host proteome background (e.g., mouse, rat) suited
for a mass spectrometry analysis. The tools presented here are applicable to any species
specific proteome, provided a protein database is available. By linking the information from
both proteomes, PeptideManager significantly facilitates and expedites the selection of
peptides used as surrogates to analyze proteins of interest.

Keywords: mass spectrometry, targeted proteomics, rodent xenografts, human glioblastoma, mixed samples,
automated tool, unique peptide selection

supervised discovery of selected biomarker candidates (Gillette

Mass spectrometry(MS)-based proteomics provides various
approaches (i.e., shotgun, supervised and targeted approaches)
(Domon and Aebersold, 2010) in the field of cancer research
(Smith, 2012; Deracinois et al., 2013; Marx, 2013) and is nowa-
days widely used in pre-clinical and clinical investigations (Lee
etal., 2011), and for biomarker studies (Li et al., 2011; Meng and
Veenstra, 2011; Pan et al., 2012; Waldemarson et al., 2012).
Shotgun proteomics approach is the pipeline followed when
biomarker discovery is considered; i.e., protein identification
(Eng et al., 1994; Nesvizhskii, 2007) and label-free relative quan-
tification (Bantscheff et al., 2007; Asara et al., 2008; Neilson et al.,
2011). Regarding the evaluation (and validation) of biomarker
candidates, targeted proteomics is considered for the precise and
even the absolute quantification of these candidates (Gallien et al.,
2011; Whiteaker et al.,, 2011; Gillette and Carr, 2013; Marx,
2013). Targeted proteomics is also increasingly used to perform

and Carr, 2013; Kim et al., 2013; Marx, 2013; Percy et al., 2014).
In cancer research, the direct analysis of human samples are
often hampered because of strong inter-patient variability and
limited sample availability. The latter is particularly true for
samples requiring invasive sample collection procedures (e.g.,
biopsies) and is even worse for samples from healthy donors (con-
trol samples) (Pesch et al., 2014). Moreover, patient samples are
normally limited to one time point and they do not offer the
opportunity for a controlled interventional study. To circumvent
those restrictions, animal models consisting in the orthotopical
implantation of human tumors into animals (xenografts) have
proven their utility as relevant models in many studies (Whiteaker
et al., 2007; Huszthy et al., 2012; Tang et al., 2012; Klink et al.,
2013). In the search for more biomarkers and more effective treat-
ment options against brain tumors, our lab has developed patient
derived xenografts for human glioblastoma in immunodeficient
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mice and rats (Wang et al., 2009). Those animal models have
been extensively characterized and shown to retain the charac-
teristics of the parental tumor at the phenotypic and genetic level
(Niclou et al., 2008; Rajcevic et al., 2009; Golebiewska et al., 2013).
Such models were also found to adequately mimic the behav-
ior and treatment response of human tumors (Keunen et al.,
2011). Another major advantage of these models over human
samples is their reproducibility and their identifiable host back-
ground allowing a detailed analysis of tumor-host interactions.
The use of xenograft samples also gives an easy and direct access to
control samples exhibiting a more controlled experimental setup
compared to human samples.

In bottom-up MS-based proteomics, peptides are generally
used as the representative of the proteins either for identification
or quantification purposes (Aebersold and Mann, 2003; Chait,
2006). Peptides are identified and monitored via their mass-to-
charge ratio and their fragmentation pattern produced under
collision induced dissociation (CID) (peptide ion-types, mass-
to-charges and relative intensities) (Eng et al., 1994; Nesvizhskii,
2007). Therefore, it is desirable to target a few representative pep-
tides for each protein of interest. The choice of these peptides used
as protein surrogates is therefore crucial to unequivocally identify
and quantify the protein of interest. A peptide is considered as
proteotypic (Kuster et al., 2005; Mallick et al., 2007) when it ful-
fills two selection criteria: it is a unique representative of a single
protein within the proteome of interest and it possesses a good
MS detectability (Brownridge and Beynon, 2011). Such peptides
allow umambiguous analysis of the targeted protein. However,
the selection of proteotypic peptides is often tedious and time-
consuming. It has to carefully take into account several essential
criteria (Gallien et al.,, 2011) including uniqueness of peptide
sequence, protein digestion efficiency, enzymatical and chemi-
cal modifications at the protein or peptide level, physicochemical
behavior of the peptide.

In the context of xenograft samples, the use of MS-based
targeted (or supervised) proteomics approaches for protein
biomarker studies needs to consider the presence of various pro-
teomes from different species. This leads to more complex sam-
ples and a more constrained and restricted choice of the surrogate
peptides (Figure 1). The tool PeptideManager was built with the
purpose of collecting and combining information from differ-
ent public protein databases [UniProt (SwissProt or TrTEMBL or
both (UniProt)), RefSeq or IPI] and/or species to facilitate and
speed up the surrogate peptide selection compared to the man-
ual selection process. The proposed software is specially designed
for the selection of surrogate peptides in the cases involving
various species proteomes such as in xenografts. Obviously, it
can also be used in the general case when a single proteome is
implicated.

GENERAL CONSIDERATION ON PEPTIDE SELECTION

The separation, detection and characterization by liquid chro-
matography (LC)-MS/MS of a proteotypic peptide of a given
protein allows for confident identification given that the pep-
tide identification is reliable (via the m/z of its precursor and
of its fragments). However, for quantitative purposes, the choice
of a surrogate peptide for a given protein is not trivial since the

sequence uniqueness of the peptide is not the only pre-requisite
(Gallien et al., 2011). Indeed, several parameters need to be con-
sidered to warrant the selection of peptides that reliably represent
the targeted protein at the quantitative level (Lange et al., 2008;
Gallien et al., 2011). Such peptides are termed proteotypic (Kuster
et al., 2005; Mallick et al., 2007) and are characterized by two
major conditions; uniqueness of its sequence within the proteome
of interest and a good detectability in LC-MS(/MS). The good
detectability of peptides in MS is influenced by its physicochem-
ical properties and other experimental-related parameters, which
are described hereafter.

Ideally, the enzymatic digestion of the proteins should not
introduce any bias. However, since the yield of an enzymatic
reaction is rarely complete, the enzymatic digestion itself intro-
duces some variability across samples (Brownridge and Beynon,
2011; Loziuk et al., 2013). This can be limited in two ways.
Firstly, a precise control of the experimental conditions will
limit the variability across sample replicates. Secondly, since
the digestion efficiency is not identical for all the peptides
derived from the same protein, a rational choice of the pep-
tides exhibiting the best cleavage propensities should be per-
formed. The yield of the proteolytic cleavage depends on the
protease and on the amino acid composition around the cleav-
age sites. The cleavage efficiencies can be estimated theoretically
for some proteases and various web-tools are freely available
to predict which proteolytic peptide bonds are likely to be
missed by the standard enzymes [e.g., PeptideCutter web-tool
on ExPASy (http://web.expasy.org/peptide_cutter/) (Eyers et al,,
2011; Artimo et al., 2012; Lawless and Hubbard, 2012)].

The reduction and the alkylation steps of the cysteines in pro-
teins are intended to make cleavage sites accessible that would
otherwise be hindered. Nevertheless, as any chemical reaction,
this sample preparation procedure can introduce unpredictable
biases because of an incomplete reaction. Therefore, peptides
containing amino acids that are prone to chemical modification
[e.g., cysteines (incomplete reduction/alkylation) and methion-
ine (partially oxidized)] should be avoided (Bischoff and Schluter,
2012). Correspondingly, amino acids with the potential for enzy-
matic post-translational modifications (PTMs) should be avoided
if the analysis of those modifications is not in the scope of the
study. Peptides containing sequence uncertainties (e.g., sequence
conflicts between public protein databases) or amino acids show-
ing variability due to single-nucleotide polymorphisms (SNPs)
should be discarded as well.

Depending on whether all isoforms or a particular isoform of
a given protein are of interest, either the selected peptides should
be representative of all the isoforms of the protein or the selected
peptides should be representative of only one specific protein
isoform.

The mass-to-charge ratio of the selected peptide should com-
ply with the mass range restriction of the mass spectrometer(s)
that will be used for the subsequent analyses (e.g., m/z between
400 and 1600 on a triple quadrupole platform). Moreover, very
short peptides are less likely to have a unique sequence and
they are more susceptible to interferences. On the other hand,
lengthy peptides are not desirable due to their hydrophobicity
and to issues regarding their synthesis and purification. Typically,
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FIGURE 1 | Schematic of the protein extraction procedure from a human
GBM xenografted in a GFP-expressing immunodeficient mouse. Since
the excision of the human tumor tissue (in blue) includes a variable proportion
of mouse cells (in green), the surrogate peptide selection process of a given
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Proteolysis | -
/ —

== Unspecific peptide
=== Human specific peptide
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protein A must exclusively consider the human specific peptide (blue
peptides). Monitoring protein A via human specific peptides in different tumor
pieces will eliminate the bias induced by the presence of mouse proteins
within the samples.

peptide ranging from 5 to around 22 amino acids are best suited
for quantification purpose (Gallien et al., 2011).

Various tools are currently available for the theoretical or semi-
empirical estimation of the proteotypic properties of a peptide
sequence including the digestion efficacy according to the cleav-
age site (Kuster et al., 2005; Mallick et al., 2007; Fusaro et al.,
2009; Eyers et al., 2011; Lawless and Hubbard, 2012; Mohammed
et al., 2014; Qeli et al., 2014). However, these tools do not handle
samples containing proteins from multiple species that there-
fore require a very time-consuming manual selection of surrogate
peptide candidates. The proposed tool was therefore intended
to automate this selection step of unique peptide candidates by
combining all relevant information present in public protein
databases to help the filtering of inappropriate peptides (e.g.,
peptide sequence present in both proteomes).

The tool PeptideManager was designed to: (1) build and store
peptide databases from public repositories, (2) link available
information (e.g., PTM sites, SNPs, signal peptide) from pub-
lic databases at the peptide level, (3) allow queries and peptide
pre-selection within those databases, and most importantly (4)
perform peptide pre-selection within a given proteome of inter-
est while taking into account the presence of another species
proteome within the sample (Figure 2).

MATERIALS AND METHODS

Glioblastoma samples were collected at the Neurosurgery
Department of the Center Hospitalier in Luxembourg (CHL)
from patients having given their informed consent. Collection
and use of patient tumor material has been approved by the
National Ethics Committee for Research (CNER) of Luxembourg.
All animal procedures were approved by the national authorities
responsible for animal experiments in Luxembourg.

PEPTIDE DATABASE CREATION

The peptide selection tool PeptideManager was written in
C# language and the GUI (graphical user interface) was
designed with Visual Studio Express 2010. The databases were
built in the SQLite format (http://www.sqlite.org/about.html).
PeptideManager can be run on any computer on which the
Microsoft.NET framework is installed. PeptideManager and its
user guide are freely available at http://peptidemanager-Irno.
sourceforge.net.

The peptide databases (in SQLite format) derived from dif-
ferent public protein databases can be built by PeptideManager,
namely UniProt (Uniprot, 2009, 2014; Magrane and Consortium,
2011), RefSeq (Pruitt et al., 2007, 2012, 2014) and IPI (Kersey
et al., 2004). The different file formats requested to build a
peptide database are indicated in Table 1. Protein sequences are
digested in silico by the proteolytic enzyme selected (trypsin, Lys-
C, Arg-C or Lys-N). The required information present in the
public database is extracted and inserted into the PeptideManager
database. If present in the public protein data repository, infor-
mation about PTMs, sequence conflicts or other sequence related
modifications are extracted and inserted at the peptide level in the
newly generated database. In order to limit the size of the created
peptide database, a minimal peptide length (3-5 amino acids) as
well as the number of allowed miscleavages (0-2) can be selected.
Once created, the database is indexed in PeptideManager and is
immediately available for search requests.

Contrary to similar tools like PeptidePicker (Mohammed
et al, 2014), CONSeQuence (Eyers et al., 2011) or even
Skyline (Maclean et al., 2010), PeptideManager is solely intended
to build a peptide database, to allow search queries within
these databases and to help the user to perform unique pep-
tide selection for targeted experiments. The advantages of
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FIGURE 2 | Scheme illustrating how PeptideManager is operating. can be done with (B) or without (C) the presence of a background proteome.
Required information from the public database is extracted to produce the It is noteworthy that the presence of a background proteome (as in the case
peptide database (SQLite format) (A). Created peptide databases are stored of xenografts) (B) will generally reduce the number of surrogate peptide
and can be used for peptide selection queries (B,C). The peptide selection candidates compared to the list of peptides obtained in (C).

Table 1| List of the different file formats supported by
PeptideManager for the different public protein database
repositories.

File format(s) supported

SwissProt/TrEMBL/Uniprot * ixt, *.dat
RefSeq * faa?, *.gpff®
IPI * dat

aFASTA-like file format that only contains protein sequences and essential pro-
tein information.

bMore complete file format than .faa files. They include additional information
such as post-translational modifications (PTMs), single nucleotide polymor
phisms (SNPs), etc.

PeptideManager are to allow the user to define a host/background
proteome, to import databases from UniProt, RefSeq and IPI,
to extract all the available information (protein features) and
to suggest default filters for the selection of unique peptide
sequences (with or without the presence of a host/background
proteome).

SURROGATE PEPTIDE SELECTION

As shown in Figure 3, search queries can be performed with pro-
tein accession numbers (individually or in batch mode), protein
name or peptide sequences (individually or in batch mode). The

displayed results can be filtered against unsuitable amino acids
or lengths for example. The results can be directly saved in csv
file format. When only one species proteome is studied, this type
of search request provides all the information needed to select
surrogate peptide candidates (unique peptide sequences) for the
given protein. Moreover, this type of request can be used to
define the uniqueness of a list of detected peptides from exper-
imental evidences and confirm the identification of the related
proteins.

The major advantage of PeptideManager is to possess a search
function specifically dedicated to peptide selection when vari-
ous species proteomes are involved (Figure 1). In addition to
the previous search request, the proteome of interest and the
proteome of the host species (background proteome) can be
selected (Figure4). In this case, the information will be gath-
ered by PeptideManager within the peptide databases of both
proteomes. The protein accession number is used to extract all
peptide information related to the targeted protein in the database
of the proteome of interest. Subsequently, the peptide sequences
are searched against the peptide database of the host species pro-
teome to determine the number of occurrences (hits) within the
background proteome. In order to monitor/quantify a protein
of interest without any bias coming from the host/background
proteome, only peptides that are unique sequences (i.e., unique
representative of the protein of interest) within the proteome of
interest and absent within the host/background proteome should

Frontiers in Genetics | Neurogenomics

September 2014 | Volume 5 | Article 305 | 4


http://www.frontiersin.org/Neurogenomics
http://www.frontiersin.org/Neurogenomics
http://www.frontiersin.org/Neurogenomics/archive

Demeure et al.

PeptideManager: unique peptide selection tool

PeptideManager - LRNO Laboratory

Searchin databases | Create a database | Manage the databases | XenoComparator | List Comparator | About PepManager

DataBase Selection:

Human_SwissProt{UriProt]_Trypsin_ OMissC_>=5AA_ver,_2014_04_(23/04/2014) v

Find peptides from Protein ID: Search by Protein Nume: Paste your sequences:

13645 Search Seaich

Search Filters: © Create an autput csv file

Pep Sizelow Pep SieMigh  Hilim  Miscleavages Limit Tohee

5 v| |2 v [1 v 0 v
Save as Defaul

No Typlophen (W) [Z] NoMethiorine (M) %% Fl=rs \E/

K1C10 HUMAN [Keratin. oskeletal 10
Previous AA  Sequence Newpd  Lengh  Hifs)  Miscleavagels)  Featurels) MW Star

v [ECE s HYS 5 1 0 571.2128 |5
SSSK HYSSSR SGG 6 1 0 7363378 10
555K GSLGGGFSSGEFSGASFSA | GSS 19 1 0 IMOD_RES) [42-42] - Phosphoserine) 1707.7727 41
DKVR ALEESNYELEGK IKE 12 1 0 13816487 | 166
WYEK HGNSHOGEPR oS 10 1 0 11185091 185
DDLK NQILNLTTDNANILLAIDNAR | LAA 21 1 0 2367.2632| 208
FRLK VENEVALR asv 8 1 0 9935005 | 238
GLAR VLDELTLTK ADL 9 1 0 10315389 | 258
NNMR SOYEQLAEONA KDA 11 1 0 13656399 323
EKSK ELTTEIDNNIEQISSYK SEl 17 1 ] 1999715 | 46
SSYK SEITELR RNV, 7 1 0 847.4525 363
ELRR NVOALEIELOSOLALK asL 16 1 0 17970122 371
LALK OSLEASLAETEGR YoV 13 1 0 13906814 387
IKIR LENEIOTYR siL ] 1 0 IVARIANT] [442-442] - (L > O in EHK: dbSNP.1s58026334): [VARIANT] [446-446) - 1 > T (in AE1) | 11655853 442
arvR SLLEGEGSSGGGGR GGG 14 1 0 12625977 451
GGHK 55SSGSVGESSSK GPR 13 1 0 11855235 568

16 peptides found (/33)

FIGURE 3 | Print screen of the results displayed by PeptideManager for
the P13645 human protein. Search queries can be performed by protein ID
(A), by protein name (B) or by peptide sequence(s) (C). The list of peptides
obtained can be filtered out according to the length (e.g., 5 a.a. < peptide

length < 22 a.a.), the presence of unwanted amino acid
(methionine-containing peptide for example) or the frequency of the peptide
sequence within the database (D). The results can be exported in csv file
format (E).

be selected. An example of a result file (csv format) is partly
displayed in Figure 4.

As mentioned, the software is not only intended for the selec-
tion of unique sequences of a given protein but also to perform
any kind of search queries within the databases. In order to keep
all the information available for the user, filters are available
and can be used/or not according to the purpose of the query.
However, in the case of the selection of unique peptide sequences
(with or without the presence of a host proteome), it is possible
to apply “advised default values” of the filters. A comprehen-
sive user guide is provided as Supplementary Material. This user
guide explains the different steps to use correctly the software
and includes several case studies in order to exemplify different
situations that users could meet, e.g., protein isoform differentia-
tion, post-translational modification monitoring, unique peptide
selection with or without the presence of a host/background
proteome.

PeptideManager was used for the selection of surrogate pep-
tides to develop SRM (selected reaction monitoring) assays on
a triple-quadrupole platform for the targeted analysis of protein
biomarker candidates. This was done in the context of human
GBM =xenografts (mice and rats) and PeptideManager greatly
facilitated and expedited the selection of unique peptide from
mixed samples involving different species proteomes. Compared
to the few proteins per day for which unique peptide selection can
be done manually, PeptideManager succeeded in performing the
selection of peptide candidates for hundreds of proteins a day.

In order to further validate the selected peptides and/or
decrease further the number of peptide candidates, additional
information, not present in the public protein databases, such as

the enzymatic digestion efficiencies and the LC-MS(/MS) behav-
iors of the peptide candidates can be used. From the selected
peptides, predictive computational tools (Artimo et al., 2012;
Lawless and Hubbard, 2012) can be used to filter out peptides
arising from poorly efficient cleavage sites that would lead to an
erroneous values of peptide/protein amount as well as a decrease
in sensitivity. MS-based data from the proteomic community are
freely available in public data repositories such as PeptideAtlas
(Desiere et al., 2006), GPM Proteomics Database (Craig et al.,
2004, 2005) or PRIDE (Vizcaino et al., 2013) that permit to
estimate the MS-behaviors of peptide sequence candidates.

In these public databases, proteomics data can be retrieved
by protein accession number, peptide sequence, species or even
sample type (e.g., brain, kidney, liver). For a given protein,
all the previously detected peptides identifying this protein are
displayed; however they may not be unique and may contain mis-
cleavages. Using the list of pre-selected unique peptide candidates
from PeptideManager will allow to rapidly access the pertinent
information from the data provided by those public reposito-
ries. Additional empirical and theoretical information (available
in PeptideAtlas) may help to select the best candidates. For exam-
ple, how many times a peptide sequence was detected within a
given set of experiments can help to estimate the detectability
of this peptide by LC-MS (due to digestion efficacy, good ion-
ization, LC or MS behavior, etc.). Theoretical scores based on
various parameters (e.g., amino acid composition and hydropho-
bicity) and algorithms can give theoretical estimations of the
LC-MS behavior and detectability of the peptides (Mallick et al.,
2007; Fusaro et al., 2009; Eyers et al., 2011; Qeli et al., 2014). All
this information can be used to further rationalize the peptide
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PeptideManager - LRNO Laboratory A=)
Searchin databases | Create a database | Manage the databases | XenoComparator | List Comparator | About PepManager
Proteome of Interest: Background Proteome:
Human_SwissProt{UniProt]_Trypsin_OMissC_>=544_ver_2014_04_(23/04/ v Rodents_SwissProt{UniProt)_Trypsin_0MissC_>=544_ver_2014_04_(23/04 v
Batch Mode: Filtering Mode
Pep. Size Low Limit.  Pep. Size High Limit Filters:
5 v ‘22 v Protein ID: Pep. SizeLow: Pep. Size High:  RefHitLimit ~ Bckard Hit Limit: Use Default
P13645 -] v 22 v 3 v 0 b |
- Save as Default Aoply Fiters i
No Cysteine (C) Limi
e No Tiyptophan (W) [Z] No Methionine (M) |0 > [ ResetFiters | /
Human_Acc. Human_Prev.aa Human_Seq. Human_Next.aa Human_Len. Human_MZ_mono. Human_MZ_di. Human_Sta|
»  EEE vsvr YSSSK HYS 5 5712728 2861403 5
P13645 $SSK HYSSSR SGG 6 736.3378 3686728 10
P13645 $SSK GSLGGGFSSGGFSGGSFSR | GSS 19 1707.7727 854.3303 41
P13645 WYEK HGNSHAGEPR DYS 10 11185091 569.7585 185
P13645 DDLK NGQILNLTTDNANILLQIDNAR | Lid, 21 2367.2632 11841355 208
P13645 GLRR VLDELTLTK ADL 9 10315989 516.3033 258
P13645 NNMR SOYEQLAEQNR KDA n 1365.6399 683.3239 323
P13645 EKSK ELTTEIDNNIEQISSYK SEI 17 1996.9715 998.9897 346
P13645 ELRR NVOALEIELQSQLALK asL 16 1797.0122 899.01 n
P13645 QTR SLLEGEGSSGGGGR GGG 14 12625977 451
P13645 GGHK SSSSGSVGESSSK GPR 13 11855235 568
A B L D E F G H ] J K L M
1 |Acc.  Prev.aa Seq. Next.aa Len. MZ_mono. MZ_di.  Start. Miscleavage(s)] Human_Hit(s) Human_Feat. Rodents_Hit(s) Rodents_Acc.
2 P13645 MSVR YSSSK HYS 5 571.2728 286.1403 5 : l 0
3 P13645 SSSK HYSSSR SGG 6 736.3378 368.6728 10 1 o
4 P13645 SSSR SGGGGGGGGCGGGGGVSSLR 1SS 20 1492.6563 746.8321 16 1 MOD_RES] [16-16] - (Phosphoserine) 0
5 |P13645 SSLR 1SSSK GSL 5 521.2935 261.1507 36 3 2 [a3CPQs5;P97432
6 P13645 SSSK GSLGGGFSSGGFSGGSFSR GSS 19 1707.7727 854.3903 a1 1 MOD_RES] [42-42] - (Phosphoserine) 0
7 P13645 SFSR GSSGGGCFGGSSGGYGGLGGFGGGS GSY 27 2285.9634 1143.4856 60 1 0
8 P13645 GSFR GSYGSSSFGGSYGGIFGGGSFGGGSF VIM 61 5216.2384 2608.6231 87 1 VARIANT] [101-101] - (1->S (in dbSNP:{ [}
9 |P13645 DKVR  ALEESNYELEGK IKE 12 1381.6487 691.3283 166 1 1 p02535
10 P13645 WYEK HGNSHQGEPR DYs 10 11185091 559.7585 185 1 [
11 |P13645 KYYK TIDDLK Nai 6 704.383 352.6954 202 2 0
Hits in proteome of interest Hits in background proteome
FIGURE 4 | Print screen showing the results obtained with observation (hits) of the peptide sequence is indicated in each proteome.
PeptideManager for the human P13645 protein within the mouse Human specific peptide candidates are those with one hit in the human
proteome (host proteome). The information concerning both proteomes proteome [selected in (A)] and no hit in the mouse proteome [selected in (B)]
[selected proteomes in (A,B)] is brought together and the number of (e.g., HGNSHQGEPR). The results (filtered or not) can be saved in a csv file.

selection and keep those peptides predicted to demonstrate the
best LC-MS behavior and leading to the MS measurements with
the highest possible sensitivity. If MS/MS spectra are available,
they can be used to select the most appropriate charge state of
the peptide to be monitored. In the context of the development
of an SRM assay, the fragmentation spectra can be used to select
the most intense fragments for a given peptide which should lead
to an optimal sensitivity for that peptide when monitoring those
transitions by SRM. Reference transitions for a large number of
peptides are publicly available in the SRMAtlas repository (Picotti
et al., 2008, 2013; Huttenhain et al., 2013). However, those tran-
sitions need to be validated (e.g., absence of interferences) within
the biological samples of interest.

CONCLUSIONS AND PERSPECTIVES

PeptideManager was used for the selection of unique peptide can-
didates as protein surrogates in the context of a supervised eval-
uation (SRM assays on a triple-quadrupole platform) of protein
biomarker candidates in human GBM xenografts (mice and rats).
This tool greatly facilitated and expedited the peptide selection
for these mixed samples involving different species proteomes.
Moreover, it is applicable to complex samples (with or without
the presence of a host (background) proteome) of all species for
which a protein database is available.

PeptideManager could be extended to include additional infor-
mation helping to the peptide selection by directly inserting the
information from MS-based proteomics data public reposito-
ries (e.g., PeptideAtlas) and the theoretical information about
the enzymatic cleavage efficiency (e.g., PeptideCutter) within the
peptide databases.
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