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Although best known as a risk factor for cardiovascular disease, cholesterol is a vital
component of all mammalian cells. In addition to key structural roles, cholesterol is
a vital biochemical precursor for numerous biologically important compounds including
oxysterols and bile acids, as well as acting as an activator of critical morphogenic
systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms
interact to coordinate the overall level of cholesterol in cells, tissues and the entire
organism. Accumulating evidence indicates that in additional to the more “traditional”
regulatory schemes, cholesterol homeostasis is also under the control of epigenetic
mechanisms such as histone acetylation and DNA methylation. The available evidence
supporting a role for these mechanisms in the control of cholesterol synthesis, elimination,
transport and storage are the focus of this review.
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INTRODUCTION
Cholesterol (cholest-5-ene-3β-ol) is an ubiquitous 27-carbon
steroid and a vital component of cellular membranes in verte-
brates (Vance and Vance, 2002). It is essential for life, and defects
in the ability to synthesize it leads to severe clinical conditions such
as the Smith–Lemli–Opitz syndrome and desmosterolosis (Porter,
2003). In man the total pool of cholesterol is 120–130 g and as it is
a neutral, hydrophobic lipid the vast majority is found as the free
sterol in the membrane (Cook, 1958). The distribution of choles-
terol across organs, cells, and subcellular membranes is not even,
with some organs (e.g., the brain) and cell types (e.g., oligoden-
droglia) highly enriched in cholesterol. Within the cell, the low
cholesterol content in intracellular membranes facilitates choles-
terol sensing and homeostatic feedback (Steck and Lange, 2010;
Jeon and Osborne, 2012). In addition to this essential structural
role cholesterol is also a precursor for numerous biomolecules of
physiological importance including bile acids, steroid hormones,
and oxysterols1.

All nucleated cells can synthesize cholesterol. As a consequence,
under normal circumstances there is no requirement to ingest
cholesterol. However, a typical western diet contains approxi-
mately 300–500 mg of cholesterol per day and so cholesterol
originates from either de novo synthesis or dietary intake (Wang,
2007). This cholesterol is absorbed in the small intestine and is
distributed throughout the body via the action of lipoproteins
to most, but not all, tissues. The brain is a notable exception –
cholesterol is unable to pass the blood–brain barrier and choles-
terol in the brain is due to local synthesis (Björkhem and Meaney,
2004). Cholesterol in excess of requirements may either be stored
as cholesteryl esters or eliminated via oxidation and/or conver-
sion into bile acids (Björkhem, 2013). Thus, in both the cell

1It should be noted that cholesterol itself is not a direct precursor for vitamin
D; rather the sterol 7-dehydrocholesterol, itself an intermediate in cholesterol
biosynthesis, fulfils this role.

and the intact organism, the overall cholesterol level depends
on the contribution of cholesterol synthesis, absorption, elimi-
nation, and storage. This review presents a review of the current
evidence of the role of epigenetic mechanisms in each of these
processes.

FUNDAMENTALS OF LIPOPROTEIN HOMEOSTASIS
Due to its insoluble nature, cholesterol cannot be solubilized
in the plasma and is transported as cargo in proteolipid com-
plexes known as lipoprotein particles. These particles consist of
(i) a major structural apolipoprotein, (ii) peripheral apolipopro-
teins, (iii) structural lipids (phospholipids and cholesterol), and
(iv) cargo lipids (highly hydrophobic lipid species such as tri-
acylglycerols (TAG), steryl esters and fat soluble drugs, and
vitamins). Lipoproteins can be divided into two broad classes –
those containing Apolipoprotein B (APOB) and those contain-
ing Apolipoprotein A1 (APOA1) as core structural components.
In combination with other peripheral apolipoproteins such as
APOE, APOCII, and APOCI, these proteins define the function
and metabolic fates of lipoproteins in the body (Vance and Vance,
2008).

Dietary lipids are absorbed via the small intestine and packaged
into large particles known as chylomicrons (CM), which contain
the intestine-specific APOB48, which is a truncated form of APOB.
CM are essentially TAG delivery systems that distribute dietary
lipids throughout the body for direct use and/or storage (Vance
and Vance, 2008). CM remnant particles eventually return to the
liver where their remaining lipid cargo, now relatively enriched
in cholesterol, integrates into endogenous hepatic lipid pathways.
The liver produces a second class of APOB containing lipopro-
teins, very low density lipoprotein (VLDL), which contain the
full-length APOB and are more enriched with cholesterol than
CM. In similarity with CM, VLDL participates in TAG distri-
bution from the liver to the periphery. However, as core TAG
are delivered to the tissues of the body VLDL shrink and shed
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peripheral apolipoproteins. During this process, the proportion
of cholesterol in the particle increases progressively, ultimately
leading to the production of low-density lipoprotein (LDL) parti-
cles. By binding to the LDL-receptor (LDLR) on the outer surface
of expressing cells, LDL can be internalized into the cell and its
cholesterol containing cargo delivered inside the cell. As an indi-
vidual, LDLR is reused multiple times, LDL acts as an efficient
cholesterol delivery system.

In contrast to APOB pathways, which are responsible for
lipid transport to the periphery, APOA1 containing lipopro-
teins (i.e., high-density lipoproteins, HDL) are the mediators
for reverse cholesterol transport (RCT). APOA1 is mainly syn-
thesized by the liver and intestine, although other cell such as
macrophages can also produce APOA1. Nascent HDL particles are
lipid poor and collect free cholesterol and phospholipids from
peripheral tissues in an ABCA1-dependent process. Esterifica-
tion of cholesterol by lecithin-cholesterol acyl transferase (LCAT)
leads to an increase in core cholesteryl esters and the formation
of HDL2 particles. HDL2 may be further enriched with lipids
by the action of the ATP-binding cassette subfamily G member
4 (ABCG4). This lipid cargo may then be delivered to the liver
via Scavenger Receptor B1 (SCARB1). As the HDL particle is
not destroyed during lipid delivery to the liver, it can partici-
pate in RCT several times, enhancing the efficiency of the RCT
process.

For more details on the details of lipoprotein homeostasis the
reader is referred to Kingwell (Kingwell et al., 2014) and chapters
17–20 of Vance and Vance (2008).

CHOLESTEROL SYNTHESIS
The biosynthesis of cholesterol is a highly complex process involv-
ing more than 30 different reactions and over 15 enzymes present
in many different subcellular compartments (Sharpe and Brown,
2013). Conceptually, this pathway may be divided into two
stages (i) condensation of isoprenoid units to yield the 30-carbon
molecule squalene and (ii) cyclization of squalene to produce
lanosterol, which is converted to cholesterol.

Cholesterol biosynthesis begins with the formation of the six-
carbon 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)
from one molecule of acetyl-CoA (2C) and one of acetoacetyl-
CoA. This reaction is catalyzed by the soluble enzyme 3-hydroxy-
3-methylglutaryl-Co-enzyme A synthase (HMGCS). HMG-CoA
is then converted to mevalonate by the action of the mem-
brane bound enzyme 3-hydroxy-3-methylglutaryl-Co-enzyme A
reductase (HMGCR) in a reaction considered to be the pri-
mary flux governing step in the cholesterol biosynthesis path-
way and the target of the statin class of cholesterol lower-
ing drugs. Recently, Gill et al. (2011) proposed that squalene
epoxidase (SQLE), which catalyzes the addition of the oxy-
gen moiety to squalene, may be a second flux governing
step.

Regulation of cholesterol biosynthesis is achieved via an ele-
gant system of feedback inhibition which senses intracellular
levels of cholesterol and subsequently modulates the expres-
sion of the key proteins involved in cholesterol homeostasis (Ye
and DeBose-Boyd, 2011). The master regulators of this process
are the sterol response element binding proteins (SREBF1 and

SREBF2, also known as SREBP1 and SREBP2), which are hairpin-
shaped membrane-anchored transcription factors localized to the
endoplasmic reticulum (ER). Gene regulation occurs when the
transcriptionally active part of the molecule (a member of the basic
loop helix leucine zipper family) is released from its membrane
anchor and translocates to the nucleus. This process is dependent
on the levels sterols and fatty acids, although only cholesterol will
be discussed here.

SREBF is retained in the ER due to cholesterol-dependent
interactions with two proteins: SREBP cleavage activating pro-
tein (SCAP) and insulin sensitive gene 1 (INSIG-1). When cellular
cholesterol levels are reduced, the amount bound to SCAP is
reduced, leading to a conformational change, which allows INSIG-
1 to dissociate from the SREBF–SCAP complex and is tagged for
degradation by the proteosome (Ye and DeBose-Boyd, 2011). In
the absence of INSIG-1, the complex then translocates to the Golgi
apparatus, where is subjected to two sequential proteolytic cleav-
ages, first by site-1 protease (S1P) and then by site-2 protease
(S2P). The net result of these cleavages is that the transcription-
ally active domain is released from SREBF and is free to translocate
to the nucleus.

Recent evidence has highlighted a role for microRNAs (miR-
NAs) in cholesterol homeostasis. miRNA 33a and miR-33b are
encoded by introns in the SREBF1 and SREBF2 genes, respectively,
and are highly similar. miR-33a is co-regulated with SREBF2, with
low cholesterol levels promoting an increase and high sterol lev-
els promoting the opposite (Marquart et al., 2010). Very recently
Yang et al. (2014) identified a potential miRNA response element
for miR-185 in the promoter of Srebf2 and demonstrated that
lentiviral overexpression of this miRNA resulted in a decrease in
hepatic Hmgcr and Ldlr. In vivo, miR-185 is regulated by Srebp1c,
thus suggesting the presence of a complex feedback loop integrat-
ing classical mechanisms with miRNA-dependent processes. In
addition, miR-520d and miR-224 both significantly suppress the
mRNA expression of Hmgcr. Notably, these miRNAs also target
various genes in cholesterol transport and lipoprotein homeosta-
sis (cf below), indicating that they have a key role in the overall
coordination of cholesterol homeostasis.

The SREBF proteins are known to be acetylated at conserved
lysine residues by the histone acetylase cAMP responsive element
binding protein 1-binding protein (CBP)/p300 (EP300, more
commonly known as p300 or KAT3B; Giandomenico et al., 2003).
This impedes the ubiquitination and degradation of SREBF and
so prolongs its residence time in the nucleus, thus promoting its
transcriptional activity (ibid). Recent evidence indicates that sir-
tuin 1 (SIRT1) can counteract this by directly deacetylating SREBF
(Walker et al., 2010). SREBF may also be be phosphorylated, which
creates a recognition site for the F-Box and WD Repeat Domain
Containing 7, E3 Ubiquitin Protein (FBXW7) and allows the mul-
tiprotein SCF complex to ubiquitinate it (Sundqvist et al., 2005).
Thus, the steady-state amount of transcriptionally active SREBF
is under complex regulation at multiple levels and maintenance
of active SREBF mediated gene transcription requires continuous
cleavage of the transcriptionally active domain.

The rate of cholesterol synthesis varies considerably between
different organs and tissues, and even between the cells of the same
organ (Dietschy and Turley, 2002). Unsurprisingly, the expression
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Table 1 | Reported epigenetic changes in the expression of genes involved in cholesterol biosynthesis.

Experimental system

Treatment

Reference

HepG2

TSA

Chittur et al.

(2008)

HeLa

TSA

Villagra et al.

(2007)

SH-SY5Y

TSA

Nunes et al.

(2012)

Hdac3 (−/−) mouse

N/A

Knutson et al. (2008)

Mecp (−/−) mouse

N/A

Buchovecky et al.

(2013)

Rat primary neuron

AK1

Luthi-Carter et al.

(2010)

HepG2; mouse liver

SIRT6

Elhanati et al.

(2013)

Gene

HMGCS ↓ ↑ ↓ ↑ – ↓ ↓
HMGCR ↓ ↑ ↓ – ↓ ↓ ↓
MVK ↓ ↑ ↓ – – ↓ –

PMVK – ↑ – – – ↓ –

MVD – – – – – ↓ –

IDI1/IDI2 – – – ↑ – ↓ –

FDPS ↓ ↓ – ↑ – ↓ –

SQS/FDFT1 ↓ ↑ – ↑ – ↓ –

SQLE ↓ ↑ – ↑ ↓ ↓ –

LSS – ↑ – – – – –

CYP51A1 ↓ – – ↑ – – –

SC4MOL ↓ – – ↑ – ↑ –

NSDHL ↓ – – – – – –

SC5D ↓ – – – – ↓ –

DHCR7 ↓ – – – – ↓ –

DHCR24 – – – – – – –

Data is extracted from each of the above references and summarizes the direction of the changes in expression. The magnitude of the change is not indicated; –
indicates that there were no data available or there was no significant change reported.

of cholesterogenic genes varies in parallel with the rate of synthesis.
A further source of variability is the age-dependency of cholesterol
synthesis (Dietschy, 2009) with some cell types being very active
during some periods of life and then becoming effectively quies-
cent afterwards (e.g., oligodendroglia). The combination of these
factors leads to a unique synthesis profile in each cell. Although,
the mechanism(s) underpinning this regulation has not been elu-
cidated it is likely that epigenetic mechanisms play an important
role.

Several investigators have reported that the genes involved in
cholesterol biosynthesis are under epigenetic regulation, using a
variety of in vivo and in vitro approaches (summarized in Table 1).
Using an in vitro approach, Villagra et al. (2007) demonstrated that
overexpression of histone deacetylase 3 (HDAC3) in CHO cells
resulted in a 10-fold decrease of the rate of cholesterol synthesis.
To rule out a confounding effect of SREBF mediated effects the
authors used the SRD-13A cell line, which cannot cleave SREBF
and are cholesterol auxotrophs (Rawson et al., 1999). Compared
to a control cell line there was only a slight difference following
HDAC overexpression, indicating the effect is primarily medi-
ated by epigenetic mechanisms. Intriguingly, the HDAC3 effect
was observed even though HMGCR was slightly up- rather than
downregulated indicating that the effect was not at the classical
flux controlling step in cholesterol synthesis. Instead the authors
presented evidence that lanosterol synthase (LSS) which catalyses

the cyclisation of the isoprenoid 2,3-oxidosqualene to the steroid
lanosterol, was markedly downregulated by HDAC3 expression or
treatment with the HDACi trichostatin A (TSA). Subsequently,
Knutson et al. (2008) used an Hdac3 knockout mouse to show
that loss of Hdac3 in vivo resulted in a de-repression of cholesterol
synthesis and secretion by the liver, with several genes of the choles-
terol synthesis pathway increased significantly. This lead to an age
dependent increase in liver cholesterol content (fivefold increase
in cholesteryl esters and a twofold increase in total cholesterol at
P56) and a corresponding increase in serum total (threefold) and
LDL-cholesterol (fivefold). Although there are differences in these
reports, most likely due to the different experimental approaches,
they are consistent in that an increase in HDAC3 leads to a decrease
in cholesterol synthesis and content, while loss of Hdac3 leads to
the opposite situation.

In a more broad array based survey, Chittur et al. (2008) car-
ried out transcriptional profiling on HepG2 hepatoma and F9
mouse embyronic carcinoma cells following treatment with TSA.
They reported that numerous genes of cholesterol synthesis were
downregulated by TSA and confirmed the change in expression
using qPCR. SREBF2 was also decreased, which may contribute to
the changes observed in the cholesterol synthesis pathway in the
cell systems studied. They did not report if cholesterol levels were
altered by the treatment. Drzewinska et al. (2011) reported that 24-
dehydrocholseterol reductase (DHCR24), which is not reported in
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the abovementioned studies, was induced by treatment with either
TSA or 5-azacytidine (5AZA) in some, but not all, of the cell types
tested. Taken together, the data available in connection with these
studies indicates that epigenetic mechanisms are important for
the regulation of the cholesterol synthesis pathway. Moreover, they
also provide concrete evidence of cell-type sensitivity to epigenetic
regulation.

As described above, members of the SIRT family are protein
deaceylases that have been shown to have effects on cholesterol
homeostasis. SIRT2 has also been reported to have effects on
cholesterol biosynthesis, although the data are somewhat vari-
able. Transcriptional profiling of of primary rat neuronal cultures
following treatment with small molecule SIRT2 inhibitors (AK-1
or AGK2) for 24 h resulted in the decreased expression of many
genes involved in cholesterol biosynthesis, while total sterol levels
were also decreased to about two-thirds of the vehicle treated con-
trols (Luthi-Carter et al., 2010). These investigators also reported
that abundance of SREBF in the nucleus was reduced follow-
ing SIRT inhibition, an effect that they speculated was due to
a trafficking defect. However, given the sensitivity of SREBF
to acetylation, this observation may be explained by increased
degradation of nuclear SREBF rather than decreased traffick-
ing. In contrast, studies using a Sirt2 knock-out mouse failed
to recapitulate these data, with no changes in the mRNA of
cholesterol synthesis genes (Bobrowska et al., 2012). However, as
Bobrowska et al. analyzed brain regions with mixed cell types
rather than primary cultures of a single cell type, any differences
(e.g., in the neuronal compartment) may have been “diluted”
by more abundant cell types in which there were no change. A
further confounder is the known age-dependent changes in the
expression of genes involved in sterol homeostasis in neurons,
with significant changes occurring in the immediate postnatal
period (Ohyama et al., 2006). Extrapolation of results concerning
cholesterol homeostasis from primary cultures based on embry-
onic cells to the adult situation should therefore be done with
caution.

SIRT6 has also been shown to be involved in cholesterol home-
ostasis. Elhanati et al. (2013) reported that cholesterol content in
HepG2 cells was reduced (by approximately one-third) following
ectopic overexpression of SIRT6 while RNAi mediated knockdown
resulted in an increase in cellular cholesterol content of the same
magnitude. The mRNA expression of both HMGCS and HMGCS
changed in parallel with the changes in cholesterol content. Impor-
tantly similar results were found in the livers of a mouse model
overexpressing Sirt6. The authors provided evidence that this reg-
ulation was due to effects of SIRT6 on SREBF1 and SREBF2 via a
combination of direct transcriptional regulation, inhibition of the
proteolytic release of the transcriptionally active form of SREBF
and promotion of phosphorylation of SREBF by AMP activated
protein kinase (AMPK).

The expression of miR-33a and miR-33b, causes a decrease in
the expression of SIRT6 (Elhanati et al., 2013). Effects related to
mIR-dependent regulation may account for the magnitude of the
equal but opposite regulation by SIRT6 overexpression an SIRT6
knockdown, respectively. Subsequently, Tao et al. (2013) described
additional mechanistic details and highlighted a key role for the
forkhead box O3 (FOXO3) protein in recruiting SIRT6 to the

SREBF2 promoter, leading to histone deacetylation and reduced
expression of cholesterol biosynthetic genes. Importantly, these
investigators also provided independent replication of the effect
of Sirt6 overexpression on cholesterol concentration in vivo.

Very recently Poirier presented evidence that the commonly
used DNA methylation inhibitor regulator 5AZA is capable of
reducing the impeding cleavage of SREBF, thus reducing the
expression of HMGCR (Poirier et al., 2014). Critically these effects
were independent of effects on DNA methylation. These results
add an extra layer to the interpretation of the results of studies on
DNA methylation and cholesterol homeostasis using 5AZA.

CHOLESTEROL ABSORPTION
The absorption of cholesterol from the intestinal lumen is a com-
plex and incompletely understood process (van der Wulp et al.,
2013). As a very hydrophobic molecule cholesterol requires the
presence of bile salts and phospholipids to form mixed micelles
which permit its uptake into the enterocytes. Various proteins have
been associated with inward flux of cholesterol into the enterocyte,
most notably the Niemann Pick Disease Type C1 Like-1 (NPC1L1)
protein. The heterodimer formed by the ATP binding cassette sub-
family members G5 and G8 (ABCG5 and ABCG8, respectively)
is associated with an outward sterol flux back into the intestinal
lumen. There is very limited data on the involvement of role of
epigenetic mechanisms in the regulation of these key genes. Very
recently, Malhotra et al. (2014) described a key role for promoter
methylation in the regulation of Npc1l1 expression in the mouse
gastrointestinal tract. It is well established that Npc1l1 expression is
restricted in the gastrointestinal tract with expression in the small
but not the large intestine (Davis and Altmann, 2009). The low
colonic expression appears to be a result of extensive methylation
of the promoter in the colon but not in the ileum or jejunum, and
5AZA treatment resulted in the derepression of Npc1l1 expres-
sion in the colon (Malhotra et al., 2014). Furthermore, using a
gene knockdown approach it was shown that both DNA methyl-
transferases 1 and 3B (DNMT1 and DNMT3B, respectively) are
involved in maintaining the hypermethylated state in the colon.
Simultaneous knockdown of both was required for the depres-
sion effect which is consistent with redundancy in the regulatory
process. In similarity with NPC1L1 there are very limited data on
epigenetic regulation of ABCG5/ABCG8, and none in the context
of the intestine as far as it has been possible to determine. Studies
on mouse liver carried out by Imai et al. (2009), however, indicate
that the common promoter is acetylated and unmethylated, in the
liver at least.

CHOLESTEROL ELIMINATION
Cholesterol is the obligate precursor for the formation of bile acids,
which are essential for the absorption of dietary lipids. Forma-
tion of bile is the major route of cholesterol elimination from
the intact organism and although the pathways terminate in the
liver, bile acid synthesis can be initiated in almost all cell types
(Björkhem, 2013; van der Wulp et al., 2013). Two interconnected
pathways which differ at the point in which the C27 carboxylic
acid group is added are recognized – the classical (or neutral)
pathway and the alternative (or acidic) pathway. The key struc-
tural modifications which occur are the saturation of the sterol
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nucleus, introduction of 2–3 hydroxyl groups in the alpha config-
uration and the oxidation of the side chain to yield a 24-carbon
molecule. As part of these pathways a class of compounds called
oxysterols (or cholesterol oxidation products) are generated, each
of which contains one or more additional oxygen containing func-
tional groups. The enzymes responsible for the formation of these
oxysterols (i.e., genes responsible for oxysterol synthesis, GROS)
are unevenly distributed across different cells and tissues in the
body, e.g., CYP7A1 is liver specific while CYP46A1 is found in CNS
neurons only (Meaney, 2013). In similarity with the situation for
ABCG5/ABCG8 and NPC1L1 above, epigenetic mechanisms have
been shown to have a role in the regulation of these genes. Only
those genes where there is data indicating a role for epigenetic
regulation will be discussed.

Cholesterol 7α-hydroxylase (CYP7A1) is the rate limiting step
in the classical pathway of bile acid biosynthesis. Its regulation has
been studied in detail and the reader is referred to Chiang (2013)
for a recent review. In brief, bile acids, by acting as ligands for the
nuclear hormone receptor FXR, lead to the suppression of CYP7A1
expression via an indirect negative feedback cycle dependent on
the small heterodimer partner (SHP) protein. From an epigenetic
view point, the work of Kemper and colleagues has highlighted
a key role for the farnesoid X-receptor (FXR) dependent events
at the promoter of SHP – binding of ligand activated FXR to
the promoter leads to the recruitment of p300 and a subsequent
increase in both histone and FXR acetylation. Numerous chro-
matin remodeling factors – Brahma-related gene-1 (BRG1), Brg-1
associated factors (BAF) and activating signal cointegrator-2 con-
taining co-activator complex (ASCOM) – are then recruited to the
promoter, promoting significant chromatin remodeling, which
triggers upregulation of SHP. SHP interacts with liver receptor
homolog-1 (LRH1) at the CYP7A1 promoter and recruits SIN3
transcription regulator family member A (SIN3A), HDACs1 and 2
and euchromatic histone-lysine N-methyltransferase 2 (EHMT2,
also known as G9a). Ultimately a SWI/SNF related, matrix asso-
ciated, actin dependent regulator of chromatin, subfamily a,
member 2 (SMARCA2, also known as BRM) complex remod-
els the chromatin to suppresses CYP7A1 expression (Smith et al.,
2013). SHP has also been shown to recruit SIRT1 to LRH1 target
genes (including SHP itself), leading to SIRT1 dependent his-
tone deacetylation and inhibition of transcription of the CYP7A1
gene and providing a self-regulating feedback loop (Chanda et al.,
2010).

In vivo studies indicate that Hdac3 may also play a role in
regulation of Cyp7a1 – knockout of Hdac3 in the mouse leads
to increased histone acetylation at the Cyp7a1 promoter and an
increase in mRNA expression (Knutson et al., 2008). Treatment of
mice with TSA or valproic acid (VPA) resulted in a large increase
in Cyp7a1 expression and prevented normal feedback regulation
by bile acids, probably by interfering with the sophisticated mech-
anisms described above. In addition data has been presented that
Hdac7 was critical for the HDACi mediated increase. There is lim-
ited evidence for a role of miRNA in the regulation of CYP7A1.
Song et al. (2010) reported that CYP7A1 was a target for the liver
enriched miR-122 as well as miR-422a and that silencing of these
miRNAs induced gene expression.

Taken together this evidence indicates that epigenetic mecha-
nisms are critical for the regulation of CYP7A1 in many species,
although there is clearly more work to be done to elaborate addi-
tional details. For example, the basis for the hepatospecificity has
yet to be established and the role of SIRTs requires further scrutiny.

Sterol 27-hydroxylase (CYP27A1) catalyzes the formation
of both 27-hydroxycholesterol (27-OHC) and 3β-hydroxy-5-
cholestenoic acid (CA) and is the initial step in the alternative
pathway of bile acid biosynthesis. Although certain cell types (i.e.,
hepatocytes and cells of the monocytic lineage) express high lev-
els of the enzyme it is considered relatively ubiquitous. Studies
on epigenetic regulation of CYP27A1 are limited and are descrip-
tive only – 5AZA was shown to have no effect in macrophages
(Escher et al., 2005) while TSA treatment of HepG2 cells resulted
in a six-fold decrease of CYP27A1 mRNA at 24 h followed by a
return to basal levels by 48 h (Chittur et al., 2008). In contrast,
treatment of SH-SY5Y neuroblastoma cells with TSA caused a
five-fold increase in expression (Shafaati et al., 2009). While it is
difficult to reconcile these findings in the absence of additional
mechanistic details, it is highly likely that cell specific factors are
involved.

Cholesterol 24S-hydroxylase (CYP46A1) catalyzes the forma-
tion of 24S-hydroxycholesterol (24S-OHC), a key process for
maintenance of overall cholesterol homeostasis within the brain
of vertebrates. It is well established that CYP46A1 is regulated
by histone acetylation status – treatment with TSA in vitro
results in a large increase in mRNA expression (Ballas et al., 2005;
Milagre et al., 2008; Shafaati et al., 2009). Under in vivo conditions,
treatment of mice with TSA leads to a modestly increased level
of Cyp46a1 in the liver but not the brain (Shafaati et al., 2009).
Rodrigues et al. have carried out an elegant series of experiments
designed to uncover the details of the mechanism underpinning
this effect. Specificity proteins (SP) 1, 3, 4 appear to be criti-
cal for the effect of HDACi – loss of SP3 from the promoter
triggers a decrease in the occupancy of HDACs 1 and 2, with
subsequent recruitment of CBP and p300 (Milagre et al., 2012).
In a subsequent study these authors identified a potential role
for MEK-ERK signaling in the regulatory process and provided
evidence that pERK is present at the CYP46A1 promoter where
it phosphorylates SP3, thus triggering recruitment of corepres-
sors (Nunes et al., 2012). Given the highly restricted expression
of CYP46A1 – in healthy brain it is only present in neurons –
this mechanism may represent a supression mechanism impor-
tant for cell-specificity of CYP46A1. In addition, the RE1-silencing
transcription factor (REST, also known as NRSF) may play a role
in the suppression of CYP46A1 in non-neuronal cells (Meaney,
2013). Although the CYP46A1 promoter is GC rich and con-
tains several predicted CpG islands it does not appear that these
are methylated. However, treatment with DNMT inhibitors lead
to an increase in the expression of CYP46A1, by a mechanism
involving an SP3 dependent loss of SIN3A and HDAC(s) (Milagre
et al., 2010). In the Mecp2 null mouse, expression of CYP46A1
was markedly decreased with a concomitant reduction in the
rate of cholesterol synthesis rate (Buchovecky et al., 2013). These
data indicate that epigenetic mechanisms are critical for the reg-
ulation of brain cholesterol balance and may indeed represent
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critical coordination point between brain cholesterol synthesis and
eliminations.

Cholesterol 25-hydroxylase (CH25H) catalyses the synthesis
of 25-hydroxycholesterol (25-OHC), a molecule which has very
recently been described to have potent anti-viral and paracrine
immunomodulatory effects (Bauman et al., 2009; McDonald and
Russell, 2010; Liu et al., 2013). It has been shown that the sig-
nal transducers and activators of transcription 1 (STAT1) pathway
can regulate Ch25h in mice (Blanc et al., 2013). As HDAC activ-
ity is required for STAT1 signaling, epigenetic mechanisms likely
contribute to this process. Gold et al. (2012) demonstrated that
deletion of the activating transcription factor-3 (Atf3) gene lead to
increased Ch25h promoter acetylation in bone marrow derived
macrophages, with the consequence of increased mRNA and
25-OHC.

In contrast to the other genes responsible for the formation of
oxysterols, CYP3A4 encodes an enzyme with a primary respon-
sibility for the metabolism of pharmaceuticals and xenobiotics.
In addition, it has been reported that CYP3A4 can also pro-
duce both 4β- and 25-hydroxycholesterol (Honda et al., 2011;
Diczfalusy, 2013). CYP3A4 is hepatospecific and its expression
can be induced significantly, with the pregnane X-receptor act-
ing as a key mediator of regulation. Currently available data
indicates that DNA methylation plays a role in the regulation
of CYP3A4 – treatment with 5′-aza-deoxycytidine increased the
expression of CYP3A4 in a variety of cell lines, with induc-
tion in some cell systems by a factor of more than 100-fold
(Dannenberg and Edenberg, 2006; Habano et al., 2011). Due to
the sensitivity of CYP3A4 to PXR, these effects are likely due to dif-
ferential methylation at the promoter of PXR rather than a direct
effect on CYP3A4. In studies on the mouse ortholog Cyp3a11, Li
et al. (2009) demonstrated that increased expression of Cyp3a11
was associated with increased histone H3 lysine-9 dimethylation.
In the brain, which does not express Cyp3a11, there was extensive
histone-H3 lysine-9 dimethylation and lysine-27 trimethylation
at the Cyp3a locus (Mikkelsen et al., 2007). At a mechanistic level,
it has been shown that ligand binding to PXR triggers recruit-
ment of protein arginine N-methyltransferase-1 (PRMT1) to the
CYP3A4 promoter which triggers increased histone acetylation
and methylation (Xie et al., 2009).

Oxysterol 7α-hydroxylase (CYP7B1) is responsible for the
7α-hydroxylation of intermediates in bile acid synthesis such
as 27-OHC and 25-OHC but not 24S-OHC (cf below). In
similarity with 27-OHC, CYP7B1 is considered to be an ubiq-
uitous enzyme although its expression is greater in males than
in females (Leuenberger et al., 2009; Stiles et al., 2009). It is
known that the CYP7B1 promoter is methylated and treatment
of the prostate cancer cell line LNCaP with DNMT inhibitors
leads to a reduction in the mRNA levels (Olsson et al., 2007).
The results following HDACi treatment are more variable and
appear to be dependent on the cell type – HDACi treatment
leads to a reduction in SH-SY5Y cells but an induction in
HepG2 cells (Chittur et al., 2008; Shafaati et al., 2009). This
latter induction was shown to be dependent on HDAC1 and
HDAC3 dependent processes. Methylation has a key role on
the sexual dimorphic expression of CYP7B1 – sumoylation of
the nuclear hormone receptor peroxisome-proliferator activated

receptor triggers enhanced interaction with GA-binding protein
(GABP) and the recruitment of various HDAC and DNMT.
The net effect is the methylation of an important SP1 bind-
ing site in the CYP7B1 promoter, preventing its binding to the
promoter and so the expression is reduced (Leuenberger et al.,
2009).

24S-hydroxycholesterol 7α-hydroxylase (CYP39A1) is respon-
sible for the 7α-hydroxylation of the 24S-OHC. It has limited
expression throughout the body, with liver, eye and brain expres-
sion reported (Li-Hawkins et al., 2000; Steckelbroeck et al., 2002;
Ikeda et al., 2003; Shafaati et al., 2009). In similarity with CYP7B1,
CYP39A1 is expressed in a sexually dimorphic manner, with higher
levels in females compared to males (Li-Hawkins et al., 2000). Data
on the epigenetic regulation of CYP39A1 are very limited – HDACi
treatment in mice results in an increase in Cyp39a1 in the brain
while at the same time decreasing hepatic expression (Shafaati
et al., 2009). Huang et al. (2009) have described that CYP39A1 may
be hypermethylated in ovarian cancer, but did not report effects on
mRNA levels. Using a hypomorphic DNMT1 mouse line, Kutay
et al. (2012) recently reported that the expression change in the
liver of Cyp39a1 in response to alcohol challenge was blunted by
more than half in the DNMT1 deficient lineage.

LIPOPROTEINS
To date, there have been few reports on the epigenetic regu-
lation of plasma lipoproteins or the proteins involved in their
turnover and there do not appear to be any regulation of the
structural apolipoproteins APOA1 and APOB. However, there is
some recent evidence that APOE, which is present on both APOB
and APOA1 containing lipoproteins in the circulation, is epige-
netically regulated. In an early study on hyperhomocystenemia
Yi-Deng et al. (2007) reported a decrease in Apoe mRNA and
protein following homocysteine treatment, a decrease which was
reversed with folate treatment. These changes were matched by an
concomitant increase promoter methylation, linking the change
to differential methylation of the DNA. Very recently, Yu et al.
(2013) reported that exon 4 of the APOE gene, which contains the
important e2/e3/e4 polymorphic region, contained a CpG island.
This region was highly methylated in numerous brain regions and
also in peripheral blood lymphocytes and the degree of methy-
lation appeared to be sensitive to APOE allele present in exon 4.
Moreover, there were functional consequences – the differentially
methylated alleles had independent enhancer/silencer effects (Yu
et al., 2013). Thus, although the direct data is limited, it appears
that methylation at least plays a key role in the expression of APOE.

Apolipoprotein J (CLU, initially described as clusterin) is found
in APOA1 (i.e., HDL-type) containing-lipoproteins. Salminen’s
group has studied the epigenetic regulation of CLU in vari-
ous cellular systems. Treatment with different HDACi increased
the mRNA expression of CLU in normal human astrocytes, C6
glioma cells and both SK-N-AS and HN10 neuroblastoma cells
(Nuutinen et al., 2005). The expression in SK-N-AS cells was fur-
ther enhanced by a combination of HDACi and DNMT inhibition.
Intracellular and secreted CLU was also significantly increased by
HDACi treatment (Suuronen et al., 2007). Taken together these
results indicate that epigenetic mechanisms play an important role
in the regulation of CLU.
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In HepG2 cells, HDACi treatment appears to reduce the expres-
sion of the LDL-receptor (Chittur et al., 2008; Nunes et al., 2012).
In addition, the proprotein convertase subtilisin/kexin type 9 pro-
tein (PCSK9), which controls the degradation of the LDL-receptor
and is a critical regulator of the amount of LDLR expressed on the
cell surface, is epigenetically regulated. SIRT6 is recruited to the
promoter by FOXO3 and promotes the deacetylation of histone
H3 proteins at lysines 9 and 56 (Tao et al., 2013). This has the
effect of reducing PCSK9 expression, preserving LDL-R exposure
and function and thus lowering plasma low density lipoprotein
cholesterol levels. In the Sirt6 knockout mouse, Pcsk9 levels are
elevated with a concomitant reduction in the expression of the
Ldlr and an increases the level of cholesterol in the blood (ibid).

Intriguingly, some very recent data indicates that lipoproteins
may trigger epigenetic changes in genes involved in disease. Kumar
et al. (2013) demonstrated that DNMT1 expression and activity
were induced in endothelial cells following treatment with LDL
cells. Binding of MECP2 was also enhanced, with a net result
of a decrease in endothelial Kruppel-like factor 2 (KLF2) expres-
sion. The overall effect was an enhanced procoagulant status of
the endothelium a change which may have functional significance
(ibid).

Accumulating evidence indicates that microRNAs (miRNA) are
involved in the regulation of lipoprotein homeostasis, adding an
additional level of complexity and control to the process. Studies
by Esau et al. (2006) identified that miR-122 was highly enriched
in the liver and was able to regulate plasma cholesterol in the
mouse and in non-human primates. Ablation of miR-122 using
antisense oligonucleotides resulted in a decrease in total choles-
terol by 25–30%, with the effect in non-human primates due
to a reduction in LDL cholesterol. However, the mechanism for
these changes was not obvious, despite the use of genome wide
expression profiling approaches. miR-370 has also been shown to
indirectly influence plasma cholesterol levels, via modulation of
miR-122 levels (Iliopoulos et al., 2010). On the other hand, several
miRNAs – including miR-33a/b, miR-128, and miR-144 – have
been reported to modulate the expression of components of the
pathway for HDL-dependent cholesterol efflux. This regulatory
mechanism appears to be of functional importance, as silenc-
ing of these miRNAs in vivo leads to an increase in plasma HDL
(Rayner et al., 2011a; Adlakha et al., 2013; Ramírez et al., 2013).
This may represent a regulatory mechanism which converges on
the flux-governing steps of sterol efflux.

Salerno et al. recently described two miRNAs which appear to
have a role in regulation of the LDLR – miR-520d and miR-224
both target genes involved in determining how much LDLR is
expressed on the cell surface, namely IDOL and PCSK9 (Salerno
et al., 2013). In vitro overexpression of miR-520d decreased the
expression of both genes by 30–50%, while similar experiments
with miR-224 resulted in a decrease in the order of 75%. The
net effect of these decreases was an increase in the cell-surface
expression of the LDLR and greater LDL binding.

CHOLESTEROL STORAGE
Excess cholesterol in the cell can be converted to choelsteryl
esters by sterol O-acyl transferases 1 and 2 (SOAT1 and SOAT2,
respectively, also known as ACAT1 and ACAT2). This provides

a mechanism whereby cells can store cholesterol and remove it
from the metabolically active pool present in the cell. Data on the
regulation of SOAT1 and SOAT2 are very limited and is found
only in studies examining other aspects of lipid metabolism.
Tessema and Belinsky (2008) identified that the SOAT2 pro-
moter was methylated to varying degrees among a panel of lung
cancer adenocarcinoma cells. Liang et al. (2013) reported a modest
decrease in SOAT1 promoter methylation following homocysteine
treatment, which was contemporaneous with an increase in SOAT1
mRNA and cholesteryl ester concentration. Finally, Devlin et al.
(2010) reported that hepatic expression of Soat2 in hyperhomo-
cystenemic mice was reduced in the context of elevated DNA
methylation. Thus, although the available data is limited, there are
indications that sterol esterification is likely to be under epigenetic
regulation.

POTENTIAL OF EPIGENETIC THERAPIES IN DYSLIPIDEMIAS
There is relatively limited direct data on the potential for HDACi
and related epigenetic therapies to influence lipid levels and the
data that is available is typically in connection with consumption
of juices and other supplements. In an early study, Murashima
et al. (2004) examined the effects of 1-week intake of broccoli
sprouts – which rich in the phytochemical HDACi sulforaphane –
on various biochemical parameters in man and reported positive
effects on HDL-cholesterol. Subsequent studies of hypercholes-
terolemic men treated with kale juice (also rich in sulforaphane)
in demonstrated similar beneficial increases in HDL-cholesterol
and a significant and clinically relevant decrease in the athero-
genic index (Kim et al., 2008). In a randomized double-blind
placebo-controlled study on type 2 diabetic patients, using broc-
coli sprout powder (BSP) Bahadoran et al. (2012) reported a
significantly higher HDL-cholesterol in the group receiving the
highest dose of BSP and a reduction in the atherogenic index
similar to that described by Kim et al. (2008). Thus, although
the data is both limited and confounded by the well known
anti-oxidant effects of sulforaphane, it does appear that targeted
dietary epigenetic therapies may be viable options for treatment
of dyslipidemia.

The key role for miR-33 in regulation of cholesterol efflux
has prompted several investigators to explore the possibility that
antagonism of miR-33 may be a viable HDL-raising strategy. Initial
studies from Moore’s group demonstrated that treatment of ather-
prone mice with anti-miR-33 lead to an increase in plasma HDL
levels with no obvious hepatotoxicity and moderate regression of
atherosclerosis (Rayner et al., 2011b). Subsequent studies where
non-human primates were treated for a total of 12 weeks demon-
strated an elevation in Abca1 expression and increase in HDL levels
(to 1.5-fold of the mismatch control), again with no apparent
hepatotoxicity (Rayner et al., 2011a). Similar changes were also
reported by Rottiers et al. (2013). Inhibition of the activity of miR-
33 thus appears to be a potential mechanism to enhance reverse
cholesterol transport in vivo. However, very recently Goedeke et al.
(2014) reported that long-term inhibition of miR-33 in the setting
of a high-fat diet may lead to hepatic steatosis. Although these
studies were carried out in mice, they do indicate that anti-miR-
33 therapies may have adverse effects when used for long term
treatment.
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Due to its hydrophobic nature, the movement of cholesterol
within the cells relies on a wide variety of membrane bound and
soluble proteins. The Niemann Pick Disease Type C proteins 1 and
2 (NPC1 and NPC2, respectively) work in a coordinated manner
to ferry cholesterol from the endolysosomal system to the endo-
plasmic reticulum (Yu et al., 2014). There is compelling evidence
that both of these genes are regulated by histone acetylation sta-
tus and treatment of cells with a variety of different HDACi leads
to a significant increase in the expression of these genes (Gévry
et al., 2003; Kim et al., 2007; Pipalia et al., 2011; Helquist et al.,
2013; Maceyka et al., 2013). The increase in the expression of the
mutated NPC proteins, which have some by not sufficient activity,
resulted in a quantitative increase in activity which was sufficient
to correct the cellular defect (Munkacsi et al., 2011; Pipalia et al.,
2011; Yang et al., 2014). Due the success of the HDACi treatment
in pre-clinical models, HDACi therapy is currently being trialed
in a small group of NPC patients. This underscores the potential
for therapies based on epigenetic approaches to address deficits in
cholesterol homeostasis which are currently intractable by other
approaches.

CONCLUDING REMARKS
Epigenetic regulation of cholesterol and sterol homeostatic genes
is a burgeoning field which is already showing great potential to
explain the behavior of genes involved in sterol balance. There
are numerous questions outstanding in the field, but there are
excellent investigators working intensively to address them. The
goal will be to translate basic research findings into transcriptional
therapies for non-cancer human diseases, in a similar manner to
NPC disease as outline above. The availability of pharmaceutical
compounds developed for other diseases (e.g., vorinostat) as well
as the ever increasing amount of dietary epigenetic modulators
provides a good foundation for translation into the clinical setting
as possible therapies for cardiovascular and neurodegenerative dis-
eases. The efforts of dedicated investigators who continue to shed
light on the importance of epigenetic mechanisms will contribute
to this development in the coming years.
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