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The advent of next generation sequencing (NGS) technologies enabled the investigation
of the rare variant-common disease hypothesis in unrelated individuals, even on the
genome-wide level. Analysis of this hypothesis requires tailored statistical methods as
single marker tests fail on rare variants. An entire class of statistical methods collapses
rare variants from a genomic region of interest (ROI), thereby aggregating rare variants.
In an extensive simulation study using data from the Genetic Analysis Workshop 17
we compared the performance of 15 collapsing methods by means of a variety of
pre-defined ROIs regarding minor allele frequency thresholds and functionality. Findings
of the simulation study were additionally confirmed by a real data set investigating the
association between methotrexate clearance and the SLCO1B1 gene in patients with
acute lymphoblastic leukemia. Our analyses showed substantially inflated type I error
levels for many of the proposed collapsing methods. Only four approaches yielded valid
type I errors in all considered scenarios. None of the statistical tests was able to detect
true associations over a substantial proportion of replicates in the simulated data. Detailed
annotation of functionality of variants is crucial to detect true associations. These findings
were confirmed in the analysis of the real data. Recent theoretical work showed that large
power is achieved in gene-based analyses only if large sample sizes are available and a
substantial proportion of causing rare variants is present in the gene-based analysis. Many
of the investigated statistical approaches use permutation requiring high computational
cost. There is a clear need for valid, powerful and fast to calculate test statistics for studies
investigating rare variants.
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1. INTRODUCTION
The common variant-common disease hypothesis has success-
fully been investigated using genome-wide association studies
(GWAS) with unrelated individuals in the past decade (Saxena
et al., 2007; Seng and Seng, 2008; Manolio, 2010; Speliotes
et al., 2011). With the advent of high-throughput sequenc-
ing technologies, generally termed next generation sequencing
(NGS) (Metzker, 2010), it has now become possible to effi-
ciently study the rare variant-common disease hypothesis, even
on the genome-wide level (Campbell and Manolio, 2007; Bodmer
and Bonilla, 2008). Some variants may be very rare or even
observed only once in the entire sample so that standard asso-
ciation analyzes are not reasonable. To make association analysis
feasible, researchers have therefore aggregated rare variants from
a genomic region of interest (ROI). In early successful studies, the
number of variant sites in the ROI was counted and, subsequently,
compared between affected and unaffected individuals (Fitze
et al., 2002; Cohen et al., 2004).

These findings founded the basis for the development of
sophisticated new statistical association methods, termed col-
lapsing or burden methods, in which rare variants are not only
counted but weighted in various ways. For example, variants may
be weighted inversely proportional to their frequency (Madsen
and Browning, 2009) because rare variants are more often pre-
dicted to be functional (Price et al., 2010). They have stronger
effect sizes than common variants, which is consistent with the
view that functional variants are subject to purifying selection
pressure (Kryukov et al., 2007; Bodmer and Bonilla, 2008; Frazer
et al., 2009). This idea has led to the development of four other
branches of collapsing methods. In one, the putative functionality
of the rare variant as predicted from software packages is included
(Ng and Henikoff, 2001; Ramensky et al., 2002; Adzhubei et al.,
2010). Another idea determines the weights of all variants empir-
ically from their observed effect sizes (Zhang et al., 2011; Jiang
et al., 2013). In the third approach, results from simulation studies
of evolutionary models are utilized. The effect size, measured as
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odds ratio, is approximately inversely proportional to the square
root of the minor allele frequency (MAF) (Price et al., 2010).
Therefore, statistical power might be maximized using a flexible
threshold for classifying variants as rare instead of a fixed thresh-
old. Finally, an entirely different strategy was used by Luo et al.
(2011). Following the model of Bickeböller et al. (Bickeböller and
Thompson, 1996), they interpreted a chromosome as a contin-
uum. This allows capturing the variation in an ROI of both rare
and frequent variants.

To assess the value of a collapsing method, smaller scale sim-
ulation studies were usually reported in the articles proposing
a new method. These studies demonstrated the potential high
power of the burden methods. However, a comprehensive head-
to-head comparison of many collapsing methods is still lacking.
We close this gap by comparing 15 conceptually different col-
lapsing methods (Table 1) using the simulation data set provided
for the Genetic Analysis Workshop (GAW) 17 (Almasy et al.,
2011). Findings from the analysis of real data set investigating
methotrexate clearence in acute lymphoblastic leukemia (ALL)
diseased children (Treviño et al., 2009) were in line with the
conclusions drawn from the simulation study.

2. MATERIALS AND METHODS
2.1. COLLAPSING METHODS
All 15 methods require an ROI. An ROI may contain variants of
an arbitrary genetic unit, e.g., a gene or a pathway. However, col-
lapsing might be further refined in different ways. One approach
to define an ROI is to use information on functionality or direc-
tion of the effect of a variant. These estimates may be obtained
from software packages, such as Polyphen2 (Adzhubei et al.,

2010), SIFT (Ng and Henikoff, 2001), SNPS3D (Yue et al., 2006),
or PMUT (Ferrer-Costa et al., 2004). Most of the approaches
intrinsically only consider variants with a MAF below a specific
threshold, such as 1 or 5%, and only these variants form the
ROI. However, since frequent variants are excluded by this def-
inition, association information might be lost. Another group
of approaches therefore investigates the joint effect of rare and
common variants.

The early collapsing approaches all share the assumption that
all variants below a certain MAF threshold are causal with the
same direction of the effect, and these tests are termed burden
tests. The simplest version of a burden test was used by Fitze et al.
(2002) who counted the number of cases and the number of con-
trols with at least one rare variant in an ROI. A slightly modified
version, coined cohort allelic sum test (CAST), was proposed by
Morgenthaler and Thilly (2007) who compared the number of
minor alleles in an ROI between cases and controls. The cumula-
tive minor-allele test (CMAT; Zawistowski et al., 2010) follows a
similar idea but uses the odds ratio as measure of comparison, not
the difference of counts. Li and Leal (2008) suggested to jointly
investigate rare and common variants in an ROI; their approach is
termed Combined Multivariate and Collapsing (CMC) test. Here,
rare variants are pooled to one genetic unit, and the test is a mul-
tivariate test of both rare and common variants in an ROI. Two
rare variant tests (RVT1, RVT2) followed similar ideas but used a
generalized linear model (Morris and Zeggini, 2010). RVT2 uses
the proportion of positions carrying at least one minor allele in
an ROI as a weight of the expected increase in the phenotype,
where RVT1 considers whether there is at least one position with
a minor allele present in an ROI. Instead of using a fixed threshold

Table 1 | Properties of 15 collapsing methods: Year of publication, burden (B) or non-burden (NB) test, both common and rare variants used in

the analysis [yes (Y)/no (N)], test considers different effect directions (Y/N), test able to handle the presence of non-causal variants (Y/N),

phenotype quantitative (Q) and/or binary (B), covariates can be included (Y/N), p-values assessed by permutation (P) or from an asymptotic

distribution (D).

Method Year Burden/Non-burden Common and rare Direction of effect Miss-classi-fication Phenotype Covariates Permutation

CAST 2007 B N N N B N D

CMC 2008 B Y N N B N P

RVT1 2009 B N N N B/Q Y D

RVT2 2009 B N N N B/Q Y D

WSS 2009 B N N N B N P

RC 2010 B N N N B N P

aSum 2010 NB N Y N B N P

VT 2010 B N Y N B/Q Y P

KBAC 2010 NB N N Y B N P

CMAT 2010 B N N N B N P

C-α 2011 NB N Y Y B N D

FPCA 2011 B N Y N B Y D

PWST 2011 NB N Y N B/Q N P

SKAT 2011 NB Y Y Y B/Q Y D

SKAT-O 2012 NB Y Y Y B/Q Y D

aSum, adaptive summation; CAST, cohort allelic sum test; CMAT, cumulative minor-allele test; CMC, combined multivariate cluster; FPCA, functional principal

component analysis; KBAC, kernel-based adaptive cluster; PWST, p-value weighted sum test; RC, RARECOVER; RVT, rare variant test 1 and 2; SKAT, sequencing

kernel association test; SKAT-O, optimal unified SKAT; VT, variable threshold; WSS, weighted sum statistic.
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for filtering by MAF, Price et al. (2010) introduced greater flexi-
bility with the so-called Variable Threshold (VT) method which
is the maximum of the test statistics over a range of MAFs. Bhatia
et al. (2010) proposed a different maximum approach, named
Rarecover (RC), and took the maximum of test statistics over a
sliding window of chromosomal positions.

In the group of weighted sum statistics (WSS), variants are
weighted inversely proportional to their MAF, e.g., in controls
(Madsen and Browning, 2009), or using different weights involv-
ing cases and controls (Sul et al., 2011). An entirely different
approach was suggested by Luo et al. (2011) who based their
approach on the genome continuum model (Bickeböller and
Thompson, 1996) and employed a principal components analysis
(PCA) as basis for their Functional Principal Component Analysis
(FPCA). In essence, the corresponding test statistic considers
the mean-squared distance of averages of principal components
scores between cases and controls.

More sophisticated tests, generally termed non-burden tests,
are robust against presence of non-causal variants, generally
named misclassification, and they may even deal with different
effect directions of rare variants. For example, the issue of mis-
classification can be considered with the Kernel Based Adaptive
Cluster (KBAC) method (Liu and Leal, 2010). Here, adaptive
weights are introduced based on the sample risk of the structure
of an ROI. Han and Pan (2010) proposed to consider different
effect directions and suggested the use of data-adaptive weights,
which were summed over all variants. Subsequently, their method
is termed adaptive summation (aSum). Another method consid-
ering directional effects was introduced by Zhang et al. (2011),
where weights for each variant are derived from a left-tail p-value
of a single marker test. In C-α, directional effects are taken into
account by using the difference between the observed and the
expected variance of minor allele counts in cases (Neale et al.,
2011). A method specialized to both the situation of the pres-
ence of non-causal, protective and deleterious variants is the
Sequencing Kernel Association Test (SKAT) which uses a gen-
eral regression framework together with variant-adaptive weights
(Wu et al., 2011). Here, all individuals of the sample are com-
pared pairwise for each variant with weights from the beta
distribution. Since SKAT can be less powerful if the assump-
tions of a burden test are met, Lee et al. (2012) suggested the
optimal unified test SKAT-O which combines burden and SKAT
statistics.

2.2. SIMULATION DATA
Simulation data originate from the Genetic Analysis Workshop
17 (Almasy et al., 2011), where genotype data were taken from
real data of the 1000 Genomes Project pilot3 study. Quality con-
trol of genotype data was conducted as part of the 1000 Genomes
Project pilot3 study. Genotype data consist of 24, 487 exonic vari-
ants from 3205 genes in 697 unrelated individuals, originating
from different populations. However, as described in Almasy et al.
(2011), the phenotype was simulated independently of popula-
tion origin, so that confounding by population is not present.
Only 12.8% of the variants had MAF ≥ 0.05, and 74% of the vari-
ants had MAF ≤ 0.01; 9433 variants were private and occurred
only once. Median MAF was 0.002.

Phenotype data were simulated for both binary and quan-
titative traits (Almasy et al., 2011). A common disease with
prevalence of 30% and three related quantitative risk factors
Q1, Q2, Q4 and smoking status were simulated. Quantitative risk
factors were generated using the normal distribution. Disease
status was simulated using a liability threshold model, and the
top 30% of the distribution were declared affected so that there
were 209 affected and 488 unaffected individuals in the sample.
Phenotype simulations were repeated 200 times to generate 200
replicates; genotypes, age and sex were kept fix over replicates.

Associated genes were taken from the vascular endothelial
growth factor (VEGF) pathway and from cardiovascular disease
risk and inflammation causing genes. In total, 36 of the 3205 genes
contained causal variants with a negative correlation between
effect size and MAF.

Two criteria were used to collapse variants of a gene to one
ROI. For functionality, only non-synonymous or gene-based vari-
ants were considered. For collapsing based on MAF threshold,
variants were restricted to MAF thresholds of either 0.01 or 0.05.
Furthermore, only chromosomal regions were considered, where
variants were present at a minimum of two different positions.
This resulted in four different collapsing scenarios which differed
by the numbers of genes and variants (Table S1).

Most of the collapsing methods analyzed here test for asso-
ciation between an ROI and a binary affection status (Table 1).
Only a few are designed to handle quantitative phenotypes or
even covariates such as sex, age, or principal components to strat-
ify for possible different population origins in the association
test. If the method was designed to analyze a quantitative pheno-
type, we used Q2 as associated phenotype. If the method allowed
for the inclusion of covariates, Q1, Q4, smoking status and age
were utilized. However, in this simulation study some of the
given method features were not considered due to software limi-
tations or great computational costs. In case of RVT2, covariates
were not included in the analysis because the software CCRaVaT
does not allow for this feature. Furthermore, for VT and PWST,
only the quantitative phenotype was considered because calcu-
lations for the affection status were computationally intractable.
For SKAT and SKAT-O the small sample adjustment was used in
the analysis.

2.3. P-VALUE ESTIMATION OF PERMUTATION TESTS
Many collapsing methods require permutation for obtaining
p-values which are computer processing unit time intensive. We
therefore used a four stage p-value estimation approach. Two
thousand permutations were performed first, and an ROI was
taken to the next higher number of permutations only if the
estimated p-value was smaller than the upper bound of the
corresponding confidence interval of the p-value. In the next
stages, 10, 000, 100, 000, and 400, 000 permutations were done
to increase precision of p-value estimates.

2.4. POWER AND TYPE I ERROR
Within every replicate, we determined the proportion of not asso-
ciated ROIs not exceeding the α-level. To estimate the type I error,
this proportion was averaged over the 200 independent repli-
cates. To evaluate whether an error was acceptable, we applied the
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threshold as suggested by Bradley (1978) of a liberal α-level of
1.5 × α with α = 0.05. Average (avg) power was calculated simi-
larly via the average proportion of associated ROIs not exceeding
the liberal α-level of 1.5 × 0.05 = 0.075. In addition, the min-
imal (min) power was computed as the average proportion of
replicates where at least one associated ROI was detected.

2.5. REAL DATA
In children with acute lymphoblastic leukemia (ALL), an asso-
ciation between methotrexate clearence and the SLCO1B1 gene
was detected using a GWAS (Treviño et al., 2009). Methotrexate
is a drug used in the treatment of autoimmune diseases and
malignancies inhibitating proliferating cells. In a follow up study,
Ramsey et al. (2012) investigated the effect of rare variants on
methotrexate clearence. They showed that the rare variants in the
SLCO1B1 gene had larger effect sizes than common variants.

To compare the 15 methods in this data set, genotype data
of 673 children with ALL from different populations were
made available. Phenotype data of methotraxate clearence were
adjusted by sex, age, and genetic ancestry information. For the
5 collapsing methods investigating quantitative traits, informa-
tion from all 673 individuals was used. For the methods analyzing
binary traits, the first and the last decile of ordered adjusted
methotrexate clearence were used to create two distinct groups
(Risch and Zhang, 1995).

Collapsing was conducted with respect to variants with
MAF < 0.05 and three ROIs of variants: all 93 gene variants,
15 non-synonymous variants and 7 of these non-synonymous
variants, which were classified as damaging. Classification of
damaging variants was conducted with the help of the prediction
algorithms SIFT (Ng and Henikoff, 2001), PMUT (Ferrer-Costa
et al., 2004), SNPS3D (Yue et al., 2006), and Polyphen2 (Adzhubei
et al., 2010) as described in Ramsey et al. (2012) where variants
were categorized as damaging if they were predicted to be damag-
ing by at least three of the four algorithms. In case of permutation
based tests 109 permutations of phenotype data were conducted.
Furthermore, a type I error-level of 0.05 was used.

3. RESULTS
The Q-Q plot (Figure 1) shows the median log transformed
p-values surrounded by a gray ribbon indicating the first and
third quartile of p-values which therefore does not reflect the
entire range of p-values. It can be seen that none of the inves-
tigated collapsing methods on average revealed the expected
uniform distribution of p-values under the null hypothesis of
no association. Specifically, plotted observed vs. expected neg-
ative log p-values substantially deviated on average from the
angle bisector. Furthermore, for many methods the type I error
level was inflated, which is indicated by the gray ribbon sur-
rounding the orange and blue dots in Figure 1. For illustration,
Figure 1 displays the scenario with non-synonymous variants
only, a MAF < 0.01 and the binary phenotype. However, find-
ings for other scenarios were similar (Supplementary Material).
The inflation of type I error levels can also be observed in Table 2,
where findings are reported for the analysis of the affection status
without adjustment for covariates, when the ROIs either included
non-synonymous variants only or all gene-based variants and

when collapsing was done with MAF < 0.01. In the scenario,
when non-synonymous variants were considered, 5 tests had
inflated type I error levels at the nominal 5% test-level. Of the
methods with adequate type I error levels, CMAT had the highest
min power of 1.00. The highest avg power of 0.13 was observed
for C-α. When the ROI contained all variants of a gene with
MAF < 0.01, more than 50% of the tests had inflated type I
error levels. For the 7 tests with non-inflated type I error lev-
els, power was higher compared to the previous scenario except
of RVT2 for which power decreased. Results were similar when
MAF threshold of 0.05 was used (Table S3). Results for the quan-
titative phenotype without covariates are provided in Table S4.
Here, all collapsing methods except VT showed inflated type I
error levels. When the model for the affection status included
covariates, only RVT1 had adequate type I error levels with high-
est min power of 0.97 in the scenario of gene-based variants and
MAF < 0.01 (Tables S5, S6). Here, aSum, PWST, CMC, SKAT,
and SKAT-O revealed inflated type I error levels in all investi-
gated scenarios, with PWST having type I error ≥ 0.50 (Table 2
and Supplementary Tables).

Table 3 displays the results for the analyses of the real data set.
For the ROI of damaging variants, all methods but CAST yielded
p-values < 0.05. If the ROIs consisted in non-synonymous
and gene-based variants, 6 and 4 tests had p-values < 0.05,
respectively. Furthermore, except for PWST, FPCA, and SKAT,
all methods had the lowest p-value when the ROI was defined
using damaging variants only. For the majority of tests the high-
est p-value was obtained when ROIs were analyzed using non-
synonymous variants only. In the subset of methods without
inflated type I error levels (first four lines in Table 3), all meth-
ods had significant p-values in the ROI of damaging variants, and
the lowest p-value was observed for C-α. When non-synonymous
variants were considered, C-α and FPCA had p-values < 0.05
among the valid methods. When all variants from the gene were
analyzed jointly, p < 0.05 only for C-α.

4. DISCUSSION
In this comprehensive comparison of collapsing methods using
simulated data from the GAW17 (Almasy et al., 2011), we unex-
pectedly found substantially inflated type I error levels for many
of the proposed statistical methods. Specifically, only C-α, FPCA,
KBAC, and VT had valid type I errors in all scenarios consid-
ered, which is low even given that there is a considerable chance
to observe an inflated type I error in repeated measurements. In
addition, the power to detect an association to a truly associated
ROI was low for many of the methods when averaged over all
200 replicates. Over all investigated scenarios, avg power was not
larger than 0.13, while min power ranged from 0.57 to 1.00. In
the group of valid methods the largest min power and avg power
was obtained by C-α in all four investigated scenarios with values
of 0.90 and 0.13, respectively. It should be noted that besides the
approach of a liberal α level for evaluating the type I error used in
this work, further approaches have been suggested which may be
applied to the values presented in Table 2 and the Supplementary
Material. These might attenuate our conclusions regarding type
I error at the cost of even decreased power. In the re-analysis
of the real data on methotrexate clearance and variants in the
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FIGURE 1 | Q-Q plots in 15 collapsing methods, minor allele frequency

(MAF) threshold of 0.01, restriction to non-synonymuous variants,

phenotype of affection status with no covariates; aSum, adaptive

summation; CAST, cohort allelic sum test; CMAT, cumulative minor-allele

test; CMC, combined multivariate cluster; FPCA, functional principal

component analysis; KBAC, kernel-based adaptive cluster; PWST,

p-value weighted sum test; RC, RARECOVER; RVT, rare variant test 1 and

2; SKAT, sequencing kernel association test; SKAT-O, optimal unified

SKAT; VT, variable threshold; WSS, weighted sum statistic. X-axis shows
expected −10log transformed p-values from uniform distribution, y-axis shows
observed median −10log transformed p-values of 200 replicates surrounded
by a ribbon of the first and third quartile of p-values in 200 replicates.

SLCO1B1 gene (Treviño et al., 2009; Ramsey et al., 2012), strong
association signals were detected for many approaches, even for
those methods without inflated type I errors levels in the simula-
tion study. However, results varied substantially by the collapsing

approach used. If analyses were restricted to damaging vari-
ants, p-values were generally lower than when non-synonymous
variants were collapsed or when gene-based analyses were
performed.
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Table 2 | Type I error levels and power for collapsing with

minor allele frequency < 0.01 for both non-synonymous and

gene-based variants.

Variants Method Type I error Avg. power Min power

Non-synonymous aSum 0.12 (0.19) (1.00)
C-α 0.07 0.13 0.90
CAST 0.06 0.11 0.93
CMAT 0.05 0.10 1.00
CMC 0.10 (0.16) (0.93)
FPCA 0.05 0.05 0.57
KBAC 0.03 0.06 0.77
PWST 0.50 (0.58) (1.00)
RC 0.07 0.12 0.93
RVT1 0.05 0.11 0.77
RVT2 0.06 0.12 0.93
SKAT 0.08 (0.12) (0.93)
SKAT-O 0.10 (0.16) (0.93)
VT 0.07 0.04 0.70
WSS 0.05 0.11 0.90

Gene-based aSum 0.12 (0.15) (1.00)
C-α 0.06 0.10 0.91
CAST 0.06 0.09 0.97
CMAT 0.12 (0.16) (1.00)
CMC 0.11 (0.20) (0.97)
FPCA 0.05 0.07 0.82
KBAC 0.04 0.06 0.88
PWST 0.65 (0.85) (1.00)
RC 0.08 (0.13) (0.94)
RVT1 0.06 0.10 0.91
RVT2 0.05 0.11 0.85
SKAT 0.08 (0.11) (0.97)
SKAT-O 0.10 (0.14) (1.00)
VT 0.06 0.04 0.85
WSS 0.12 (0.17) (0.94)

Type I error levels and average (avg) power were averaged over 200 replicates.

Minimal (min) power is the proportion of replicates for which at least one asso-

ciated region of interest was detected. Power is given in parenthesis if the

type I error was inflated.

aSum, adaptive summation; CAST, cohort allelic sum test; CMAT, cumulative

minor-allele test; CMC, combined multivariate cluster; FPCA, functional princi-

pal component analysis; KBAC, kernel-based adaptive cluster; PWST, p-value

weighted sum test; RC, RARECOVER; RVT, rare variant test 1 and 2; SKAT,

sequencing kernel association test; SKAT-O, optimal unified SKAT; VT, variable

threshold; WSS, weighted sum statistic.

The low power of the association methods may be caused by
the small sample size (209 cases, 488 controls) of the simulation
study, and further studies are required to thoroughly investi-
gate the effect of differing sample sizes on type I and II error.
The simulation data possibly match the underlying assumptions
of some methods better than those of others. Specifically, in
the present simulation study, only positive effects of rare vari-
ants were simulated, thus fitting in with the assumptions of
the burden tests. Therefore, results for burden tests might have
been even more negative (and better for non-burden tests) if

Table 3 | p-values from the association analysis between

methotrexate clearence and the SLCO1B1 gene in patients with

acute lymphoblastic leukemia.

Method Damaging Non-synonymous Gene-based

C-α 1.13 · 10−21 1.63 · 10−05 9.93 · 10−12

FPCA 6.75 · 10−06 1.26 · 10−06 3.61 · 10−01

KBAC 2.89 · 10−02 4.46 · 10−01 3.44 · 10−01

VT 2.37 · 10−04 1.11 · 10−01 1.27 · 10−01

CAST 5.79 · 10−02 7.91 · 10−01 6.02 · 10−01

RVT2 2.00 · 10−03 3.80 · 10−01 3.71 · 10−01

RVT1 1.30 · 10−03 7.79 · 10−01 5.36 · 10−01

CMAT <1.0 · 10−09 8.74 · 10−01 6.69 · 10−01

RC 6.30 · 10−07 7.84 · 10−06 2.91 · 10−06

WSS <1.0 · 10−09 6.13 · 10−01 1.97 · 10−01

aSum 5.30 · 10−08 1.14 · 10−01 1.02 · 10−02

CMC 1.76 · 10−07 3.77 · 10−06 1.03 · 10−02

PWST 1.36 · 10−03 1.18 · 10−04 1.95 · 10−07

SKAT 2.92 · 10−02 1.30 · 10−02 2.36 · 10−01

SKAT-O 2.38 · 10−03 5.77 · 10−02 4.04 · 10−01

Rare variants with minor allele frequency <0.05 were collapsed by functional-

ity damaging, non-synonymous or gene-based. The number of permutations for

permutation-based tests was 109. Only the first four reported methods (sepa-

rated by a dashed line) did not show inflated type I error levels in any of the

scenarios from the simulation study and were therefore considered to be valid.

aSum, adaptive summation; CAST, cohort allelic sum test; CMAT, cumulative

minor-allele test; CMC, combined multivariate cluster; FPCA, functional princi-

pal component analysis; KBAC, kernel-based adaptive cluster; PWST, p-value

weighted sum test; RC, RARECOVER; RVT, rare variant test 1 and 2; SKAT,

sequencing kernel association test; SKAT-O, optimal unified SKAT; VT, variable

threshold; WSS, weighted sum statistic.

truly associated variants had been simulated with both posi-
tive and negative effects. In addition, disease status was simu-
lated to be influenced by covariates such as smoking status and
age. This aspect could only be considered by few of the con-
sidered methods in this work and may be a disadvantage for
methods assuming only genetic effects. Despite these limitations,
this work provides one of the most comprehensive performance
comparisons of a wide range of collapsing concepts developed
so far.

Most of the permutation-based tests were computationally
very intensive. To give an example, the average calculation time
of PWST for one ROI was about 20 min in one replicate, and
this resulted in a CPU time of about 1900 days for the analysis
of PWST in a single collapsing scenario.

An important aspect is that the inflated type I error levels have
been reported for some collapsing methods before even by the
authors of the original articles. Specifically, the p-value distri-
bution of PWST, SKAT and SKAT-O observed here were in line
with the results of the original work by Zhang et al. (2011) and
Lee et al. (2012). These authors suggested adjustments to cor-
rect for the deviation of the p-value distribution from the angle
bisector (Zhang et al., 2011; Lee et al., 2012) which did not yield
a considerable improvement. Furthermore, both the simulation
study and the analysis of the real data set confirm findings of
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Derkach et al. (2014) who stressed that the power of collapsing
methods heavily relies on the proportion of causal variants in the
considered ROI.

Our analyses showed that pre-information such as function-
ality or deleterious effects predicted from biotechnology software
of the considered variants are extremely relevant to form ROIs for
detecting true associations. Therefore, improvement and refine-
ment of chosen ROIs for association analyses should be further
developed. Moreover, performance of the considered collaps-
ing methods in this work should be additionally investigated in
studies with larger sample sizes.

Irrespective of the collapsing method used, studies with small
to moderate sample sizes suffer from low power. Even in the case
of sufficiently large samples, many of the investigated collapsing
approaches might lack feasibility as they rely on permutations,
requiring huge computational efforts. Large sample sizes, a sub-
stantial proportion of causing rare variants together with valid
asymptotic methods are therefore required in gene-based analysis
to reliably detect associations with large power.
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