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Heat shock protein 27 phosphorylation state is associated
with cancer progression
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Understanding the mechanisms that control stress-induced survival is critical to explain
how tumors frequently resist to treatment and to improve current anti-cancer therapies.
Cancer cells are able to cope with stress and escape drug toxicity by regulating heat
shock proteins (Hsps) expression and function. Hsp27 (HSPB1), a member of the small
Hsp family, represents one of the key players of many signaling pathways contributing to
tumorigenicity, treatment resistance, and apoptosis inhibition. Hsp27 is overexpressed in
many types of cancer and its functions are regulated by post-translational modifications,
such as phosphorylation. Protein phosphorylation is the most widespread signaling
mechanism in eukaryotic cells, and it is involved in all fundamental cellular processes.
Aberrant phosphorylation of Hsp27 has been associated with cancer but the molecular
mechanisms by which it is implicated in cancer development and progression remain
undefined. This mini-review focuses on the role of phosphorylation in Hsp27 functions
in cancer cells and its potential usefulness as therapeutic target in cancer.
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INTRODUCTION
Protein phosphorylation is the most widespread post-translational
modification in eukaryotic cells, and it is involved in all fun-
damental cellular processes. Reversible phosphorylation based
signaling networks are crucial to the cell’s capacity to quickly
respond to external and internal stimuli. An estimated 30%
of cellular proteins are phosphorylated in an estimated total
of 1000s of distinct phosphorylation sites (Cohen, 2000). This
post-translational modification plays a crucial role in the cel-
lular functions of proteins such as heat shock proteins (Hsps),
particularly Hsp27 (HSPB1; Kostenko and Moens, 2009). Hsp27
is an ATP-independent molecular chaperone with well-described
tumorigenic and metastatic roles, characterized by its dynamic
phosphorylation leading to heterogeneous oligomerization under
different conditions such as stress (Jakob et al., 1993; Martin et al.,
1999; Garrido, 2002; Gusev et al., 2002; Kato et al., 2002; Kote-
iche and McHaourab, 2003; Webster, 2003; Taylor and Benjamin,
2005; Acunzo et al., 2012). Unphosphorylated Hsp27 is able to
form multimers than can reach 800 kDa (Lentze and Narberhaus,
2004) while phosphorylation results in conformational changes
leading to significantly decreased oligomeric size, complex disso-
ciation, and subsequent loss of chaperone activity (Rogalla et al.,
1999; Hayes et al., 2009). This supports the idea that Hsp27’s
reversible structural organization acts as a sensor allowing cells
to adapt and eventually overcome lethal conditions by interacting
with appropriate protein partners (Arrigo and Gibert, 2012).

It has been well documented that aberrations in protein
phosphorylation are closely linked to major diseases such as
cancer, diabetes, and rheumatoid arthritis (Radivojac et al., 2008;
Watanabe and Osada, 2012; Hao et al., 2013; Nie et al., 2013; Streit
et al., 2013). Moreover, Hsp27 overexpression contributes to the
malignant progression of cancer cells including increased tumori-
genicity, treatment resistance, and apoptosis inhibition (Hsu et al.,
2011; Acunzo et al., 2012; Stope et al., 2012). While the aberrant
expression of Hsp27 in human cancer have been and is still inten-
sively studied and documented, its phosphorylation state in cancer
cells compared to healthy cells are only starting to be examined
(Arrigo et al., 2007; Calderwood and Ciocca, 2008; Arrigo and
Gibert, 2012). Hsp27 is not the only chaperone whose functions
in cancer cells are coordinated by phosphorylation regulation. A
recent study identified C-terminal phosphorylation as a key mech-
anism for the dynamic regulation of Hsp90 and Hsp70 chaperone
activity, and binding to co-chaperones to either fold or degrade
client proteins (Muller et al., 2013). These co-chaperones are also
regulated in a way that favors pro-folding environment in replicat-
ing tumor cells and degradation phenotype in non-proliferating
cells (Muller et al., 2013). This mini-review briefly summarizes
the regulation of Hsp27 by phosphorylation and its functional
implications and focuses on the reports describing aberrant Hsp27
phosphorylation linked to cancer. The potential therapeutic strate-
gies aiming at Hsp27 phosphorylation will also be discussed as
future perspectives.
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FIGURE 1 | (A) Schematic representation Hsp27 structure and putative phosphorylation sites. (B) Structural organization of Hsp27 upon reversible
phosphorylation.

Hsp27 PHOSPHORYLATION AND ASSOCIATED FUNCTIONS
IN NORMAL CELLS: AN UP-TO-DATE OVERVIEW
Mapping the phosphorylation sites of Hsp27 showed the involve-
ment of Serine (Ser)-15, Ser-82, Ser-78, and Threonine (Thr-143)
residues (Figure 1A). The contribution of single phosphoryla-
tion of Hsp27 at either of these sites, in biological processes has
not yet been addressed. However, previous studies have shown
that Hsp27 oligomerization is regulated by Ser-78 and/or Ser-
82 phosphorylation while Ser-15 seems to induce small effect on
oligomerization (Lambert et al., 1999; Gusev et al., 2002). Hsp27
phosphorylation/dephosphorylation equilibrium (Figure 1B) has
been shown to be regulated by signals activating protein kinases
and phosphatases. Numerous in vitro and in vivo studies in differ-
ent cell types have described the roles of MAPK-activated protein
kinase–2,–3,–5 (MK2, MK3, MK5), protein kinase (PK) A, B,
C, and D in Hsp27 phosphorylation [for review (Kostenko and
Moens, 2009)]. The choice of the kinase seems to depend on
the cell type therefore kinase expression levels and the signal-
ing pathway activated. Even though numerous kinases have been
described to interact with and/or phosphorylate directly or indi-
rectly Hsp27, controversy exists on the subject and the major
kinases have been shown to be MK2, MK5, and PKD (Doppler
et al., 2005). When induced upon stress, Hsp27 phosphorylation
can be detected within a few minutes (Landry et al., 1992) and in
a reversible manner which is controlled by phosphatases. Several
studies have revealed the involvement of protein phosphatase 2A

(PP2A; Cairns et al., 1994; Tar et al., 2006) but the involvement of
other protein phosphatases is not excluded.

In addition to controlling Hsp27 structural organization and
oligomerization, phosphorylation seems to be a key mechanism
which favors recognition of specific client proteins associating
Hsp27 with specific functions (Arrigo and Gibert, 2012, 2013).
Several functions are associated with Hsp27 phosphorylation in
normal cells (Figure 1B). It has been well described that phospho-
rylated Hsp27 regulates actin filaments dynamics, in cytoskeleton
organization during processes such as cell migration or cell stress
(Lavoie et al., 1993; Clarke and Mearow, 2013). Various studies
have also shown that Hsp27 overexpression and/or phospho-
rylation regulates cell cycle and therefore cell proliferation but
this appears to be cell-specific. It has been demonstrated that
phosphoHsp27 inhibited the MEK/ERK signaling pathway by a
mechanism involving both c-Raf activity attenuation and stim-
ulation of MAPK phosphatase-1 (MKP1) through p38 MAPK
leading to significant reduction of cyclin D1 levels and subsequent
cell cycle arrest (Matsushima-Nishiwaki et al., 2008). Moreover,
Hsp27 is known to interact with p53, regulating its transcriptional
activity (Venkatakrishnan et al., 2008), therefore having an effect
in cell cycle regulation. Last but not least, phosphoHsp27 can pre-
vent apoptosis by protecting cells against heat shock, apoptosis
effectors, oxidative stress, and ischemia. Hsp27 can also inactivate
Bax and block the release of Smac and cytochrome C (Garrido
et al., 2006; Arrigo, 2007; Acunzo et al., 2012). It is important
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to note at this point that in cells treated by apoptotic effectors
that act on different pathways, Hsp27 has diverse localizations,
oligomeric sizes, and phosphorylation states leading to negative
regulation of apoptosis (Paul et al., 2010). More precisely, the two
apoptotic effectors, etoposide, and Fas antibody, have the tendency
to increase Hsp27 native sizes reflecting medium sized and large
oligomers accumulation, while staurosporine and cytochalasin D
induced Hsp27 in small oligomers (Paul et al., 2010). Hsp27 acts by
regulating partner proteins involved in cell death pathways (Havasi
et al., 2008; Acunzo et al., 2012; Sanchez-Nino et al., 2012).

THE RATIONAL OF TARGETING Hsp27 ABERRANT
PHOSPHORYLATION IN CANCER
Aberrant expression of Hsp27 in cancer cells has been intensively
investigated and is known to be associated with aggressive tumor
phenotype, increased therapy resistance, and poor prognosis for
the patient. Targeting Hsp27 overexpression in different types of
cancers has been shown promising (Rocchi et al., 2006; Cayado-
Gutierrez et al., 2013; Lamoureux et al., 2014) but currently no
clinical trial has passed phase III (Agensys, 2014). However, less
focus has been given to the phosphorylation state of Hsp27
in cancer cells compared to healthy ones. Interestingly, a few
recent studies demonstrated that phosphorylation levels of Hsp27
increased in advanced tumors and were correlated to treatment
resistance (Taba et al., 2010; Wang et al., 2010; Sakai et al., 2012; Xu
et al., 2014). A proteomics study identified phosphoHsp27 as part
of the cancer-related phosphoprotein signature of prostate can-
cer (Chen et al., 2011). In the described study, phosphorylation of
Hsp27 occurs upon androgen receptor (AR) activation by ligands,
leading to Hsp90 displacement from the AR-complex and translo-
cation of AR to the nucleus. Inhibition of Hsp27 phosphorylation
shifted the association of AR with Hsp90 to the E3 ubiquitin ligase
MDM2, increased AR degradation, decreased AR transcriptional
activity and increased prostate cancer cell apoptotic rates (Chen
et al., 2011). In pancreatic and prostate cancer cells, cytoprotec-
tion induced by Hsp27 is due, at least in part, to its interaction
with eIF4E (eukaryotic translational initiation factor 4E) that
increased when Hsp27 is phosphorylated. Hsp27 interaction pro-
tects eIF4E from its ubiquitin-proteasome-dependent degradation
process, leading to apoptosis resistance induced by castration and
chemotherapy (Andrieu et al., 2010; Baylot et al., 2011). A sim-
ilar mechanism was previously described involving cooperative
interactions between ligand-activated AR and Hsp27 phospho-
activation that enhance AR stability, shuttling, and transcriptional
activity, thereby increasing prostate cancer cell survival (Zoubeidi
et al., 2007). Moreover, Hsp27 phosphorylation has been shown
to regulate epithelial–mesenchymal transition process and NF-B
activity contributing to the maintenance of breast cancer stem
cells (Wei et al., 2011). A comparative phosphoproteomic stud-
ies of HER-2/neu positive and -negative breast tumors revealed
that Hsp27, one of the identified phosphoproteins, was highly
phosphorylated on Ser78 in HER-2/neu positive tumors (Zhang
et al., 2007). In MCF-7 cells, phosphoHsp27 plays different roles
in regulating p53 pathway and cell survival (Xu et al., 2013). In
ovarian and prostate cancers, p38 MAPK-MK2 dependent phos-
phorylation of Hsp27 was shown to be involved in remodeling
of actin filaments required for pro-invasive and pro-metastatic

activities (Gurgis et al., 2014; Pavan et al., 2014). Interestingly, the
authors propose targeting the MK2-Hsp27 axis in cancer cells as
a strategy to reduce migration and metastasis in cancer cells. In a
recent report, it was demonstrated that Hsp27 phosphorylation in
liver cancer cells was associated with Hsp27 subcellular localization
in the nucleus where it could perform specific functions such as
mRNA processing (Bryantsev et al., 2007; Guo et al., 2012). Finally,
Taba et al. (Taba et al., 2010) recently showed that phosphorylated
Hsp27 played an important role in resistant to Gemcitabine in
pancreatic cancer cells and propose phosphoHsp27 as a possible
biomarker for predicting response of pancreatic cancer patients to
Gemcitabine treatment.

In addition to targeting Hsp27 expression in cancer cells, it
therefore appears of particular interest, to block the functions of
phosphoHsp27. This approach may lead to new anti-cancer drug
discovery. Less specific targeting strategies of the p38-MAPK sig-
naling cascade have shown significant therapeutic potential in the
treatment of endocrine resistant breast cancer through inhibition
of downstream targets Hsp27 and MAPK (Antoon et al., 2012).
Gilbert et al. (Gibert et al., 2011) developed peptide aptamers that
specifically bind Hsp27, interfere with its structural organization
(dimerization and oligomerization) and impair its anti-apoptotic
and cytoprotective functions. We believe that interfering with spe-
cific phosphoHsp27-partner protein interactions in cancer cells
may represent a promising therapeutic strategy with little or no
side effects in normal cells. Targeting phosphoHsp27 in cancer cells
constitutes a nascent field research that deserves more exploration
in the future.

CONCLUSION AND FUTURE DIRECTIONS
The future challenge lies in a deeper understanding of Hsp27
phosphorylation state in cancer cells in order to develop and/or
improve therapies, specific to cancer cells. The role of Hsp27
phosphorylation in cancer progression has only started to be
explored and the few studies published to date that are described
in this mini-review suggest that phosphoHsp27 suppresses apop-
tosis, enhances invasion, and survival of cancer cells. Interestingly,
some elements suggest that phosphoHsp27 could present modi-
fied subcellular localization which may account for specific roles
in cancer cells. We believe that apart from a thorough understand-
ing of Hsp27 phosphorylation state in cancer cells, subcellular
localization, and protein partner interactions of phosphoHsp27
are aspects that require further exploration as they will certainly
reveal new cancer-specific functions for Hsp27. Interfering with
Hsp27’s functions should be directed toward cancer cells consid-
ering the diversity of functions that Hsp27 exerts in normal cells.
Several inhibitors against some Hsp27 kinases have been devel-
oped (Anderson et al., 2007; Schlapbach et al., 2008; Lopes et al.,
2009) but clinical trials in patients with aberrant Hsp27 phospho-
rylation are lacking. Proteomics approaches are increasingly used
to identify stress-induced chaperone phosphorylation in different
pathophysiological conditions and may constitute useful tools for
selecting patients who may respond to newly developed therapies.
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