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Genetic pleiotropy refers to the situation in which a single gene influences multiple traits
and so it is considered as a major factor that underlies genetic correlation among traits.
To identify pleiotropy, an important focus in genome-wide association studies (GWAS)
is on finding genetic variants that are simultaneously associated with multiple traits.
On the other hand, longitudinal designs are often employed in many complex disease
studies, such that, traits are measured repeatedly over time within the same subject.
Performing genetic association analysis simultaneously on multiple longitudinal traits for
detecting pleiotropic effects is interesting but challenging. In this paper, we propose a
2-step method for simultaneously testing the genetic association with multiple longitudinal
traits. In the first step, a mixed effects model is used to analyze each longitudinal trait. We
focus on estimation of the random effect that accounts for the subject-specific genetic
contribution to the trait; fixed effects of other confounding covariates are also estimated.
This first step enables separation of the genetic effect from other confounding effects
for each subject and for each longitudinal trait. Then in the second step, we perform a
simultaneous association test on multiple estimated random effects arising from multiple
longitudinal traits. The proposed method can efficiently detect pleiotropic effects on
multiple longitudinal traits and can flexibly handle traits of different data types such as
quantitative, binary, or count data. We apply this method to analyze the 16th Genetic
Analysis Workshop (GAW16) Framingham Heart Study (FHS) data. A simulation study is
also conducted to validate this 2-step method and evaluate its performance.
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1. INTRODUCTION
In genetics, the phenomenon that a single gene or locus influences
more than one trait is known as pleiotropy. Genetic pleiotropy
plays a crucial role in many complex diseases. One of the most
well-known examples is the phenylketonuria (PKU) disease. The
defect of a single gene supposed to code for enzyme pheny-
lalanine hydroxyls results in multiple malfunctioned phenotypes
such as mental retardation, eczema, and skin pigment defects.
These phenotypes characterize the PKU disease (Lobo, 2008)
and information on these phenotypes is often collected in PKU
disease studies. For similar reasons, multiple disease related phe-
notypes are collected in many complex disease studies. For exam-
ple, in coronary heart disease (CHD), phenotype information
may include systolic blood pressure (SBP), low-density lipopro-
tein (LDL), high-density lipoprotein (HDL), triglycerides (TG),
and other disease related measures. Combined analysis of these
phenotypes may be more informative for etiologic study of the
disease than analyzing each phenotype individually. If the objec-
tive is to identify genetic pleiotropic effects on multiple traits, the
conventional approach is to perform an association test between
a genetic variant and each trait individually and then look for

consensus about whether the genetic variant is significantly asso-
ciated with more than one trait. However, this approach inflates
the family-wise error rate (FWER). The inflation becomes more
severe as the number of traits increases. Usually, a multiple testing
procedure is required to adjust the significance level of each indi-
vidual test. On the other hand, when a genetic variant is associated
with multiple traits, an individual test of each trait may ignore
the extra information that is available from combining multi-
ple traits in the analysis, thus leading to lower power. Therefore,
a simultaneous genetic association test on multiple traits might
be desirable to control the FWER and enhance the power of the
analysis.

Several authors have proposed statistical methods for simul-
taneous association analysis of multiple traits. For example, Klei
et al. (2008) proposed to test the association between an SNP
and the principal component of heritability derived from multi-
ple correlated traits. Ferreira and Purcell (2009) used canonical
correlation analysis (CCA) to measure the association between
an SNP and multiple traits. Zheng et al. (2010) proposed a non-
parametric method based on the generalized Kendall’s tau for the
association between a marker and multiple traits. In joint analysis
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of the association across multiple phenotypic traits, Huang et al.
(2010) used the multinomial regression model to model the
distribution of the allele frequency of a given SNP among dif-
ferent phenotype outcomes. Huang et al. (2011) developed the
PRIMe software tool to calculate the Pleiotropy Index (PI) over
a region of SNPs where PI indicates the number of traits that
have low p-values from the individual association test with each
trait. However, these methods generally find SNPs that are consis-
tently significant among multiple independent tests for each trait
on the same dataset or via meta-analyses on different datasets.
Hartley et al. (2012) proposed to use Bayesian network mod-
els to identify SNPs that are associated with one or more traits
simultaneously. O’Reilly et al. (2012) proposed joint analysis
of multiple phenotypes by regressing the genotype on multiple
phenotypes. With a similar idea of regressing the genotype on
multiple phenotypes, Feng (2014) proposed a generalized quasi-
likelihood scoring approach for analyzing data from a sample of
correlated subjects, such as data collected in family-based stud-
ies or isolated/founder population-based studies. Results from
these studies generally confirm that simultaneous testing of mul-
tiple traits increases power compared to individual tests of each
trait.

To effectively investigate the development of disease, longitu-
dinal cohort studies are designed to obtain repeated measures of
a variety of disease-related traits within an individual over time.
For example, in CHD studies, repeated measurements of cardio-
vascular risk factors such as systolic blood pressure are taken over
time as well as information on other covariates such alcohol con-
sumption or smoking status. Despite the availability of multiple
time point measurements for each subject, many genetic analyses
only use one single time point measurement or an average over
all time points for each subject. For example, Levy et al. (2000)
regressed the mean of repeated blood pressure measurements of
each subject on their age and body mass index in the first step.
The residual for each subject from this regression model was used
as a phenotype for the heritability and linkage analysis in the sec-
ond step. However, this single time point measurement approach
does not fully utilize the information provided in the data and
thus can decrease the power of detecting the associated SNPs
or underlying genes. For this reason, many methods have been
developed to jointly analyze the genetic association with multi-
ple time point measurements. One typical class of approaches is
functional mapping, in which mathematical functions are used
to establish the relationship between the underlying genes and
the development or the progression of a complex trait. For exam-
ple, Ma et al. (2002) proposed a logistic growth curve model for
mapping quantitative trait loci (QTL) and estimating their effects.
Wu and Lin (2006) provided an overview on the fundamental
concepts of functional mapping and its application in QTL map-
ping and GWAS. Wu et al. (2007) proposed a semi-parametric
functional mapping, a hybrid of a parametric function for earlier
stages and a non-parametric function for late stages, to model the
human immunodeficiency virus (HIV) progression and to study
the genetic contributions to the HIV load trajectories. Das et al.
(2011) proposed a so-called functional GWAS (f GWAS) based
on nonparametric functions. In functional mapping, all measure-
ments are utilized to capture the trajectories of the development

or progression of a trait and thus a more powerful approach to
unravel the genetic association with these trajectories.

On the other hand, mixed effects models have been a popular
choice for modeling longitudinal data. Gauderman et al. (2003)
summarized 13 contributions to the 13th Genetics Analysis
Workshop in which methods for genetic analyses using longitu-
dinal data are grouped into two basic approaches: the two-step
approach and the joint modeling approach. In the two-step
approach, repeated measurements of a phenotype is modeled by
mixed effects models to reduce to one or two summary statistics
for each subject in the first step and then, these subject-specific
statistics will be used in the second step for the linkage or genetic
analysis. In the joint modeling approach, a mixed effects model
is used to jointly estimate genetic and longitudinal parameters.
For example, genetic parameters may include additive polygenic
and additive major gene effects. Longitudinal parameters may
include shared environmental and random environmental effects.
The joint modeling approach has also been proposed for genome-
wide association mapping by Furlotte et al. (2012). Recently, rare
variant association analysis has been an important direction in
GWAS and most available methods for rare variant association are
focusing on the effects of the weighted combination of variants.
Wang et al. (2014) incorporated an optimally weighted combi-
nation of variants in a mixed effects model for detecting rare
and common variants associated with a longitudinal trait. Results
from these studies confirm an improved power when all time
points are jointly analyzed. However, currently available meth-
ods focus on the analysis of one longitudinal trait at a time.
A new method that can effectively and simultaneously analyze
multiple longitudinal traits, particularly for identifying genetic
pleiotropic association, is desirable. Further more, a method
that can flexibly and simultaneously handle traits of different
data types such as quantitative, binary, or count data, would be
attractive.

In this paper, we propose a 2-step strategy for analyzing
the association of a genetic variant with multiple longitudinal
traits. In the first step, a mixed effects model is used to ana-
lyze the repeated measurements for each trait individually. The
subject-specific random effect is used to extract the component
of variation that includes genetic factors contributing to the trait
for each individual subject. Throughout this paper, we refer to
this random effect as the subject-specific effect. The fixed effects
account for observed confounding factors such as environmen-
tal factors and some time-dependent variables. In the second
step, we treat the estimated subject-specific effect as a pheno-
type. We propose to regress the genotype of a genetic variant
on all estimated subject-specific effects for the traits and test the
association between the genetic variant and these subject-specific
effects simultaneously through the score test or the likelihood
ratio test.

The remainder of our paper is organized as follows. In Section
2, we describe the proposed method and the details of the simula-
tion study. We also apply our method to analyze data from the
16th Genetic Analysis Workshop (GAW16) Framingham Heart
Study. Results from simulation study and data analysis applica-
tion are presented in Section 3. Discussion and possible future
study follow in Section 4.
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2. MATERIALS AND METHODS
This section consists of three subsections. The first subsection
describes our proposed 2-step method. A simulation study is
present in the second subsection. In the third subsection, we apply
our method to analyze the data from GAW16 Framingham Heart
Study.

2.1. STATISTICAL METHOD
In this subsection, we begin by defining a generalized linear mixed
effect model for each of the multiple longitudinal traits of inter-
est. Each model can include time-dependent or time-independent
covariates together with a random effect for subject-specific
effect. This constitutes Step 1 of the proposed method. Then, we
introduce a binomial regression model that treats the genotype
as the response variable and includes multiple subject-specific
genetic effects obtained in Step 1 for each longitudinal trait as the
explanatory covariates. This constitutes Step 2 of the proposed
method.

2.1.1. Step 1: Generalized Linear Mixed Models (GLMMs) for
longitudinal traits

In longitudinal study designs, repeated measurements of pheno-
typic traits and covariates are taken for each subject over time.
GLMMs are useful for modeling phenotypes of different data
types, such as quantitative, binary, and count data. Suppose we
have a sample of n independent subjects in our study. For each
subject i, i = 1, 2, . . . , n, we collect repeated measurements on
J different traits. Let Xij = (Xij1, . . . , Xijt, . . . , XijTij )

′
be a vector

that represents the Tij measurements of the jth trait for subject i
and so Xijt is the tth measurement of the jth trait for subject i. A
general form of a GLMM can be expressed as

gj(μijt) = ZT
ijtαj + γij, (1)

where gj(.) is the link function for the jth trait, Zijt is a vector
of covariates associated with the jth trait for the ith subject at
time t, αj is the vector of fixed effects for covariates Zijt , γij is
the random effect representing the ith subject-specific effect on
the jth trait, and μijt is the conditional mean of Xijt given ZT

ijt
and γij. Here, the associated covariates can be time-dependent
or time-independent. Examples of time-dependent covariates
include treatment status and age at each measurement time.
Time-independent covariates such as sex are treated as constants
over time. We allow different sets of covariates to be considered
for different traits and the number of measurements T can be dif-
ferent for each subject as well. The subject-specific effect γij can be
interpreted as the influence of subject i on his/her repeated mea-
surements on the jth trait and it typically includes genetic effects
on the trait. So, the γij’s can capture the effects of unobserved
major genes and polygenes; the latter refers to the combined
effects of a large number of genetic variants that each make a small
contribution to trait variation. For each trait, say the jth trait, we
assume the γij’s follow a normal distribution with a mean of 0 and
a trait specific variance σ 2

γj
.

For a quantitative trait, a linear mixed effects model can be
used, for example

Xijt = ZT
ijtαj + γij + εijt,

where random error εijt is assumed to follow a N(0, σ 2
εj

) dis-

tribution. Then, gj(.) is an identity link with gj(μijt) = μijt .
For a binary trait, a logistic link can be used with gj(μijt) =
log

(
μijt

1 − μijt

)
. The GLMMs can be fitted in R by the “lme4” pack-

age (Bates et al., 2013). The estimated γ̂ij’s will be treated as
phenotypic traits for the association analysis in Step 2. The fixed
effects associated with confounding factors can be estimated using
the “lme4” package as well.

For different longitudinal data types, we interpret the associ-
ated subject-specific effect accordingly. When a longitudinal trait
is binary, for example if the jth trait being considered is hyperten-
sion status, γij can be interpreted as the underlying genetic risk
factors of subject i that affect the log-odds for the risk of hyperten-
sion. When the jth longitudinal trait of interest is the daily seizure
count of an epilepsy patient, γij can be interpreted as the underly-
ing genetic risk of subject i that affects the log of the daily seizure
rate.

2.1.2. Step 2: Genetic association study with multiple longitudinal
traits

Single nucleotide polymorphisms (SNPs) are the most common
genetic variants in human and animal genomes. Because associa-
tion studies are nearly all conducted using SNP data, our method
will focus on applications to SNP association studies. Most SNPs
are biallelic so, without loss of generality, for each SNP, we label
the two alleles as “0” or “1”; the possible genotypes for this SNP
are 0, 1, or 2 for the count of copies of the less frequent allele 1.
Let Y = (Y1, Y2, . . . , Yn)′ be a vector of observed proportions of
allele 1 of a given SNP for n unrelated subjects. So, Yi takes values
of 0, 1

2 , or 1. Let p = (p1, p2, . . . , pn)′ be a vector of the expected
frequency of allele 1 in this SNP for n subjects and 0 < pi < 1 for
all i. Then, under the Hardy-Weinberg equilibrium, 2Yi follows a
binomial(2, pi) distribution and the log-likelihood function over
n unrelated subjects has the form

l(p) =
n∑

i = 1

{
2Yi log

(
pi

1 − pi

)
+ 2 log (1 − pi)

}
.

Let γ be an n × (J + 1) design matrix of the form

γ =

⎛
⎜⎜⎜⎜⎝

1 γ11 · · · γ1J

1 γ21 · · · γ2J
...

...
. . .

...

1 γn1 · · · γnJ

⎞
⎟⎟⎟⎟⎠ .

where the (j + 1)th column represents the subject-specific effects
corresponding to the jth longitudinal trait for all subjects and the
ith row, γ i, contains a 1 for the intercept and the J subject-specific
effects for subject i. With a logistic link,

pi = E(Yi|γ i) = exp{γ T
i β}

1 + exp{γ T
i β}

If the SNP being tested is associated with a longitudinal trait,
it should be associated with its corresponding subject-specific
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effect which includes the contribution of genetic factors to the
variation of the trait. On the other hand, if the SNP is not asso-
ciated with any one of the J longitudinal traits, it would not be
associated with the corresponding subject-specific effect and all
coefficients β1, . . . , βJ should be 0. So, a simultaneous associa-
tion test between the SNP and the J longitudinal traits can be
formulated as an overall hypothesis test that

H0 : β1 = β2 = · · · = βJ = 0 against

Ha : at least one βj �= 0, j =1, 2, . . . , J,

Here, we can use either Rao’s score test statistic (Rao, 1948) or the
likelihood ratio test (LRT) statistic to test the hypothesis.

Under H0 that β’s are all 0, pi = exp{β0}
1 + exp{β0} = p is a constant

for all subjects. The maximum likelihood estimator (MLE) of p

under H0, denoted by p̃, is given by Ȳ =
∑n

i = 1 Yi
n , and thus β̃0 =

log
{

p̃
1−p̃

}
. The Rao’s score test statistic under H0, denoted by Ws,

is given by

Ws = UT−β0
(β̃0, 0)I−1

−β0
(β̃0, 0)U−β0 (β̃0, 0), (2)

where U(β̃0, 0) is a vector of the score functions computed under
the null hypothesis and β0 = β̃0. The subscript of U−β0 (β̃0, 0)
indicates the removal of the first term (i.e., the intercept term)
from U(β̃0, 0). I(β̃0, 0) is the observed information matrix of
β computed under the null hypothesis and β0 = β̃0. The sub-
script of I−1

−β0
(β̃0, 0) indicates the removal of the first row and

the first columns corresponding to β0 from I−1(β̃0, 0). Based
on Equation (2), we derive an explicit form of score statistics as
follows,

Ws = 2

p̃(1 − p̃)
(Y − p̃1)Tγ −1(γ Tγ )−1

−1γ
T−1(Y − p̃1), (3)

where γ −1 indicates the removal of the first column of design

matrix γ , (γ Tγ )−1
−1 represents the removal of the first row and the

first column of (γ Tγ )−1, and 1 is a vector of 1’s. Under H0, Ws

follows an asymptotic χ2
J distribution with J being the number of

traits to be tested.
Straightforwardly, the LRT statistic, � = −2{l(β̂) − l(β̃)}

with β̂ being the unrestricted MLEs of β and β̃ being
the restricted MLEs of β under the null hypothesis that
β1 = β2 = · · · = βK = 0, takes the form

� = −2
n∑

i = 1

{
2Yi log

(
p̂i

p̃

)
+ (2 − 2Yi) log

(
1 − p̂i

1 − p̃

)}
(4)

where p̂i = exp{γ T
i β̂}

1 + exp{γ T
i β̂}

. Under H0, � follows an asymptotic χ2
J

distribution with J being the number of traits to be tested. Note
that these subject-specific effects γij’s are not observable. To com-
pute the Ws and � statistics using Equations (3) and (4), we plug
in the estimated subject-specific effects γ̂ij to replace the γij’s.

2.2. SIMULATION STUDIES
To assess the performance of the proposed method, we conducted
simulation studies evaluating the type I error rate and the power
of the association tests. Our simulation studies accommodate two
different designs. In both studies, we consider two quantitative
traits and one binary trait. These three traits can be affected by
three SNPs, denoted by G1, G2, and G3, at different levels. In the
first study, each SNP affects all three traits. In the second study,
each SNP can affect a different number of traits, as specified in
Table 1.

In many situations, trait-causal SNPs may not be genotyped
but instead, SNPs that are close to or in linkage disequilibrium
(LD)/associated with these causal SNPs are available in the study.
So, in our simulation study, we consider testing on both the
causal SNPs and SNPs that are associated with these causal SNPs.
Suppose we generate a sample of n independent subjects. For
each subject i, we generate genotypes of three independent trait-
causal SNPs, G1, G2, and G3, and genotypes of three SNPs, M1,
M2, and M3, that are in LD with G1, G2, and G3 respectively.
To generate SNP genotypes, we generate a haplotype for each
pair of associated SNPs. Let Hr = (HGr , HMr ) be the haplotype
for SNPs Gr and Mr for r = 1, 2, 3. The haplotype Hr is gen-
erated from a bivariate Bernoulli distribution with mean vector
π r = (πGr , πMr )

′
and covariance matrix

�r =
(

σ 2
Gr

σ 2
Gr,Mr

σ 2
Gr,Mr

σ 2
Mr

)
, (5)

where σ 2
Gr

= πGr (1 − πGr ), σ 2
Mr

= πMr (1 − πMr ), and σ 2
Gr,Mr

=
ρrσGr σMr with ρr being the correlation between the SNPs Gr and
Mr . π r is a vector of frequencies of allele 1 for SNPs Gr and Mr .
We set π1 = (0.1, 0.2)

′
, π2 = (0.15, 0.4)

′
, and π3 = (0.2, 0.3)

′
.

We then specify the correlations with ρ1 = 0.95, ρ2 = 0.9, and
ρ3 = 0.85. A pair of Hr are generated to make up the genotypes
of Gr and Mr . We also simulate an independent SNP M for the
purpose of Type I error rate assessment. The genotype of SNP M
is simulated from binomial(2, 0.2).

Then we generate two general covariates Zit1 and Zit2 for sub-
ject i at the tth measurement. The covariates can be time-varying
or time-invarying. When the covariate is time-invarying, it will
be a constant with respect to t. Here, we generate time-varying
covariates for both Zit1 and Zit2. We let the total number of mea-
surements be T = 5 for each subject. We let Zit1 be a binary
covariate generated from Bernoulli(0.3) and let Zit2 be a quantita-
tive covariate generated from N(μ, σ 2). We let μ = 40 and σ = 7

Table 1 | SNP effects on three traits for simulation study 1 and 2.

Study 1 Study 2

SNP Trait SNP Trait

X1 X2 X3 X1 X2 X3

G1 Yes Yes Yes G1 Yes Yes Yes

G2 Yes Yes Yes G2 Yes No Yes

G3 Yes Yes Yes G3 No Yes No
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to mimic the age distribution of patients, which is a typical time-
varying covariate in longitudinal data. Thus, the Zit2’s are sorted
in ascending order such that Zi12 < · · · < Zit2 < · · · < ZiT2.

Given the generated covariates and the genotypes of causal
SNPs, we generate measurements of each trait for each subject
by first computing the linear predictors given by

ηijt = g(μijt) = αj0 + αj1Zit1 + αj2Zit2 + bj1Gi1 + bj2Gi2

+ bj3Gi3,

for i = 1, . . . , n, j = 1, 2, 3, and t = 1, . . . , 5. The two quanti-
tative traits, Xi1t and Xi2t , are generated from N(μi1t, 1) and
N(μi2t, 1) with identity links ηi1t = μi1t and ηi2t = μi2t , respec-
tively. The binary trait, Xi3t , is generated from Bernoulli(μi3t),

where μi3t = exp{ηi3t }
1 + exp{ηi3t } .

In simulation study 1, we set α1 = (α10, α11, α12)T =
(0, 0.3, 0.5)T and b1 = (b11, b12, b13)T = (0.25, 0.2, 0.2)T for
the first quantitative trait Xi1t . For the second quantitative trait
Xi2t , we set α2 = (0, 0.2,−0.3)T and b2 = (0.25, 0.25, 0.15)T .
For the binary trait Xi3t , we set α3 = ( − 0.3,−0.6, 0.35)T and
b3 = (0.45, 0.4, 0.3)T such that the simulated sample consists of
about 40% cases and 60% controls. In simulation study 2, the
fixed effects αj’s that are associated with the covariates Z’s in
study 2 remain the same as in study 1. However, we set b1 =
(0.25, 0.22, 0)T , b2 = (0.2, 0, 0.15)T , and b3 = (0.45, 0.43, 0)T ,
such that, SNP G1 affects all three traits, SNP G2 affects two traits,
and SNP G3 affects one trait only.

For each simulation study, we generate samples of size n =
100, 200, and 300 and, for each specified sample size, we simulate
1000 data sets. For each data set, we first fit the GLMM to obtain
an estimate of γij for each trait and each subject. In the GLMMs,
both covariates, Zit1 and Zit2, are included. For each SNP, we
then perform a simultaneous test on all three estimated subject-
specific effects; γ̂ 1, γ̂ 2 and γ̂ 3, where each γ̂ j = (γ̂1j, . . . , γ̂nj)T is
treated as a phenotype. Because we simultaneously test on three
phenotypes, both Ws and � test statistics follow a χ2

3 distribu-
tion asymptotically under the null hypothesis. We reject the null
hypothesis if the test statistic is greater than the (1 − αF)th quan-
tile of the χ2

3 distribution. We let αF = 0.05, 0.01, and 0.001.
We also perform individual association tests between each SNP
and each subject-specific effect for each trait. We reject the null
hypothesis if the test statistic computed for only one estimated
subjected-specific effect has a value greater than the (1 − α)th
quantile of χ2

1 distribution. Here, α is given by αF = 1 − (1 − α)3

and αF is the family-wise error rate (FWER) controlling at 0.05,
0.01, and 0.001 levels.

We also consider different sets of covariates and fixed effects in
our simulation studies. The results demonstrate similar patterns
in terms of power and empirical type I error rates of associa-
tion tests when different scenarios for fixed effects are considered.
Please see the Supplementary Material for other simulation mod-
els and their corresponding results.

2.3. APPLICATION TO GAW16 FRAMINGHAM HEART STUDY DATA SET
Our proposed method is used to analyze the 16th Genetic Analysis
Workshop (GAW16) Framingham Heart Study (FHS) data. The

GAW16 FHS data are drawn from the FHS under the direc-
tion of the National Heart, Lung, and Blood Institute. The FHS
aims to identify risk factors that contribute to cardiovascular
disease (CVD). Data from families from the town of Framingham,
Massachusetts (USA) were collected between 1948 and 2005 to
a maximum of three generations. The FHS consists of three
cohorts. The first cohort consists of the original participants in
the first generation. The second cohort is the offspring recruited
from children of the original participants and the spouses of
these children. The third cohort consists of the third genera-
tion, which are the offsprings of the second generation. Most
participants have repeated measurements on phenotypic traits
from four examinations. Among the three cohorts, the offspring
cohort possesses the most complete genotype data and phenotype
information from the four exams.

Our analysis in this paper focuses on the offspring cohort.
From this cohort, we select a subset of 1817 unrelated chil-
dren using an algorithm as described in the R function“pedigree.
unrelated” in the package “kinship2” (Therneau et al., 2012).
We further remove two people from this subset for the anal-
ysis because they missed more than two exams. We consider
four CVD-related longitudinal traits: SBP, LDL, HDL, and TD.
We also include both time-invariant and time-variant covariates
as potential confounding factors in our analysis. Time-invariant
covariates include sex and type II diabetes diagnosed during the
study period (diabetes = 0 for no, 1 for yes). Time-variant covari-
ates include age, body mass index (bmi), smoking status (smk =
0 for never, 1 for former smoker, 2 for current smoker), number
of cigarette smoked per day (cigs), number of alcoholic beveages
consumed in ounce per week (alc), treatments for hyperten-
sion (htnrx = 0 for no, 1 for yes), and treatment for cholesterol
(cholrx1 = 0 for no, 1 for yes) measured at each exam. All subjects
included in the analysis have at least three repeated measurements
consistently taken on all traits and time-variant covariates. All
subjects were genotyped using the Affymetrix GeneChip Human
Mapping 500 k array set. In total, we include 479,207 SNPs on 22
autosomes in our analysis. When testing each SNP, subjects with
missing genotypes are excluded from the analysis at that SNP.

In Step 1, we first take log-transformations of SBP, HDL, and
TG to adjust the skewness of their distributions. The R func-
tion “bfFixefLMER_F.fnc” in the “LMERConvenienceFunctions”
package (Tremblay and Ransijn, 2013) is used to select covari-
ates to be included in the linear mixed effects model. We then
fit a linear mixed effects model to each longitudinal trait to
obtain an estimated subject-specific effect for each trait and each
individual. Then in Step 2, we simultaneously test the associa-
tion between each SNP and all four estimated subject-specific
effects corresponding to the four traits. We also perform indi-
vidual association tests between each SNP and each estimated
subject-specific effect for each trait.

3. RESULTS
3.1. SIMULATION STUDY RESULTS
In Table 2, the mean and standard error of fixed effects estimates,
α̂’s, over 1000 simulations are reported and they are compared
with the true values of each fixed effect used to generate the three
longitudinal traits. The results of both simulation studies show
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that the GLMMs generally give unbiased estimates for the fixed
effect parameters with small standard errors.

3.1.1. Type I error rate assessment
For SNP M that is not associated with any trait in either study
1 or study 2, the empirical null rejection rates are reported in

Table 2 | Mean and standard error of fixed effects estimates using

GLMMs and based on over 1000 simulations for sample size n = 100.

Traits Fixed effect Study 1 Study 2

Estimate SE Estimate SE

1 α11 = 0.3 0.299 0.057 0.302 0.056
α12 = 0.5 0.499 0.003 0.499 0.003

2 α21 = 0.2 0.199 0.057 0.201 0.056
α22 = −0.3 −0.299 0.003 −0.300 0.003

3 α31 = −0.6 −0.601 0.147 −0.611 0.147
α32 = 0.35 0.354 0.016 0.353 0.016

Table 3 for different sample sizes. We also combine the results
from both studies (indicated as “Study 1+2”) so that we have
2000 simulation replicates to assess the type I error rate. For
simultaneous tests, the empirical null rejection rates are very close
to their corresponding nominal levels, indicating that the method
controls the type I error properly. For individual tests, the null
rejection rates are almost identical between the score test and the
LRT , so we only report the results based on the LRT. The results
indicate that the null rejection rates for each individual trait are
very close to their corresponding nominal level. The union of
individual null rejection rates reports the overall type I error rates
among the three individual tests. These overall null type I error
rates are very close to the theoretical FWERs αF ’s.

3.1.2. Power assessment
The empirical power for each causal SNP and associated SNP are
reported in Tables 4–6 for different sample sizes. In individual
trait tests, we report only the results based on the LRT because
the differences between the score test and the LRT are negligible.

Table 3 | Type I error rate assessment based on 1000 simulations in each study.

Sample size αF Individual tests Simultaneous test

1 2 3 Union Score LRT

N = 100

0.05 0.015 0.016 0.014 0.04 0.045 0.047
Study 1 0.01 0.003 0.003 0.003 0.009 0.013 0.018

0.001 0 0.001 0 0.001 0.002 0.002

0.05 0.01 0.015 0.013 0.038 0.038 0.042
Study 2 0.01 0.004 0.001 0.003 0.008 0.01 0.008

0.001 0.001 0 0 0.001 0.001 0.003

0.05 0.0125 0.0155 0.0135 0.039 0.0415 0.0445
Study 1 + 2 0.01 0.0035 0.002 0.003 0.0085 0.0115 0.013

0.001 0.0005 0.0005 0 0.001 0.0015 0.0025
N = 200

0.05 0.014 0.017 0.014 0.042 0.042 0.044
Study 1 0.01 0.001 0.003 0.003 0.007 0.014 0.014

0.001 0 0 0 0 0 0

0.05 0.014 0.02 0.02 0.052 0.048 0.05
Study 2 0.01 0.002 0.003 0 0.005 0.007 0.007

0.001 0 0 0 0 0.001 0.003

0.05 0.014 0.0185 0.017 0.047 0.045 0.047
Study 1 + 2 0.01 0.0015 0.003 0.0015 0.006 0.0105 0.0105

0.001 0 0 0 0 0.0005 0.0015
N = 300

0.05 0.02 0.015 0.015 0.048 0.054 0.054
Study 1 0.01 0.004 0.003 0.002 0.009 0.013 0.013

0.001 0 0.001 0 0.001 0.002 0.002

0.05 0.015 0.017 0.025 0.057 0.051 0.055
Study 2 0.01 0.003 0.002 0.003 0.008 0.008 0.009

0.001 0.001 0 0 0.001 0.001 0.001

0.05 0.0175 0.016 0.02 0.0525 0.0525 0.0545
Study 1 + 2 0.01 0.0035 0.0025 0.0025 0.0085 0.0105 0.011

0.001 0.0005 0.0005 0 0.001 0.0015 0.0015

Individual test results are based on the LRT.

For αF = 0.05, 0.01*, 0.001**, α = 0.0167, 0.0033*, 0.00033**, respectively.
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Table 4 | Power comparisons for sample size 100 based on 1000 replications.

αF Individual tests Simultaneous test

1 2 3 Union Score LRT

STUDY 1

0.05 0.472 0.436 0.149 0.697 0.789 0.796

G1 0.01 0.258 0.224 0.06 0.423 0.565 0.571

0.001 0.073 0.068 0.011 0.14 0.29 0.304

0.05 0.436 0.666 0.205 0.824 0.886 0.888

G2 0.01 0.228 0.418 0.087 0.562 0.69 0.701

0.001 0.055 0.17 0.013 0.214 0.406 0.429

0.05 0.539 0.297 0.167 0.703 0.746 0.755

G3 0.01 0.285 0.118 0.056 0.399 0.52 0.531

0.001 0.088 0.025 0.011 0.118 0.224 0.247

0.05 0.257 0.233 0.092 0.446 0.485 0.489

M1 0.01 0.119 0.094 0.029 0.203 0.269 0.273

0.001 0.023 0.022 0.005 0.047 0.103 0.107

0.05 0.13 0.238 0.076 0.367 0.399 0.405

M2 0.01 0.055 0.107 0.024 0.169 0.185 0.194

0.001 0.009 0.017 0.001 0.027 0.055 0.062

0.05 0.307 0.183 0.1 0.462 0.501 0.511

M3 0.01 0.138 0.061 0.027 0.208 0.267 0.285

0.001 0.032 0.008 0.002 0.042 0.09 0.102

STUDY 2

0.05 0.498 0.316 0.195 0.7 0.82 0.826

G1 0.01 0.265 0.134 0.064 0.386 0.612 0.633

0.001 0.074 0.026 0.013 0.107 0.319 0.342

0.05 0.528 (0.01) 0.253 0.632 0.723 0.729

G2 0.01 0.317 (0) 0.118 0.39 0.479 0.491

0.001 0.099 (0) 0.032 0.125 0.216 0.236

0.05 (0.007) 0.359 (0.014) 0.359 0.395 0.405

G3 0.01 (0) 0.18 (0.003) 0.18 0.172 0.186

0.001 (0) 0.041 (0) 0.041 0.041 0.058

0.05 0.281 0.192 0.114 0.46 0.548 0.557

M1 0.01 0.134 0.077 0.039 0.23 0.327 0.343

0.001 0.031 0.016 0.004 0.051 0.131 0.148

0.05 0.195 (0.01) 0.092 0.261 0.301 0.306

M2 0.01 0.079 (0.002) 0.024 0.099 0.119 0.129

0.001 0.011 (0) 0.004 0.015 0.023 0.031

0.05 (0.013) 0.221 (0.017) 0.221 0.244 0.252

M3 0.01 (0.002) 0.085 (0.002) 0.085 0.097 0.103

0.001 (0) 0.017 (0) 0.017 0.023 0.025

Individual tests results are based on the LRT.

Values in parentheses represent the type 1 error rate.

Highest powers are indicated in bold numbers.

For αF = 0.05, 0.01*, 0.001**, α = 0.0167, 0.0033*, 0.00033**, respectively.
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Table 5 | Power comparisons for sample size 200 based on 1000 replications.

αF Individual tests Simultaneous test

1 2 3 Union Score LRT

STUDY 1

0.05 0.803 0.798 0.375 0.96 0.983 0.983

G1 0.01 0.626 0.599 0.192 0.842 0.938 0.939

0.001 0.349 0.326 0.06 0.557 0.772 0.778

0.05 0.783 0.944 0.441 0.984 0.994 0.994

G2 0.01 0.588 0.841 0.243 0.927 0.972 0.974

0.001 0.31 0.569 0.086 0.69 0.888 0.888

0.05 0.875 0.591 0.301 0.945 0.957 0.958

G3 0.01 0.694 0.366 0.139 0.813 0.895 0.896

0.001 0.394 0.135 0.031 0.476 0.697 0.704

0.05 0.522 0.512 0.209 0.786 0.817 0.818

M1 0.01 0.3 0.29 0.077 0.506 0.646 0.65

0.001 0.115 0.097 0.02 0.208 0.355 0.365

0.05 0.312 0.459 0.162 0.652 0.698 0.702

M2 0.01 0.145 0.239 0.058 0.369 0.459 0.466

0.001 0.035 0.083 0.013 0.117 0.196 0.205

0.05 0.621 0.357 0.182 0.764 0.825 0.828

M3 0.01 0.386 0.179 0.073 0.507 0.613 0.623

0.001 0.162 0.053 0.013 0.213 0.332 0.339

STUDY 2

0.05 0.851 0.676 0.417 0.964 0.991 0.991

G1 0.01 0.672 0.447 0.227 0.85 0.946 0.948

0.001 0.417 0.187 0.083 0.552 0.832 0.841

0.05 0.89 (0.02) 0.506 0.927 0.963 0.962

G2 0.01 0.745 (0.004) 0.298 0.81 0.862 0.869

0.001 0.468 (0) 0.1 0.52 0.652 0.662

0.05 (0.009) 0.665 (0.013) 0.665 0.659 0.664

G3 0.01 (0.002) 0.456 (0.001) 0.456 0.422 0.431

0.001 (0) 0.201 (0) 0.201 0.191 0.204

0.05 0.587 0.382 0.225 0.785 0.864 0.864

M1 0.01 0.372 0.198 0.105 0.531 0.699 0.704

0.001 0.149 0.065 0.025 0.215 0.422 0.431

0.05 0.387 (0.016) 0.19 0.499 0.536 0.544

M2 0.01 0.202 (0.005) 0.064 0.251 0.306 0.31

0.001 0.055 (0) 0.015 0.069 0.089 0.097

0.05 (0.015) 0.441 (0.019) 0.441 0.448 0.455

M3 0.01 (0.001) 0.239 (0.002) 0.239 0.237 0.246

0.001 (0) 0.071 (0.002) 0.071 0.077 0.083

Individual tests results are based on the LRT.

Values in parentheses represent the type 1 error rate.

Highest powers are indicated in bold numbers.

For αF = 0.05, 0.01*, 0.001**, α = 0.0167, 0.0033*, 0.00033**, respectively.
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Table 6 | Power comparisons for sample size 300 based on 1000 replications.

αF Individual tests Simultaneous test

1 2 3 Union Score LRT

STUDY 1

0.05 0.932 0.922 0.58 0.994 1 1

G1 0.01 0.83 0.824 0.361 0.963 0.989 0.989

0.001 0.615 0.607 0.166 0.828 0.952 0.953

0.05 0.93 0.993 0.648 0.998 0.999 0.999

G2 0.01 0.804 0.969 0.448 0.989 0.996 0.996

0.001 0.557 0.88 0.22 0.931 0.988 0.988

0.05 0.961 0.773 0.475 0.99 0.994 0.994

G3 0.01 0.899 0.603 0.272 0.956 0.982 0.982

0.001 0.724 0.322 0.091 0.795 0.913 0.914

0.05 0.678 0.683 0.318 0.897 0.933 0.934

M1 0.01 0.471 0.489 0.173 0.737 0.83 0.832

0.001 0.229 0.237 0.054 0.424 0.617 0.615

0.05 0.455 0.653 0.232 0.823 0.859 0.86

M2 0.01 0.242 0.459 0.098 0.603 0.678 0.683

0.001 0.089 0.204 0.024 0.283 0.431 0.437

0.05 0.815 0.531 0.304 0.914 0.942 0.94

M3 0.01 0.638 0.319 0.143 0.764 0.839 0.842

0.001 0.376 0.136 0.04 0.464 0.616 0.616

STUDY 2

0.05 0.955 0.829 0.598 0.993 0.999 0.999

G1 0.01 0.871 0.657 0.389 0.97 0.995 0.995

0.001 0.658 0.411 0.169 0.812 0.969 0.968

0.05 0.982 (0.013) 0.724 0.994 0.995 0.995

G2 0.01 0.923 (0.004) 0.512 0.963 0.984 0.984

0.001 0.772 (0) 0.251 0.817 0.904 0.907

0.05 (0.016) 0.853 (0.014) 0.853 0.853 0.857

G3 0.01 (0.002) 0.701 (0.003) 0.701 0.656 0.662

0.001 (0) 0.418 (0) 0.418 0.357 0.363

0.05 0.725 0.551 0.351 0.909 0.959 0.96

M1 0.01 0.524 0.356 0.156 0.715 0.865 0.869

0.001 0.265 0.158 0.057 0.405 0.658 0.661

0.05 0.564 (0.025) 0.263 0.683 0.726 0.73

M2 0.01 0.368 (0.005) 0.11 0.439 0.497 0.501

0.001 0.149 (0) 0.032 0.175 0.246 0.252

0.05 (0.018) 0.638 (0.015) 0.638 0.62 0.624

M3 0.01 (0.003) 0.407 (0.004) 0.407 0.38 0.391

0.001 (0) 0.17 (0) 0.17 0.163 0.167

Individual tests results are based on the LRT.

Values in parentheses represent the type 1 error rate.

Highest powers are indicated in bold numbers.

For αF = 0.05, 0.01*, 0.001**, α = 0.0167, 0.0033*, 0.00033**, respectively.
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In study 1, all causal SNPs (i.e., G1, G2, G3) have genetic effects on
all three longitudinal traits. When testing the association between
each causal SNP and all three subject-specific effects simultane-
ously, the power is consistently higher than the power obtained
from the union of three individual tests. When testing SNPs M1,
M2, and M3 that are in LD with the causal SNPs, the simulta-
neous tests are also consistently more powerful than the union
of individual tests. Certainly, the power is diluted in compari-
son with the tests on the trait-causal SNPs. In study 2, SNP G1

affects all three longitudinal traits, SNP G2 affects the first and
the third longitudinal traits (Xi1t and Xi3t), and SNP G3 affects
one longitudinal trait only (Xi2t). We observe that when the SNPs
are associated with more than one trait, the simultaneous test is
consistently more powerful than the union of individual tests for
different sample sizes. The power gain is more obvious when the
SNP is associated with more traits. When the SNP is associated
with one trait, the power of the simultaneous trait test is similar
to the individual trait test. Again, when testing on SNPs M1, M2,
and M3 that are in LD with causal SNPs, the power is generally
diluted. However, similar patterns to those obtained from tests
of causal SNPs are observed. Note that in Tables 4–6, values in
parentheses represent empirical type I error rates. For example,
G2 in study 2 is not associated with the second longitudinal trait,
so, its empirical rejection rate corresponds to the type I error rate.

3.2. FRAMINGHAM HEART STUDY ANALYSIS RESULTS
In fitting the GLMMs to the four longitudinal traits: log(SBP),
log(HDL), LDL, and log(TG), the estimated fixed effects for
each confounding covariate, and their associated standard errors
(SE) and p-values, are presented in Table 7 for each longitudi-
nal trait. The time-invariant covariate sex is strongly significant
for all traits with very small asymptotic p-values (all ≈ 0). The
time-invariant covariate diabetes (diabetes diagnosed at any time
during the study, with 0 for no, 1 for yes) is also strongly signifi-
cant for log(SBP), log(HDL), and log(TG). Their p-values are all
close to 0. Time-variant covariates bmi and smoking status are
significantly associated with four longitudinal traits. Covariates
age and alcohol consumed (in ounces/week) are found to have a
very significant effect on log(SBP), log(HDL) and log(TG). The
number of cigarettes per day has very significant effect on LDL
and log(TG). Treatment for lipid (cholrx) significantly reduces
the log(SBP), LDL, and log(TD), and treatment for hypertension
(htnrx) significantly reduces log(HDL). Note that the R function
“bfFixefLMER_F.fnc” is used to select covariates to be included
in the GLMM. So, the entry with “−” in Table 7 indicates the
exclusion of a covariate in the fitted GLMMs.

In Step 2, we simultaneously test the association between each
SNP and all estimated subject-specific effects corresponding to
the four traits. We also test the association between each SNP
and the estimated subject-specific effect for each trait. SNPs with
p-value < 1.0 × 10−5 from the simultaneous tests (either score
test or LRT test) are summarized in Table 8. We also compare
their significance levels with those obtained by individual tests in
Table 8. Note the p-value associated with each individual trait are
adjusted via Bonferroni procedure for multiple testing. For easy
comparison, results are also presented in Figure 1. In Figure 1,
SNPs that are significantly associated with more than one traits

Table 7 | Fixed effects estimates and their associated standard errors

of covariates for each longitudinal trait using GLMMs.

Covariates Longitudinal traits

Coefficients log(SBP) log(HDL) LDL log(TG)

Sex Estimate −0.023 0.266 −3.644 −0.103
SE 0.004 0.01 1.417 0.021
p-value ≈ 0*** ≈ 0*** 0.0101 ≈ 0***

Diabetes Estimate 0.037 −0.096 – 0.17
SE 0.007 0.016 – 0.034
p-value ≈ 0*** ≈ 0*** – ≈ 0***

Age Estimate 0.002 0.002 – 0.018
SE 0.0001 0.0002 – 0.0005
p-value ≈ 0*** ≈ 0*** – ≈ 0***

bmi Estimate 0.006 −0.015 1.213 0.043
SE 0.0004 0.0007 0.109 0.001
p-value ≈ 0*** ≈ 0*** ≈ 0*** ≈ 0***

smk Estimate −0.014 −0.01 2.832 0.008
(former) SE 0.004 0.009 1.376 0.021

p-value 0.0019* 0.2584 0.0395 0.6965

smk Estimate −0.015 −0.086 0.799 0.035
(current) SE 0.004 0.01 1.903 0.03

p-value 0.0013* ≈ 0*** 0.6744 0.2340

alc Estimate 0.002 0.01 – 0.005
SE 0.0003 0.0006 – 0.001
p-value ≈ 0*** ≈ 0*** – ≈ 0***

cigs Estimate – – 0.296 0.002
SE – – 0.063 0.001
p-value – – ≈ 0*** 0.0075*

cholrx Estimate −0.018 – −37.498 −0.139
SE 0.005 – 1.387 0.022
p-value 0.0006** – ≈ 0*** ≈ 0***

htnrx Estimate – −0.018 – –
SE – −0.007 – –
p-value – 0.0087* – –

generally have a higher −log(p-values) or equivalently a lower
p-value. SNPs that are significantly associated with only one trait
have a comparative −log(p-value) or equivalently a similar level
of significance in p-value. On chromosome 8, nine SNPs are
found by the simultaneous test to have a strong and significant
association with at least one of the four traits. These SNPs are in
the LPL gene or very close to this gene. The LPL gene encodes
lipoprotein lipase, a triglyceride hydrolase that acts as a ligand
factor for receptor-mediated lipoprotein uptake. According to the
individual tests, these nine SNPs are significantly associated with
HDL and TG but their p-values based on the union of the indi-
vidual tests are consistently larger than the p-values based on
the simultaneous test. Note that a larger p-value means a less
significant level. These significant findings are consistent with
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Table 8 | Results of most significant SNP (p-value < 1.0 ×10−5 in simultaneous test).

SNP* Chr Location p-value **Associated traits

(Mb) (p-value, based on LRT)
Score LRT Union

RS5998391−7 1 109.62 9.35×10−10 5.59 ×10−10 7.24×10−11 1−7LDL(7.24×10−11)

RS49708343−6 1 109.61 3.21×10−6 2.64 ×10−6 7.21×10−7 3,4LDL(7.12×10−7)

RS7530581 1 161.11 9.62×10−6 1.14×10−5 2.58×10−3 LDL(2.58×10−3)

TG(3.0×10−2)

RS7800945,8 2 27.59 1.30×10−9 1.10×10−9 3.19×10−5 5,8TG(3.19×10−5)

RS124658021 2 136.1 4.73×10−7 4.38×10−7 3.40×10−7 1LDL(3.4 ×10−7)

RS67301571 2 135.62 1.60×10−6 1.50×10−6 7.24×10−7 1LDL(7.24×10−7)

RS3091801 2 136.33 1.64×10−6 1.64×10−6 1.03×10−6 1LDL(1.03×10−6)

RS23226601 2 136.27 1.58×10−6 1.58×10−6 2.87×10−7 1LDL(2.87×10−6)

RS6326321 2 136.35 2.37×10−6 2.36×10−6 1.38×10−6 1LDL(1.38×10−6)

RS12475139 2 136.50 7.02×10−6 6.86×10−6 1.68×10−6 LDL(1.68×10−6)

RS309137 2 136.48 9.03×10−6 9.01×10−6 5.52×10−6 LDL(5.52×10−6)

RS12616403 2 85.13 6.67×10−6 6.42×10−6 2.73×10−3 LDL(2.73×10−3)

TG(2.90×10−2)

RS17031729 3 63.39 7.89×10−6 7.03×10−6 3.46×10−6 SBP(3.46×10−6)

RS7655471,3 8 19.91 9.52×10−8 6.81×10−8 2.08×10−7 3HDL(1.16×10−6)
3TG(2.08×10−7)

RS18378421,3 8 19.91 1.05×10−7 7.62×10−8 2.588×10−7 3HDL(9.04×10−7)
3TG(2.588×10−8)

RS19194841,3,9 8 19.91 2.50×10−7 1.86×10−8 5.89×10−7 3,91HDL(1.21×10−6)
3TG(5.89×10−7)

RS174111261,3 8 19.9 2.54×10−7 1.89×10−7 4.24×10−7 37HDL(2.44×10−6)
3TG(4.24×10−7)

RS174892681,3 8 19.9 4.37×10−7 3.27×10−7 9.69×10−7 3HDL(2.16×10−6)
3TG(9.69×10−7)

RS174110311,3,5 8 19.9 8.33×10−7 6.33×10−7 1.64×10−6 1,3,5HDL(4.28×10−6)
3TG(1.64×10−6)

RS174892821 8 19.9 1.02×10−6 8.30×10−7 1.95×10−6 HDL(4.32×10−6)

TG(1.95×10−6)

RS119869421,3 8 19.91 6.87×10−6 5.34×10−6 5.37×10−5 3HDL(8.68×10−5)

TG(5.37×10−5)

RS174109621,3 8 19.89 9.60×10−6 5.80×10−6 2.84×10−4 3HDL(2.84×10−4)

TG(9×10−3)

RS658956710 11 116.18 3.54×10−9 4.33×10−9 7.66×10−10 10TG(7.66×10−10)

RS122860377,8,11 11 116.16 1.59×10−7 1.97×10−7 1.29×10−8 HDL(1.373×10−4)
7TG(1.29×10−8)

RS289276808,11−13 11 116.12 4.46×10−7 4.42×10−7 1.29×10−7 12,13HDL(5.56×10−5)
8,12TG(1.29×10−7)

RS895647 11 119.19 2.83×10−6 2.59×10−6 6.53×10−4 LDL(4.52×10−3)

TG(6.53×10−4)

RS2121575 11 119.18 6.90×10−6 6.37×10−6 1.33×10−3 LDL(4.6×10−3)

TG(1.33×10−3)

RS10892470 11 119.18 1.07×10−5 9.30×10−6 9.26×10−5 TG(9.26×10−5)

RS4775041 15 56.46 3.65×10−6 3.28×10−6 2.28×10−3 HDL(2.28×10−3)

RS18007751,11−15 16 55.55 6.51×10−12 4.62×10−12 2.32×10−10 1,13−15HDL(2.32×10−10)

RS99894191,3,5,13,15 16 55.54 1.80×10−6 1.67×10−6 2.09×10−6 1,3,5,13,15HDL(2.09×10−6)

* and **: Literature confirmation by simultaneous test and individual tests, respectively.

1, Ma et al., 2010; 2, Roslin et al., 2009; 3, Piccolo et al., 2009; 4, Muendlein et al., 2009; 5, Wallace et al., 2008; 6, Suchindran et al., 2010; 7, Mohlke et al., 2008; 8,

Hegele et al., 2009; 9, Chen et al., 2012; 10, Clark et al., 2012; 11, Sabatti et al., 2009; 12, Hamid et al., 2009; 13, Boes et al., 2009; 14, Sull et al., 2012; 15, Sarzynski

et al., 2011.
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FIGURE 1 | Most significant SNPs with their −log(p-value) from the

simultaneous test compared with their significance levels from

individual tests.

other FHS analyses reported by Piccolo et al. (2009) and Ma et al.
(2010). SNP RS1800775, less than 0.6 kb from the CEPT gene
on chromosome 16, is significant in both the simultaneous test
(p-value = 6.51×10−12) and the union of the individual tests
(p-value = 2.32×10−10). The CEPT gene mediates the transfer of
cholesterol ester from HDL to other lipoproteins. So, not surpris-
ing, this SNP is strongly associated with HDL in the individual
test (p-value = 5.81×10−11). This result is also confirmed by
Sull et al. (2012) and Sarzynski et al. (2011) in the analyses of
independent data sets.

On chromosome 11, 3 SNPs (RS6589567, RS12286037, and
RS28927680) are found to be significantly associated with HDL
and/or TG traits. These SNPs are either in or close to the APOA5
gene which is known to play an important role in regulating TG
level and is a component of HDL. This gene is also known as a
major risk factor for coronary artery disease and is associated with
hypertriglyceridemia, and hyperlipoproteinemia type 3. These
significant findings are also reported by others (Mohlke et al.,
2008; Boes et al., 2009; Hamid et al., 2009; Hegele et al., 2009;
Sabatti et al., 2009; Clark et al., 2012). About 3Mb away from these
SNPs, three other SNPs (RS895647, RS2121575, and RS10892470)
are significantly associated with LDL and/or TG. These SNPs are
very close to the POU2F3 gene which is known to associate with
coronary thrombosis. On chromosome 2, we also find that SNP
RS12616403 is significantly associated with LDL and TG. This
SNP is in the KCMF1 (potassium channel modulatory factor 1)
gene which is known to associate with maturity-onset diabetes of
the young.

4. DISCUSSION
In this paper, we proposed a two-step procedure for a genetic
association analysis with multiple longitudinal traits. In the first

step, a GLMM is used to analyze each longitudinal trait individu-
ally. This allows us to flexibly incorporate different covariate sets
that are relevant to different longitudinal traits and also to flexibly
handle traits of different data types. In the GLMMs, unmeasured
subject-specific genetic effects are packed into the random effects
term while accounting for the fixed effects of other confounding
factors. With a longitudinal study design, repeated measurements
on each subject enable the estimation of subject-specific effects.
This has been validated by our simulation study that included
genetic effects. With the 2-step approach, the method has the
advantage of being able to efficiently and simultaneously test a
large-scale genome-wide SNP associations with multiple traits
in the second step, with the fixed effects of the potential con-
founding factors for each trait taken into account in the first step.
Then, subsequent individual tests would be performed on a much
smaller subset of significant SNPs found by this two-step proce-
dure to further investigate which particular traits are associated
with the SNPs.

Our proposed method opens several avenues for future
research. For example, a specific gene-environmental interaction
can be modeled by the introduction of a random slope term
in the GLMM. However, there are a small number of repeated
measurements and many possible gene-interacting environmen-
tal factors. Therefore, it is worthwhile to investigate an efficient
procedure to incorporate gene-environmental interaction terms
in the GLMMs, and perform genome-wide association tests for
these interactions. The proposed method is for a single marker
test only. When there are gene-gene interactions, but only one of
the markers is tested marginally, the power to detect genetic asso-
ciation may be comprised. Moreover, our proposed method is a
logistic regression method. It is reported that the probability of a
rare event can be underestimated by logistic regression (King and
Zeng, 2001). So, when testing a rare variant, the minor allele fre-
quency of the variant can be underestimated, and the test statistic
may not follow the expected asymptotic distribution. Therefore,
it is worthwhile to further investigate a robust logistic regression
method for testing on rare as well as common variants.

Our current method focuses only on the analysis of unre-
lated individuals, so possible future research would be to extend
the current method to the analysis of family data. When family
data are analyzed, a three-level nested mixed effects model can be
used in which repeated measurements (level 1) are nested within
subjects (level 2) and subjects are nested within families (level
3). When testing the association between a SNP and subject-
specific effects, the response in the binomial regression model
is the allele frequency of the SNP, so observed responses are no
longer independent due to the relationship among related sub-
jects. The current score test and likelihood ratio test based on the
independent subjects assumption would no longer be applicable.
A modified method such as the quasi-likelihood based method
could be considered.

In reality, the random effects γij s are not observable. In
the analysis, we replace the true random effect γij by the esti-
mated random effect, γ̂ij, obtained in the first step. Since the
random effect is treated as a covariate in the second step, issues of
measurement errors may be of concern. Based on a Taylor expan-
sion, Rosner et al. (1990) proposed a first order approximation
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to derive a corrected estimate, and Kuha (1994) derived a cor-
rected estimate based on the second order approximation. We
applied first-order and second-order approximations to corrected
estimates of random effects. The first order correction gives an
identical estimate γij as we obtained from Step 1. The second-
order correction leads to a more complicated estimator with
higher computation cost. However, results from simulation stud-
ies show that using the second order corrected estimate only
improves the power slightly, about 0.1%, in several settings. For
this reason, we did not pursue the measurement error correction
further in our paper.

Finally, it is worth mentioning the missing data problem that
commonly occurs in longitudinal studies. In general, there are
three missing data scenarios in longitudinal data. For example, in
the FHS, some participants missed a particular examination such
that all measurements at that particular time point are missing.
In other situations, some subjects participated at an examina-
tion but the information on the measurements at that time point
is somehow incomplete. The last missing data scenario would
be when some subjects dropout from the study and thus mea-
surements are discontinued. Under the assumption of a missing
completely at random (MCAR) mechanism, our method is appli-
cable for subjects that have different numbers of measurements.
However, when the MCAR assumption is invalid, methods of
handling missing data under a different mechanism, such as miss-
ing not at random (MNAR), should be considered in order to
obtain unbiased estimates for fixed effects of covariates as well as
the subject-specific random effects.
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