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Prediction of genetic values has been a focus of applied quantitative genetics since
the beginning of the 20th century, with renewed interest following the advent of the
era of whole genome-enabled prediction. Opportunities offered by the emergence of
high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially
molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright’s
models to confront new challenges. In particular, kernel methods are gaining consideration
as a regression method of choice for genome-enabled prediction. Complex traits are
presumably influenced by many genomic regions working in concert with others (clearly
so when considering pathways), thus generating interactions. Motivated by this view,
a growing number of statistical approaches based on kernels attempt to capture
non-additive effects, either parametrically or non-parametrically. This review centers on
whole-genome regression using kernel methods applied to a wide range of quantitative
traits of agricultural importance in animals and plants. We discuss various kernel-based
approaches tailored to capturing total genetic variation, with the aim of arriving at an
enhanced predictive performance in the light of available genome annotation information.
Connections between prediction machines born in animal breeding, statistics, and
machine learning are revisited, and their empirical prediction performance is discussed.
Overall, while some encouraging results have been obtained with non-parametric kernels,
recovering non-additive genetic variation in a validation dataset remains a challenge in
quantitative genetics.
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1. INTRODUCTION
Six years after the rediscovery of Mendel’s laws of heredity,
Toyama Kametaro’s experimental work on silkworm breeding
showed the first case of Mendelian inheritance in animals (Onaga,
2010). Yule (1902) made a first attempt at expanding Mendelian
theory to factor in quantitative variation, followed by a seminal
paper by Fisher (1918) nearly a century ago (Plutynski, 2006).
A fundamental concept in quantitative genetics is that of link-
ing genotypes and phenotypes through genetic similarity among
individuals, i.e., covariance between relatives (Wright, 1921).
The main focus today is to statistically model variation in DNA
sequences influencing phenotypic variation in quantitative traits,
rather than understanding the biological pathways that are asso-
ciated with selective genes of interest, which falls in the domain
of molecular genetics. The discipline of genome-based prediction
is a subfield of quantitative genetics that aims to predict unob-
served values by regressing phenotypes on measures of genetic
resemblance, obtained from DNA data. Although early attempts
took place in the 80’s (e.g., Fernando and Grossman, 1989; Lande
and Thompson, 1990), implementation of genome-based pre-
diction was largely hindered by scarce molecular information.

It was just recently that the subject began to attract widespread
attention following the availability of rich DNA variation data
spanning the whole genome (e.g., Meuwissen et al., 2001; Gianola
et al., 2003). This approach continues to progress rapidly and has
been fruitfully applied to a variety of quantitative traits of agro-
nomic importance in animals (e.g., Hayes et al., 2009; VanRaden
et al., 2009) and plants (e.g., Crossa et al., 2014). The objec-
tive of “genome-enabled selection” is to predict responses by
capturing additive genetic effects that may have implication in
choosing individuals as parents of the next generation. Statistical
methodologies tailored to this application have been reviewed in
a number of papers (e.g., Gianola et al., 2009; Calus, 2010; de los
Campos et al., 2013a; Gianola, 2013; Meuwissen et al., 2013).

Concurrently, whole-genome prediction of “total” genetic
effects has been motivated by the fact that phenotypes and
genotypes may not be linearly related and that the additivity
assumption, even though useful, is violated (Gianola et al., 2010).
Importance of predicting non-additive genetic effects comes into
the picture in exploitation of heterosis, mate allocation, cross-
breeding, and precision mating in breeding contexts, and more
crucially when prediction of phenotypes is a primal point, such as
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disease outcome. The objective of this article is to provide a sur-
vey of emerging statistical approaches based on kernel methods
with emphasis on “prediction” rather than on genome-enabled
selection for breeding. Special focus is placed on a semiparamet-
ric kernel methodology that condenses genealogical or genomic
information into a positive (semi) definite relationship matrix.
We highlight insights collected from research conducted in recent
years and suggest potential future directions in this area.

In the next section, we go through statistical models involv-
ing the use of kernels. Subsequently, we review a variety of kernel
matrices that have been applied to date. We then survey applica-
tions of kernel methods to real data in a whole-genome prediction
framework, and concluding remarks are given in the final section.

2. KERNEL-BASED REGRESSION METHODS
We first review kernel-based prediction models being used for
prediction using genomic data. Our aim is to approximate an
unknown “true” genetic signal g with a certain function of a
marker genotypes matrix f (X) that maps these genotypes to
responses (y). The data generating model is then y = f (X) + ε,
where y is the vector of phenotypes and ε is a vector of residuals.
In general, all kernel methods differ from each other in the choice
of the mapping function f (.) and the type of regularization used
to balance goodness of fit and complexity, as discussed later.

2.1. GENOMIC BLUP
Our main interest is to identify the model that gives best predic-
tion among a set of candidate models. To find the best predictive
function f (X) there are a few things that we need to set up prior
to the search. One is whether we should impose a restriction on
the search space or not. The parameter space is a space where
all models are characterized by parameters. In a linear model,
where response values have linear relationship with respect to the
parameters, though, it could be non-linear on covariates such as
in the case of polynomial regression. Once the parameters are
given, all models are distinct. For example, the two linear models
would be

Model 1: y = a1 + b1x1 + c1x2

Model 2: y = a2 + b2x1 + c2x2.

If we give values to parameters ai, bi, and ci then Models 1 and
2 can be differentiable. In other words, we just need to fill out
the unknown parameters of the given models. The best linear
unbiased predictor (BLUP) is a procedure for filling the unknown
values (Henderson, 1975).

Suppose underlying signal is given by y = g + ε. Here, g is
the true unknown genetic signal with g ∼ N(0,�σ 2

g ), where �

is a “true” genomic relationship matrix among animals, i.e., at
the quantitative trait loci affecting the trait. Since the latter are
unknown, we approximate the vector of genetic values g with a
linear function such that y = Xβ + ε, where X is an n (number
of animals) × m (number of markers) matrix of additive marker
genotypes potentially centered or scaled; β is a vector of regres-
sion coefficients on marker genotypes; and ε is a residual that
includes model misspecification and environmental effects not

considered in this analysis. Under the independence assumption
between g and ε, the variance-covariance matrix of y is

Vy = Vg + Vε

= XXTσ 2
β + Iσ 2

ε

often assuming that β ∼ N(0, Iσ 2
β) and ε ∼ N(0, Iσ 2

ε ). Here,

Vg = XXTσ 2
β is the covariance matrix “due to” markers. The

problem is to predict g such that two conditions are met: (1)
E(ĝ)=E(g)=0, and (2) var(ĝi − gi) is minimum for i over all linear
functions that satisfy the unbiasedness condition (1). If normality
is assumed, the BLUP of g(ĝ) is the conditional mean of g given
the data, and takes the form

BLUP(ĝ) = E(g|y) = E[g] + Cov
(

g, yT
)

Var(y)−1[y − E(y)]

= Cov
(

Xβ, yT
)

· V−1
y y

= XXTσ 2
β

[
XXTσ 2

β + Iσ 2
ε

]−1
y

=
[

I +
(

XXT
)−1 σ 2

ε

σ 2
β

]−1

y, (1)

assuming that XXT is invertible. Here, Cov(X) = XXT is a covari-
ance matrix of marker genotypes (provided that X is centered),
often considered to be the simplest form of additive genomic
relationship kernel, G. We can refine this kernel by relating
genetic variance σ 2

g and marker variance σ 2
β under the follow-

ing assumptions. Again, assume genetic value is parameterized as
gi = ∑

xijβj, where both x and β are treated as random and inde-
pendent. Under Hardy-Weinberg equilibrium, E(xij) = 2pj and
Var(xij) = 2pj(1 − pj), where pj is the minor allele frequency of
locus j, and assuming linkage equilibrium of markers (all loci are
mutually independent),

σ 2
g = ∑

j 2pj(1 − pj) · σ 2
βj

.

Under the homogeneous marker variance assumption, one
obtains the relationship

σ 2
β = σ 2

g

2
∑

j pj(1−pj)
. (2)

Replacing σ 2
β in Equation (1) with (2), we get

BLUP(ĝ) =
⎡
⎢⎣I +

(
XXT

)−1 σ 2
ε

σ 2
g

2
∑

j pj(1−pj)

⎤
⎥⎦

−1

y

=
[

I + G−1 σ 2
ε

σ 2
g

]−1

y (3)
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where G = XXT

2
∑

j pj(1−pj)
is known as the first G matrix introduced

in VanRaden (2008).
Likewise, σ 2

g = mσ 2
β if it is assumed that all markers have vari-

ance 1 (following standardizing marker genotypes) so the marked
genetic variance is given by the sum of individual marker vari-
ances. With this, σ 2

β = σ 2
g /m, and G in Equation (3) becomes the

second additive genomic relationship kernel of VanRaden (2008),
XXT

m . One can also approximate � with a pedigree-based rela-
tionship kernel A instead of G, embedding correlations due to
expected additive genetic inheritance. How close G approximates
� depends on observed or tagged causal loci in the data. A third
type of kernel matrix is a linear combination λA + (1 − λ)G,
were 0 < λ < 1 is the weight placed on A relative to G (e.g.,
Rodríguez-Ramilo et al., 2014).

2.2. REPRODUCING KERNEL HILBERT SPACES REGRESSION
Genomic BLUP (GBLUP) is a linear model characterized by
parameters that relate to additive quantitative genetics theory. We
now extend the search space by eliminating some restrictions. For
instance, semiparametric regressions identify functional forms
“before as well as in the midst” of the fitting process (Berk, 2008).
A reproducing kernel Hilbert spaces (RKHS) regression repre-
sents this type of approach. Here, the true genetic signal g = {gi}
is approximated as an unknown function of genetic effects g(xi),
contrary to assuming g = Xβ as in the case of GBLUP. This g(xi)
function is viewed as the conditional expectation E(yi|x = xi),
that is, the average phenotypic value of individuals possessing
marker genotype xi without restricting the form of gi. RKHS
regression proceeds by searching a function and uses the residual
sum of squares as a loss function, and assigns the squared norm
of g under a Hilbert space as a penalty. The objective function to
be minimized with respect to g is

�(g|λ) = ‖y − g‖2 + λ‖g‖2
H, (4)

where λ is a regularization parameter and H represents a Hilbert
space, very rich class of functions. While there are countless can-
didates for g in non-parametric regression, with this setting, the
representer theorem developed by Kimeldorf and Wahba (1971)
guarantees that the optimizer will be in the span of the functions
indexed by the observed covariates. This implies that the objective
function reduces to a linear function Kα, where K is an n × n ker-
nel constructed from the observed data and α is an n × 1 vector
of regression coefficients to be inferred, e.g., by minimizing

�(α|λ) = (y − Kα)′(y − Kα) + λα′Kα. (5)

Equation (5) is minimized by taking its derivative with respect to
α and setting to 0 to obtain:

α̂ = (K + λI)−1y, (6)

so that the predicted genetic value is given by ĝ = Kα̂; this
requires λ to be known.

This regression procedure is also known as kernel ridge regres-
sion in machine learning, and was first introduced in quantitative
genetics by Gianola et al. (2006) and Gianola and van Kaam

(2008) in the context of a mixed effects model with a Bayesian
treatment. Efficient Gibbs sampling algorithms for RKHS regres-
sion have been developed by de los Campos et al. (2010) by
exploiting the eigendecomposition of kernels. When the first term
in Equation (4) is replaced by the “epsilon-insensitive” loss func-
tion, this is equivalent to support vector regression (Moser et al.,
2009; Long et al., 2011). Hence, RKHS represents a general and
powerful paradigm.

Note that the representer theorem requires assigning the L2
norm (Euclidean norm) to regularize the regressions α. This reg-
ularizer assures that optimal solutions lie in a finite-dimensional
rather than in an infinite-dimensional space. In practical situa-
tions, sparsity induced by the L1 norm (Manhattan norm) may
be preferable. This is equivalent to replacing α′Kα in Equation
(5) with

∑n
i=1 |αi|. However, this violates assumptions of the rep-

resenter theorem and it no longer guarantees that the optimizer is
given by a linear combination of the data points. Nevertheless,
it is conceivable that norms other than L2 may deliver better
predictions.

2.3. RKHS AND BLUP
The important connection between RKHS regression and BLUP
was brought up first by Harville (1983); Robinson (1991) and
de los Campos et al. (2009) and this part of the review fol-
lows their work closely. Suppose we approximate a genetic signal
with a vector of additive effects and assume a single record per
individual. The model is

y = Xβ + Iα + ε (7)

where y is the response variable, X is an incidence matrix link-
ing the response to some nuisance effects; β and α are regression
coefficients and ε is a residual that includes model misspecifica-
tion and environmental effects not considered in this analysis.
The two random components of the model follow the distribu-
tion α ∼ N(0, Aσ 2

α ) and ε ∼ N(0, Iσ 2
ε ), where σ 2

α is the additive
genetic variance and A is the numerator relationship matrix
between individuals (relationships in the absence of inbreeding).
Henderson’s mixed model equations (MME) are

[
XT X XT

X I + A−1 σ 2
e

σ 2
a

][
β̂

α̂

]
=
[

XT y
y

]
. (8)

Now, transform additive genetic effects into α∗ = A−1α

(assuming that A−1 exists) so that Equation (7) is reexpressed as

y = Xβ + Aα∗ + ε,

where α∗ ∼ N(0, A−1σ 2
α ), and the corresponding MME are

[
XT X XT A

AX A2 + A σ 2
e

σ 2
a

][
β̂

α̂
∗

]
=
[

XT y
Ay

]
, (9)
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because A is symmetric. By multiplying the α∗ equation by A−1,
one obtains [

XT X XT A

X A + I σ 2
e

σ 2
a

][
β̂

α̂
∗

]
=
[

XT y
y

]
. (10)

If phenotypes are pre-corrected for systematic effects (thus
β = 0) a priori, then Equation (10) reduces to

[A + λI]α∗ = y

α̂∗ = (A + λI)−1y (11)

where λ = σ 2
e

σ 2
a

is a regularization parameter. Replacing the

pedigree-based relationship kernel A with a more general term
K yields α∗ = [K + λI]−1y. Since BLUP is linearly invariant, the
BLUP of α is given by α̂ = A−1α̂∗ = A−1(A + λI)−1y. This is
equivalent to Equation (6) and is the Bayesian kernel ridge regres-
sion employed in de los Campos et al. (2010) and Morota et al.
(2013). Thus, BLUP of additive effects can be viewed as a regres-
sion on pedigree or on additive genomic relationship kernels. It is
interesting to note that BLUP, developed in animal breeding, is a
special case of RKHS, developed in statistics.

2.4. CONNECTION BETWEEN THE KERNEL AND THE MATRIX OF
GENOTYPES

GBLUP is also linked to BLUP of marker regression coefficients.
Here, we show how BLUP of regression on markers and BLUP of
additive genetic values are related to each other. This relationship
was first shown by Henderson (1977) in the context of predicting
BLUP of non-phenotyped animals, and was rediscovered recently
(e.g., Goddard, 2009). Suppose that the phenotype-genotype
mapping function is y = g + ε, where the genetic effect is param-
eterized as g = Xβ. Here, X is the matrix of marker genotypes and
β is the marker allele substitution effects. Then, the conditional
expectation of β given y assuming known dispersion parameters
and β ∼ N(0, Iσ 2

β ) is

BLUP(β) = E(β|y) = Cov(β, y)Var(y)−1[y − Xβ]

= Cov(β, Xβ)
[

XXTσ 2
β + Iσ 2

ε

]−1
y

= σ 2
βXT

[
XXTσ 2

β + Iσ 2
ε

]−1
y

= σ 2
βXT

(
XXT

)−1
[
σ 2

βI +
(

XXT
)−1

σ 2
ε

]−1

y

= XT
(

XXT
)−1

[
I +

(
XXT

)−1 σ 2
ε

σ 2
β

]−1

y.

Using Equation (3), we get

BLUP(β) = XT
(

XXT
)−1

[
I + G−1 σ 2

ε

σ 2
g

]−1

y

= XT
(

XXT
)−1

BLUP(g).

Thus, once we obtain ĝ from GBLUP, BLUP of marker coefficients

is given by β̂ = XT(XXT)−1ĝ. We arrive at the same predic-
tion regardless of whether we start from the genotype matrix X
or from the g. Note that marker-based regressions can also be
“kernelized” when the squared norm of β is assigned as penalty
function. Ridge regression with markers treated as random effects
is known to be equivalent to BLUP, i.e., RR-BLUP (Ruppert et al.,
2003). However, the least absolute shrinkage and selection opera-
tor (LASSO) does not satisfy this condition. Although RR-BLUP
and GBLUP are mathematically equivalent, predictive ability has
differed when applied to real data. For example, Zhong et al.
(2009) and Massman et al. (2013) observed a superiority of RR-
BLUP over GBLUP in the presence of strong LD, and Habier et al.
(2013) reported that GBLUP was not able to utilize short-range
LD information for prediction.

2.5. RKHS FAMILY
It should be noted that the family of RKHS also extends to inde-
pendently developed spatial statistics regression (Stein, 1999).
Kriging is a variant of BLUP used for predicting values of variables
distributed over a space (Stein, 1999). It is a spatial regression
technique based on spatial associations at various locations. We
first revisit the space which kriging takes place when applied to
genomic data.

2.5.1. Spatial genotypic structure
Suppose that all individuals in a sample have been genotyped
for biallelic SNPs spanned over the whole genome, with these
SNPs used for genome-enabled prediction of quantitative traits.
The number of possible genotypic configurations with m SNPs
is 3m, which is an enormous number when m exceeds the thou-
sands. Characterizing the metric space governed by these SNP
predictors prior to the analysis is of importance in a spatial pre-
diction problem. Recently, Morota et al. (2013) used SNP codes
as coordinates of genotypes in m-dimensional spaces. Therein,
an m-dimensional grid graph with vertices representing a vec-
tor of individual’s genotypes was proposed as a spatial structure
of genotypes. This m-dimensional non-Euclidean metric space
can be constructed once the total number of SNP genotypes is
obtained. Then, each sampled individual in the data set is placed
at one of the vertex on this space. With genotypes coded as
(0, 1, 2) for “aa,” “Aa,” and “AA,” respectively, two vertices are
adjacent if and only if codes at just one SNP locus differ by 1.

In standard regression analysis, independent and identically
distributed (i.i.d.) observations is a common assumption while,
in kriging, spatially correlated random variables are considered
(Isaaks and Srivastava, 1990). The mixed models of Henderson
(1975) do not take spatial association of individuals into account.
However, in genetics it is known that individuals are often genet-
ically related to each other, especially in animal breeding. For this
reason, the numerator relationship matrix A or the genomic rela-
tionship matrix G among individuals are employed. With this, the
set of additive effects in a sample of individuals is assumed to fol-
low a multivariate normal distribution with a zero mean vector
and a covariance matrix that is proportional to A or G, instead
of the identity matrix I. On the other hand, kriging explicitly
assumes at the onset that observed values are spatially correlated.
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Most of observed data are not randomly sampled. This is par-
ticularly so in animal breeding, where individuals genotyped tend
to be highly related due to intense artificial selection. When we
embed these samples into a 3m grid graph, it is unlikely that points
will be uniformly distributed in this space. We would expect to
see clusters of individuals because of their genotypic similarity
due to selection, or no clusters at all in certain regions. A krig-
ing system attempts to smooth the irregular spatial variation in
the p-dimensional space, to arrive at a better prediction of out-
comes (Isaaks and Srivastava, 1990). The main goal here is to
predict phenotypes at unsampled vertices using data obtained at
limited number of neighboring spatial locations. The kriging sys-
tem, which performs an interpolation on this grid space, is briefly
explained in the following subsection.

2.5.2. Kriging
For simplicity, only ordinary kriging is reviewed. Suppose that
available phenotypes are viewed as the result of some stochastic
process with yi = g(x) + ei having the measurement on individ-
ual i (i = 1, · · · , n) at point xi. A random field g is a random
function on a space D, which in our case is the p-dimensional grid
graph Z

p
3 of all SNP genotypes, and xi and ei are the ith observed

vertex and residual. In other words, yi is a response value associ-
ated with a spatial point location x. which is a vertex. We assume
second order stationarity in the observations, that is, the mean is
constant but unknown and the covariance depends only on the
“distance” between any of two vertices (||xi − xj||), but not on the
locations per se. We wish to predict the phenotype of an individ-
ual having vertex x0 using all available data. Kriging is the best
predictor (Henderson, 1973) in the mean-squared error sense,

arg min
ŷ0

{E[ ŷ0︸︷︷︸
predicted

− y0︸︷︷︸
unobserved

]2}

where y0 is the phenotype at vertex x0 to be predicted and ŷ0 is its
predictor.

As in BLUP, in kriging, the predictor is restricted to the class
of linear functions of the data and given by a weighted linear
combination of all available observations, that is,

ŷ0 =
n∑

i = 1

wiyi, (12)

where w1, w2, · · · , wn are weights that need to be found. The
question boils down to how to weight nearby samples of the
prediction point in question, and this is pertinent to other
whole-genome prediction methods as well. Predicted values
are represented as a weighted sum of the observed pheno-
types and are functions of a projection matrix H. For example,
BLUP and kernel ridge regression are represented as ŷBLUP =
HBLUPy and ŷRKHS = HRKHSy, respectively, where HBLUP = [I +
G−1λ]−1 and HRKHS = K[K + λI]−1. Weights may change as we
move along when predicting a response at next unobserved vertex
in kriging.

In the context of prediction of a random variable, an unbi-
ased predictor requires that the expected value of the difference

between predictor and predictand be zero. If the predictor is linear
as in Equation (12),

E[ŷ0 − y0] = E

[
n∑

i = 1

wiyi − y0

]

=
n∑

i = 1

wiE[yi] − E[y0]

= μ

n∑
i = 1

wi − μ, (13)

where (assuming no nuisance parameters) μ is the mean values
of the responses; E[yi] = E[y0] = μ holds because of the station-
arity assumption made. Setting Equation (13) to zero gives the
unbiasedness condition

μ1

(
n∑

i = 1

wi − 1

)
= 0. (14)

Thus, ŷ0 is an unbiased predictor if
∑n

i=1 wi = 1. This is called
the “normed weights” condition.

As defined by Henderson (1973), BLUP is a linear unbiased
predictor with minimum prediction error variance in such class.
Under the unbiasedness condition, this is attained by minimizing
the expected squared prediction error.

Var
([ŷ0 − y0]

) = E[ŷ0 − y0]2

= Var

[
n∑

i = 1

wiyi − y0

]

(15)

Adding the unbiasedness conditions to the above equation via a
Lagrange multiplier (λ) and setting the n + 1 partial first deriva-
tives with respect w and λ to 0, one obtains the kriging system of
linear equations shown below.

[
V + Iσ 2

ε 1′
1 0

]
︸ ︷︷ ︸
(n + 1)×(n + 1)

·
[

ŵ
λ

]
︸︷︷︸

(n + 1)×1

=
[

C0i + Iσ 2
ε

1

]
︸ ︷︷ ︸

(n + 1)× 1

, (16)

where the left-hand side includes the covariance function V =
{Cov(g(xi), g(xj))}, the residual covariance matrix Iσ 2

e , the vec-
tor of ones 1. The right-hand side contains covariances between
the unsampled location to be predicted and sampled locations
C0i = {Cov(g(x0), g(xi))}. We predict a value at some unsam-
pled vertices by replacing the unknown weights with ŵ. Although
derived from a different perspective, the predicted value ŷ(x0)
is essentially BLUP of Henderson (Robinson, 1991): namely, the
projection of yet-to-be-observed data on a linear combination
of observed data. Ober et al. (2011) applied two alternatives to
this ordinary kriging, named simple kriging and universal krig-
ing, in the context of whole-genome prediction. Kriging has also
been used for predicting human disease outcomes by condensing
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genomic and RNA expression data into kernel matrices (Wheeler
et al., 2014). It is worthwhile to note that kriging is equivalent
to Gaussian process regression in the machine learning literature
(Rasmussen and Williams, 2005). In summary, BLUP in animal
breeding, RKHS in statistics, kriging in geostatistics, and Gaussian
process regression in machine learning all share the same spirit.

3. KERNEL MATRICES
A suite of kernel functions has been proposed for whole-genome
prediction purposes. Here, we discuss several kernels that can be
used conjunction with the aforementioned regression method-
ologies. All kernels are a special case of a matrix denoted as K.
A “parametric” kernel aims to capture the signal from some spe-
cific gene action, e.g., dominance. This approach permits making
claims or interpretation with respect to some theory about hid-
den genetic architecture. At the other end of the spectrum, use
of a “non-parametric” kernel is purely driven by prediction pur-
poses. The kernel may pick up genetic signals regardless of the
underlying genetic architecture, and model coefficients typically
do not have a theoretical interpretation.

3.1. PARAMETRIC KERNELS
Most of the relationship matrices animal breeders have been using
for many years are valid RKHS kernels, e.g., the additive genetic
relationship matrix A, which is calculated directly from pedi-
gree information. The idea here is to use expectation of genetic
relatedness in the absence of genomic information as kernel. The
off-diagonals of this matrix are twice the kinship coefficients,
and 1 + individual’s inbreeding coefficients are placed along the
diagonal (Wright, 1922; Malécot, 1948). This is the perhaps the
oldest kernel function used in quantitative genetics and is pro-
portional to identical by descent (IBD) probabilities. Similarly,
one can also trace expected dominance relationship coefficients
using a pedigree (Henderson, 1985). A quantitative trait loci
(QTL)-based counterpart of the additive genetic relationship
matrix gained attention afterwards (Fernando and Grossman,
1989; Nejati-Javaremi et al., 1997; Villanueva et al., 2005).

The genomic relationship matrix G used in GBLUP also repre-
sent parametric kernels, using additively coded genotypes. Other
types of genomic relationship matrices have been compared and
discussed by Toro et al. (2011). As stated earlier, molecular sim-
ilarity generates covariance even if individuals are not related
in the sense of pedigree. Contrary to pre-genomics quantitative
genetics, built largely on related individuals, the use of genomic
data without genetic relatedness expands quantitative genetics
theory (e.g., Yang et al., 2010). Analogous to G, the domi-
nance counterpart D is constructed by setting up an appropriate
dominance contrast between genotypes, for example, AA = −1,
Aa = 0, and aa = −1 (Su et al., 2012; Vitezica et al., 2013; Da et al.,
2014).

3.2. NON-PARAMETRIC KERNELS
The genomic relationship matrix of VanRaden (2008) represents
identical by state (IBS) similarities so there is no requirement to
trace back genealogy. It is possible to compute an IBS matrix non-
parametrically to enhance predictive performance. It is desirable
to pick a kernel matrix that captures characteristics of the data.

Such kernels allow interpreting classical relatedness as genomic
spatial distances, and are expected to capture some of the com-
plexity of the genome, including non-additive effects. Smoothing
of the relatedness encoded by G may yield better predictions
under complex gene action. We cover a wide variety of kernels
that are non-linear in SNPs genotype codes, but appear as linear
in a regression model as seen in Equation (6).

In a Gaussian kernel, we embed individuals in the Euclidean
space, and the corresponding metric is a squared Euclidean norm.
For example, the spatial genetic distance between individuals (i, j)
is given by

K(xi, xj) = exp
(
−θd2

ij

)

=
m∏

k = 1

exp
(
−θ

(
xik − xjk

)2
)

where θ is a positive bandwidth parameter, dij =√
(xi1 − xj1)2 + · · · + (xik − xjk)2 + · · · + (xim − xjm)2 is the

Euclidean distance, and xik (i, j = 1, · · · , n, k = 1, · · · , m) is the
SNP genotype code for individual i at SNP k. The smaller the
Euclidean distance is, the stronger the similarity in state between
two genotype vectors. Taking exponentiation of the negative
Euclidean distance changes the direction of relatedness, that is, a
larger distance produces a smaller value of the Gaussian kernel
and a smaller spatial genetic similarity. Gianola et al. (2006)
introduced the Gaussian kernel in quantitative genetics with
the aim of capturing total genetic effects in a whole-genome
prediction problem. This kernel is known to be a particular
case of what is called a Gaussian radial basis function (RBF).
The Gaussian RBF computes spatial genetic distance between n
individuals and n′ individuals chosen as centroids (n > n′). Some
applications of this in the context of genome-enabled prediction
are in Long et al. (2010) and González-Camacho et al. (2012).
While the idea is to choose a minimal set of basis functions,
the resulting kernel is no longer semi-positive definite from the
RKHS point of view. This approximation approach may help
greatly when n is large. When n is chosen to be equal to n′, this
leads to a standard Gaussian kernel.

The exponential kernel first explored in Piepho (2009) is
closely related to the Gaussian kernel. It takes the form exp ( −
θdij), so the squared norm is dropped. The Matérn covariance
function is a generalization of an Euclidean distance-based kernel
that contains the Gaussian and the exponential kernels as partic-
ular cases. An advantage of this function is that the actual form of
a kernel can be inferred from the data directly, permitting flexi-
ble kernel selection. Based on simulated data, the Gaussian kernel
appeared to give the best fit within this specific class of kernel
(Ober et al., 2011).

Given that SNPs take discrete values only, it seems reason-
able to remove redundant areas in the Euclidean space that are
never used. The diffusion kernel, which is a discretized Gaussian
kernel, can be viewed as functions on discrete spaces, such as a
graph. Morota et al. (2013) employed the SNP grid kernel, that
is, the diffusion kernel specifically developed to model SNP data
distributed on a grid graph, as described earlier. This measures
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how similar two vertices are in terms of Manhattan distance on
an m-dimensional grid graph. The essence of this kernel is the
matrix exponentiation of a graph Laplacian. The SNP grid kernel
between two vertices consisting of spatial SNP coordinates on the
p-dimensional grid graph is given by

Kθ (x, x′) ∝
( −2e−3θ + 2

e−3θ + 3e−θ + 2

)n1 ( e−3θ − 3e−θ + 2

e−3θ + 3e−θ + 2

)n2

(
4e−3θ + 2

e−3θ + 3e−θ + 2

)m11

(17)

where ns is the number of SNPs at which the copy of the “A”
allele between two individuals differ by s, and m11 is the number
of SNPs at which two individuals share heterozygous states. The
bandwidth parameter θ > 0 controls a rate of diffusion (degree
of relatedness). A diffusion kernel for binary genotypes (presence
or absence) is likewise constructed as

Kθ (x, x′) ∝
(

1 − exp ( − 2θ)

1 + exp ( − 2θ)

)d(x,x′)
(18)

where d(x, x′) is the Hamming distance, that is, number of coor-
dinates at which x and x′ differ. Morota et al. (2013) evaluated the
performance of the diffusion and of the Gaussian kernels using
dairy cattle and wheat line data. It turned out that differences
in predictive ability were negligible, suggesting that the simple
Gaussian kernel is very robust.

A similar attempt at refining the Gaussian kernel is in Tusell
et al. (2014). These authors proposed a t kernel for m markers
taking the form

K(xi, xj) =
[

1 + (xi − xj)
′	−1(xi − xj)
mν

]− (ν + m)
2

,

where 	 is an m × m scale matrix and ν is the degrees of free-
dom (a positive continuous parameter acting as bandwidth). The
authors used a diagonal matrix for 	−1, with its kth element
equal to the heterozygosity at the kth SNP locus: 2pk(1 − pk), and
evaluated the kernel performance over a fixed grid of values of
ν. This kernel aims to expand the underlying metric space with
its heavier tails. The t kernel resulted in a similar performance
as the Gaussian kernel (Tusell et al., 2014) suggesting that the
avenues for enhancing predictive ability through kernel refine-
ment are limited, in agreement with Morota et al. (2013). The
picture that emerges here is that use of the Gaussian kernel is
probably sufficient for a prediction task.

Covariance functions over the prediction grid need to be speci-
fied for interpolation when applying kriging and Gaussian process
regression. In this setting, the kernel matrix K is the covariance
matrix of a stochastic process. Here, in order to explicitly inter-
pret a kernel as a covariance function, we assume E(g(x..)) = 0.
Then the covariance function becomes Cov(g(x..), g(x′

..)) =
E(g(x..), g(x′

..)) = K(g(x..), g(x′
..)), namely, a kernel.

It is worth keeping in mind that the kernel defines the the inner
product, the inner product defines the covariance, and the covari-
ance brings up a new metric called Hilbert space (distance). While

some simply structured kernels such as the IBS kernel (Wessel
and Schork, 2006), the weighted IBS kernel (Kwee et al., 2008; Wu
et al., 2010), and the Wright-Fisher kernel (Zhu et al., 2012) have
been applied for GWAS purposes in human genetic epidemiology
contexts, their use in animal and plant quantitative genetics has
been very limited. In general, constructing non-parametric kernel
matrices is computationally more taxing than for their parametric
counterparts.

3.3. KERNEL AVERAGING
Kernel methods do not preclude use of several kernels together.
An alternative approach is to use “kernel averaging” or “multi-
ple kernel learning,” as proposed in de los Campos et al. (2010).
Suppose there are three kernels K1, K2, and K3 that are distinct
from each other. In this approach, the three kernels are “aver-

aged” to form a new kernel K = K1
σ 2

K1

σ̃ 2
K

+ K2
σ 2

K2

σ̃ 2
K

+ K3
σ 2

K3

σ̃ 2
K

, where

σ 2
K1

, σ 2
K2

, σ 2
K3

are variance components attached to kernels K1, K2,

and K3, respectively, and σ̃ 2
K is the sum of the three variances. The

ratios of the three variance components are tantamount to the
relative contributions of the kernels to the marked genetic varia-
tion in the population. For instance, the kernels used can be three
Gaussian kernels with different bandwidth parameter values, as
employed in Tusell et al. (2014), or one can fit several parametric
kernels jointly, e.g., the additive (G), dominance (D), and addi-
tive by dominance (G#D) kernels as in Morota et al. (2014b).
While there are many possible choices for kernels, the kernel func-
tion can be estimated via maximum likelihood by recourse to the
Matérn family of covariance function (e.g., Ober et al., 2011) or by
fitting several candidate kernels simultaneously through multiple
kernel learning.

4. APPLICATIONS OF KERNEL METHODS
A long standing question in quantitative genetics is how impor-
tant epistasis is for complex traits. To a large extent, animal
breeding focuses on additive variability. On the other hand, there
is increasing evidence that complex traits are the product of syner-
gistic forces spanned by a large number of genetic polymorphisms
along the genome and, theoretically, functional epistasis can play
an important role in selection response (Hansen, 2013). Kernel
methods are theoretically appealing for accommodating cryptic
forms of gene action (Gianola et al., 2006; Gianola and van Kaam,
2008).

4.1. WHOLE-GENOME PREDICTION
Kernel-based whole-genome prediction is being increasingly
employed across many species. Within this class of methods, sta-
tistical models are linear in the parameters but may be non-linear
in the covariates. We gather some of case studies in the pub-
lished literature here, although not in great depth. The theoretical
framework of RKHS regression for genome-enabled prediction
first appeared in Gianola et al. (2006), and was subsequently
more firmly characterized in Gianola and van Kaam (2008).
González-Recio et al. (2008, 2009) reported early applications of
the procedures to data on mortality and food conversion rate
in broiler chickens. These authors compared RKHS regression
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with various linear additive smoothers and concluded that semi-
parametric methods had potential for capturing total genetic
effects from real data. While same superiority of semi-parametric
kernel methods over additive models has been found for body
weight of broiler chickens (Long et al., 2010), differences were
minimal when applied to litter size in swine (Tusell et al., 2013),
dairy sires progeny test (Long et al., 2011; Morota et al., 2013),
and phenotypes of dairy cows (Morota et al., 2014b). While vari-
ous predictive models have not differed substantially, on average,
some of the semi-parametric approaches, including RKHS, have
performed consistently better.

Applications of semi-parametric regressions in plant breed-
ing have also produced encouraging results. The semi-parametric
approach was evaluated in plant breeding by Crossa et al. (2010)
who compared RKHS with Bayesian LASSO using CIMMYT data
sets. Therein, 599 wheat lines genotypes with 1447 markers and
300 tropical maize lines genotyped with 1148 SNPs were analyzed
for this purpose. While RKHS and Bayesian LASSO showed a sim-
ilar predictive ability in maize, the former outperformed the latter
in the wheat lines. This wheat data set has been used in many sub-
sequent studies, and the apparent advantage of RKHS regression
was confirmed (de los Campos et al., 2010; Endelman, 2011; Long
et al., 2011; Heslot et al., 2012; Morota et al., 2013; Tusell et al.,
2014). Heslot et al. (2012) performed an extensive comparison of
prediction methods including RKHS, neural networks, support
vector machines, ridge-regression BLUP, and random forests.
RKHS topped 15 out of 18 trait-comparisons and performed the
best on average in terms of predictive correlations. González-
Camacho et al. (2012) compared RKHS, radial basis function
neural networks (RBFNN) and the Bayesian LASSO using 21
trait-environment combinations of maize data sets. Although the
differences were small, RKHS had a consistently higher predic-
tive correlation than RBFNN and the Bayesian LASSO. Subsets of
these maize data were reanalyzed in another exhaustive compar-
ison carried out by Ornella et al. (2014). Among six regression
methods, RKHS ranked as the best prediction machine when
applied to 14 maize data sets and across trait-environment combi-
nations as measured by Pearson’s correlation coefficient. Echoing
work of González-Camacho et al. (2012), Pérez-Rodríguez et al.
(2012) tested RKHS, RBFNN, Bayesian regularized neural net-
works, and linear additive smoothers, including Bayesian LASSO,
Bayesian ridge regression, BayesA, and BayesB. BayesA and
BayesB are marker-based Bayesian hierarchical linear regression
models developed to capture additive genetic effects of mark-
ers (Meuwissen et al., 2001). The data used were 306 elite wheat
lines coupled with 1717 diversity array technology (DArT) mark-
ers. The authors observed a consistent superiority of non-additive
smoothers over additive counterparts, yet, RKHS and RBFNN
were equally competitive. Kernel-based whole-genome predic-
tion models have also been applied to genotyping-by-sequencing
on maize populations (Crossa et al., 2013). Overall, RKHS per-
formed slightly better than GBLUP when genomic information
was the sole source of information used for predictors. A study
led by Sun et al. (2012) reported that RKHS and smoothing
spline ANOVA model (alternative parametrization of Bayesian
kernel ridge regression) coupled with supervised principal com-
ponent analysis delivered slightly higher predictive correlations in

barley and maize data. On the other hand, no clear difference was
observed between RR-BLUP and RKHS, which led the authors to
conjecture that there appear to be no epistatic effects on six maize
traits studied (Riedelsheimer et al., 2012b). In retrospect, RKHS is
at least as good as linear additive smoothers: on one hand it deliv-
ers better predictive performance when non-additive effects are
present and, on the other hand, produces a similar performance
when additivity is the main source of genetic variation.

4.2. ASSESSMENT OF PREDICTIVE PERFORMANCE
Avoiding overfitting of prediction models is desirable because
one wishes to extract genetic signal but not noise. Since its
introduction into animal breeding by Meuwissen et al. (2001),
cross-validation (CV) has quickly become the technique of choice
for measuring prediction performance. It is being widely used
in whole-genome prediction and there are a number of ways of
applying it. For instance, CV designs include: (1) two-generation
(stratification by generation or date of birth) validation, (2) k-fold
validation, and (3) repeated random sub-sampling validation.
We highlight here pros and cons of each. The two-generation
scheme is a reasonable choice to use when a data set comprises
parents and their offspring. The records on parents are used to
train the model and prediction is carried out in a testing set that
includes offspring of individuals in the training set. While this
setting can simulate a standard genetic evaluation scenario and
prevent an unrealistic case such as predicting parent responses
from offspring records, it generates only a single realized predic-
tion accuracy measurement, and an alternative is to bootstrap the
layout. In k-fold validation scheme, the entire data set is first ran-
domly splitted into k disjoint subsets of equal size. Within each
fold, k-1 subsets are used to fit the model and the remaining
subset is used as a testing set to predict masked phenotypes of
individuals. This is repeated until all k subsets are used as test-
ing and results from the k-fold are averaged. Typically, k = 5
or 10 is used to assess predictive ability. Unlike two-generation
validation, an advantage of this approach is that it is possible to
estimate CV uncertainty but at the cost of higher computation
load. Recent research (Makowsky et al., 2011; Saatchi et al., 2011;
Pérez-Cabal et al., 2012; Kramer et al., 2014) have shown that
the k-fold CV gives a slightly better predictive performance than
a two-generation validation. In practice, the design of CV must
keep the target problem in mind. Lastly, repeated random sub-
sampling validation randomly partitions the data set into training
(e.g., 90%) and testings (e.g., 10%) sets. Then, an average of say,
50 random repeats of the cross-validation is computed, and this
CV layout has been adopted in some past studies (e.g., González-
Camacho et al., 2012; Pérez-Rodríguez et al., 2012; Gianola et al.,
2014b). While it also permits to obtain a CV distribution, some
individuals may never enter into training and testing sets or
appear more often than others. While these three CV strategies
are widely adopted in practice, it is important to note that the
ultimate goal is to successfully predict in cross-study validation
using independent data.

Prediction performance on CV in the testing set can be
assessed by Pearson’s correlation or via the predictive mean-
squared error between observed and predicted values. A squared
predictive correlation aims to measure the amount of variation
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captured by prediction. However, prediction assessment is not
limited to these two measures; for example, Ornella et al. (2014)
used Cohen’s kappa coefficient (Cohen, 1960) and found that
it provided similar indicators of the performance of genome-
enabled prediction when selecting the best individuals. On the
other hand, the behavior of prediction machines differed when
the aim was to separate the best and worst individuals, e.g.,
selecting the best 15% of individuals. This suggests that optimal
prediction methods that perform well when predicting individ-
uals in the testing set overall, may result in a poor performance
when the target is only the tails of the distribution in the same
testing set (Ornella et al., 2014).

Assessment of predictive performance is not exclusively lim-
ited to use of CV. Stone (1977) showed that leave-one-out
CV and Akaike’s information criterion (AIC) are asymptotically
equivalent when maximum likelihood estimation is used. An
underappreciated point is that Akaike developed AIC to quan-
tify goodness-of-prediction rather than goodness-of-fit (Akaike,
1974). By leveraging this property, it is possible to evaluate pre-
dictive ability of models without conducting computationally
expensive CV. The prediction model associated with the small-
est AIC is considered to fit the data well from a predictive point of
view. Note that the proof in Stone (1977) is not restricted to linear
models. Piepho (2009) assessed predictive ability of several mod-
els using AIC, and the study carried out by Schulz-Streeck and
Piepho (2010) found congruence between AIC and the predictive
correlation (the smaller the AIC values, the higher the predictive
correlations). That said, this pattern did not always hold, sug-
gesting that the CV remains as a viable tool to gauge predictive
performance.

Another avenue is to derive deterministic equations that com-
pute expected predictive correlation on the basis of a number
of factors. These include size of the training data set, the effec-
tive number of independent chromosome segments, the number
of markers used, and heritability of the trait (Daetwyler et al.,
2008, 2010; Goddard, 2009; Goddard et al., 2011; Erbe et al.,
2013). In relation to these, de los Campos et al. (2013b) gave
a theoretical upper limit for the achievable predictive ability
that does not use number of independent chromosome seg-
ments. This is appealing because the number of independently
segregating segments is a somewhat idealized concept and not
straightforward to estimate. It may be argued that it is worth-
while to employ AIC or deterministic equations prior to per-
forming resource intensive CV, to see what can be expected
empirically.

4.3. GWAS-BASED PREDICTION
The first large-scale genome-wide association study (GWAS)
involving hundreds of thousands of SNPs was reported by Ozaki
et al. (2002). The authors identified some functional variants
associated with myocardial infarction using 92,788 genotyped
SNPs in more than 2000 individuals. Since then, a number of
GWAS results have been reported (Visscher et al., 2012), and the
success of GWAS seems largely due to the biochemical technol-
ogy that generates high dimensional markers spanning the entire
genome, rather than the statistical methodologies that have been
employed.

Genome-enabled prediction of traits outside of animal and
plant domains has been mainly carried out by targeting specific
genes or variants identified from inference procedures (GWAS
or their meta-analyses) as opposed to using all available mark-
ers. This indicates that deciding which genetic variants to include
in the prediction equation is a crucial component. In this line,
Morota et al. (2014a) classified SNPs based on functional anno-
tation and created kernels for each of several genomic regions.
They observed that functionally annotated regions did not always
deliver a better predictive performance than intergenic regions in
three broiler traits analyzed. A whole-genome regression model
incorporating all available quality filtered SNPs attained a sim-
ilar performance to that from the genomic region (either genic
or intergenic) that achieved the best prediction. Likewise, results
in Holstein cattle obtained by Erbe et al. (2012) found that
the predictive performance of the whole ensemble of SNPs was
comparable to that of markers in exonic regions. While the whole-
genome prediction approach appears to be adequate for practical
purposes, to what extent preselection of SNPs residing in func-
tionally enriched regions aids predictive ability is a subject for
further investigation. One plausible explanation for the observed
high predictive performance of intergenic regions is in Schierding
et al. (2014). Recall that all chromosomes are folded such that
certain genic regions (e.g., exons) may physically interact with
distantly located gene deserts in the sense of a 3-dimensional
space. This creates spatial associations and may allow intergenic
regions to regulate gene function from far away on a linear
scale.

Most GWAS rely on p-values derived from a series of single
marker regressions or with inclusion of a genomic relationship
matrix to correct for false positive associations due to population
structure or relatedness. A new approach, kernel-based GWAS,
appears to be emerging. For example, Maity et al. (2012) reported
that a multivariate kernel GWAS can potentially accommodate
interaction and non-linear effects among markers. However, a
pitfall of the two-steps approach (preselection of predictors)
based on p-values has been studied by Lazzeroni et al. (2014),
leading to the conclusion “While uncertainty is high for a p-value
from a single test, p-values obtained from GWAS, or other mul-
tiplexed studies requiring multiple testing corrections, provide
almost no information with which to make future predictions.”
due to the high variability of p-values. This suggests that if asso-
ciated variants are simply picked by non-replicable p-values in
GWAS, the resulting prediction step will fail (Wray et al., 2007).
Currently, GWAS in animals is predominantly carried out as a
by-product of genome-enabled prediction, in which the degree
of association is estimated from marker effect sizes. While an
ultimate goal is to dissect genetic architecture and to make pre-
dictions from validated genetic variants, whether knowledge from
“inference” can aid prediction is yet to be answered. Arguably,
the future may reside on inference, but there is plenty of room
for connecting inference and prediction. Additional criteria need
to supplement the use of p-values (Malley et al., 2013). Perhaps,
there is a critical need to adopt more CV in GWAS. Significance of
detected variants in one data set should be reaffirmed in a separate
data set. This is because the fraction of genetic variance explained
by QTL or by a subset of markers in a testing set is much less than
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that of the training set (e.g., Utz et al., 2000; Makowsky et al.,
2011; Würschum and Kraft, 2014).

5. CONCLUSIONS
We reviewed the utility of kernel methods as a tool of choice
for a prediction of yet-to-be observed phenotypes, and described
their relation to spatial variation as determined by a vector of
SNPs. Research aiming to extend Fisher’s infinitesimal model to
accommodate non-additive effects either parametrically or non-
parametrically is a topic of interest. Most studies carried out so
far suggest that whole-genome prediction coupled with combi-
nations of kernels may capture non-additive variation (Gianola
et al., 2014a; Howard et al., 2014). These approaches are also
applicable to whole-genome risk prediction by introducing the
concept of liability (Wright, 1934; Falconer, 1965; Gianola, 1982).
In many applications, accurate prediction of individual responses
rather than of breeding values is a primal interest.

Many challenges remain, however. We conclude by high-
lighting some potential future directions in kernel-based whole
genome prediction methods. Throughput of genomics, transcrip-
tomic and proteomic technologies has advanced tremendously in
recent years. Arguably, emerging molecular information makes
quantitative genetics more powerful because it permits to expand
a theory that was initially largely built around pedigree informa-
tion during the last century. It could be argued that 21st century
quantitative genetics needs to be linked to functional genomics,
and not simply relying on hypothetical QTL that may or may not
exist.

In addition, more study on methodology specifically tailored
for emerging omics data that combines statistical approaches and
functional validation is required. For example, the RKHS method
accommodates any information set for input variables. This paves
the way to link phenotype and genome jointly with intermediate
phenotypes such as transcriptomic, proteomic and metabolomic
data in a single framework, known as systems genetics (e.g.,
Civelek and Lusis, 2013). Recent attempts along this line perti-
nent to genome-enabled prediction include joint evaluations of
genome and transcriptome (Bhattacharjee and Sillanpää, 2011)
and genome and metabolome (Riedelsheimer et al., 2012a). The
question boils down to how we condense and construct kernels
from each set of biological information. Also, estimation of non-
additive variation in the eQTL context has been explored recently
(Powell et al., 2013; Hemani et al., 2014).

Prediction of response variables is largely classified into pre-
dicting: (a) additive effects, (b) total genetic effects, and (c) raw
phenotypes. The first type is mainstream in genome-enabled
selection schemes, and we have given an overview of kernel meth-
ods in which their predominant aim is to capture total genetic
effects. Although currently receiving less attention, predicting
raw phenotypes is especially vital for assessing health or medical
outcomes. Arguably, many non-genetic factors affect raw pheno-
types, and these cannot be well predicted without environmental
information, so imperfect information on environmental vari-
ables hinders achieving greater predictive performance (Heslot
et al., 2014). One important direction for future study is that of
condensing environmental variables into some “environmental
kernel,” to cast a joint evaluation of genotype and environment

via kernel methodology (Jarquín et al., 2014). Research involving
analysis of raw phenotypes coupled with environmental variables
needs more attention, and even when genetic selection is the sole
interest, the use of pre-processed quasi-phenotypes (e.g., esti-
mated breeding value) should be avoided, if possible, as reported
by Ekine et al. (2014).
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