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Calcium ions play a key role in subcellular signaling as localized transients of the
intracellular calcium concentration modify the activity of ion channels, enzymes and
transcription factors, among others. The intracellular calcium concentration is inherently
noisy, as diffusion, the transient binding to and dissociation from buffer molecules and
stochastically gating calcium channels contribute to the fluctuations of the local copy
number of Ca2* ions. We study the properties of the fluctuating calcium concentration in
sub-femtoliter volumes using an exact stochastic simulation algorithm and approximations
to the exact stochastic solution. It is shown that the time course of the local calcium
concentration represents a colored noise process whose autocorrelation time is a function
of buffer kinetics and diffusion constants. Using the chemical Langevin description and the
excess buffer approximation of the process, fast approximative algorithms and theoretical
connections to the Ornstein-Uhlenbeck process are obtained. In a generic example, we
show how calcium noise can couple to the dynamics of a single variable moving in a
double-well potential, leading to a colored noise induced transition. Our work shows
how a multitude of intracellular signaling pathways may be influenced by the inherent
stochasticity of calcium signals, a key messenger in virtually any cell type, and how the
calcium signal can be implemented efficiently in cellular signaling models.

Keywords: calcium microdomains, calcium signaling, molecular noise, stochastic simulation, Gillespie algorithm,
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1. INTRODUCTION

Calcium ions regulate intracellular signaling pathways in vir-
tually all known cell types as many regulating proteins offer
calcium binding sites by exhibiting negatively charged amino acid
residues. Among these proteins, we can find calcium-regulated
ion channels, enzymes and transcription factors, some of them
clustered in families such as the EF-hand proteins (Bhattacharya
et al., 2004). Due to the strong compartmentalization of the
intracellular space, the local calcium concentration can differ
significantly between two spots within the same cell. The most
obvious example may be that of a small intracellular domain
next to a calcium channel located within the plasma mem-
brane or the endoplasmic reticulum membrane. Given the strong
extra-/intracellular concentration gradient for calcium, channel
opening leads to a quick rise of the local calcium concen-
tration. The spatiotemporal extent of this calcium increase is
determined by the kinetic constants and the diffusibility of the
buffers involved (Smith et al., 1998; Jiang et al., 1999; Uttenweiler
et al., 2002). Moreover, the non-linear interplay of different cal-
cium release und re-uptake mechanisms generate more complex
global calcium patterns such as traveling waves and oscillations.
All of the aforementioned phenomena can be modeled deter-
ministically using ordinary and partial differential equations.
However, closer inspection of the conditions encountered in cal-
cium microdomains shows that the subcellular calcium concen-
tration must contain a certain amount of stochasticity as induced

by the stochastic nature of diffusion, transient chemical bind-
ing and the gating of calcium channel proteins. The magnitude
of the fluctuations, and therefore their possible physiological rel-
evance, depends on the reaction volumes considered. Ignoring
contributions from calcium channels and given an intracellu-
lar calcium concentration of approximately 100 nM in a resting
cell, we expect to find approximately 60 Ca>t ions in a vol-
ume of 101 liter (1 fl). Fluctuations around the mean value
will have a SD given by the square root of the mean value, i.e.,
the number of Ca?* ions will be approximately 60 + +/60 ions.
Femtoliter volumes are of special interest for several reasons. First,
localized calcium transients such as calcium sparks, puffs and
quarks occupy femtoliter volumes, as well as their functional tar-
gets such as ion channel clusters and mitochondria (Cheng and
Lederer, 2008). Second, current measurement devices for calcium
fluorescence microsopy, such as confocal and multiphoton laser
microscopes, collect fluorescence from volumes of approximately
1 fl. Therefore, computational models of reactions occurring
within these volumes yield important data that can help to design
new experiments and to interpret experimental results.

Until recently, partial differential equations were the main
tool to build reaction-diffusion models of calcium microdomains
(Smith et al., 1998; Jiang et al., 1999; Uttenweiler et al., 2002). The
PDE approach is completely deterministic and ignores deviations
from equilibrium concentrations and deterministic solutions. In a
previous paper, we have shown computationally that fluctuations
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of calcium and other reactants lead to highly variable responses
of calcium-sensitive signaling pathways (von Wegner and Fink,
2010), suggesting an important role of the stochastic aspects of
calcium dynamics. Other authors have studied calcium signaling
on a whole cell level using approximations of the exact stochastic
model (Zhang et al., 2004; Li et al., 2005; Manninen et al., 2006;
Zhu et al., 2007; Choi et al., 2010). The use of different stochas-
tic models in the context of microdomain calcium signaling has
been summarized in recent review articles (Wieder et al., 2011;
von Wegner et al., 2012). In the present paper, we study the prop-
erties of the fluctuating calcium concentration in sub-femtoliter
volumes using Gillespie’s exact stochastic simulation algorithm as
well as stochastic approximations. It is shown that the time course
of the local calcium concentration represents a colored noise pro-
cess whose noise color, i.e., its autocorrelation time is a function
of the kinetic constants of the buffer species considered. Using
the chemical Langevin equation, theoretical connections to the
Ornstein-Uhlenbeck process are obtained. A possible role of cal-
cium noise color in the gating behavior of a calcium-sensitive ion
channel is illustrated using a colored noise driven bistable dynam-
ical system as a generic representation of a calcium noise-driven
ion channel. Our results show how a multitude of intracellular
signaling pathways may be influenced by the inherent stochas-
ticity of calcium signals, a key messenger in virtually any cell
type, and how the stochastic calcium signal can be implemented
efficiently in computational models of cellular calcium signaling.

2. DETERMINISTIC AND STOCHASTIC DESCRIPTION OF
CALCIUM DYNAMICS

In the following, we give a mathematical description of determin-
istic and stochastic calcium dynamics. We will denote the time-
dependent concentrations of calcium ions, free buffer molecules
and calcium-buffer complexes as [Ca’*];, [B];, and [CaB];,
respectively. For the sake of readability, we substitute these brack-
eted expressions by x¢, ¥;, and z; in formulas. When a stochastic
framework is used, we will work with molecule counts rather
than concentrations and denote these as capital letters, e.g., the
number of free calcium ions in a given volume V is denoted as
X; = x x V (analogously for Y; and Z;). Equilibrium concen-
trations (or molecule counts) are denoted by a tilde, e.g., the
free calcium concentration at chemical equilibrium is written as
X, and the corresponding number of calcium ions at equilib-
rium is denoted X. When a system contains M different buffer
species By, ..., By, we write their time-dependent concentra-
tions with parenthesized superscripts ygl), R yEM), and their
molecule counts as Y,(U, el t(M). Initial concentrations receive
a 0-subscript, e.g., xo is the initial concentration of free calcium
ions at t = 0. The total calcium concentration is [Ca]y = x7 =
[Ca?T] + [CaB], and the total buffer concentration is By = yr =
[B] + [CaBl].

2.1. DETERMINISTIC DYNAMICS

Consider a simple reaction system containing calcium ions, Ca?™,
and a single calcium buffer B. In real biological systems and in
experimental settings, the buffer often is a protein, calmodulin for
instance, or a small organic molecule, e.g., EGTA. The following
reaction scheme describes the system :

k+
Ca’* +B = CaB (1)
p

with reaction velocities v;” = k*[Ca?*];[B]; and v~ = k~[CaB];,
defined via the reaction rate constants k+: k™. ~
The equilibrium condition k™ [Ca2*][B] = k™ [CaB] leads to:

[Blr
1+ K-
+ [Ca?t]

[CaB] = (2)

Thus, all equilibrium concentrations depend solely on the total
calcium and buffer concentrations x and yr, the buffer dissocia-
tion constant Kp = i—;, and the nominal free calcium concentra-
tion at equilibrium ([Ca~2+] =X).

The following ordinary differential equation describes the
deterministic kinetics of the free calcium concentration:

kt = —k+xtyt + k_Zt. (3)

Given fixed total concentrations [Ca’t]r and [B]r, the single
buffer system has only one independent variable, and the dynam-
ics of the other two variables is given by y; = x; and z; = —x;.
Using the definitions of yr and xr, we can rewrite the dynamics
as the non-linear ODE:

% = —kTxilyr — xr + %]+ kT [xr — %]

= —k* (x,[x; + yr — xr + Kp] — Kpxr) .

We will apply the excess buffer approximation to this system to
obtain a linear ODE, and in subsequent sections derive consider-
ably simplified stochastic versions of the kinetic equations.

In the present work, we have used the physico-chemical prop-
erties of Ca’t ions and buffers as published elsewhere and as
given in Table 1, along with references. We provide the variable
simulation parameters such as reaction volumes in the corre-
sponding results sections.

2.2. THE EXCESS BUFFER APPROXIMATION (EBA)

In biological systems, at rest, the free calcium concentration is
approximately 100 nM, whereas the total buffer concentration
lies in the micromolar range (Smith et al., 1998; Jiang et al.,
1999; Uttenweiler et al., 2002; Novo et al., 2003; von Wegner and
Fink, 2010). The free buffer concentration can therefore often be
assumed to be constant, i.e., y; & . In biological systems, the total
buffer concentration is usually large enough to assume a constant
free buffer concentration [B], i.e., only a small fraction of the total
buffer molecules is bound to Ca%t. Thus, under the EBA assump-
tion (Heinemann et al., 1986; Smith et al., 2001; Fall et al., 2002),
the free buffer concentration [B] is assumed to be identical to the
equilibrium concentration, i.e., y; = . In the original derivation
of the EBA, calcium and buffer diffusion were considered close to
a calcium channel pore. The approximation was considered valid
for small ratios Kp/[B]7, i.e., when the total buffer concentration
is [B]r large, or when dealing with high-affinity buffers. In the
current work, additional calcium influx through a calcium chan-
nel is not considered, and therefore, all systems are far from buffer
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Table 1 | Physiological and artificial calcium buffers used in simulations.

Buffer Br [wM] k+ [p M~ ms™] k= [ms™1] Kp [LM] a=ge cv=¢ References

CaM 24 0.1 0.038 0.380 0.016 0.001 Smith et al., 1998
TnC 140 0.12 0.023 0.192 0.001 <0.000 Uttenweiler et al., 2002
PV 1000 0.25 0.001 0.004 <0.000 <0.000 Jiang et al., 1999
EGTA 100 0.0015 0.00094 0.627 0.006 <0.000 Uttenweiler et al., 2002
Fluo-4 100 0.236 0.175 0.742 0.007 <0.000 Uttenweiler et al., 2002
OGB-5N 100 0.17 5.6 32.941 0.329 <0.000 Novo et al., 2003

Br, total buffer concentration; k*, k=, kinetic rate constants; Kp, dissociation constant; o, EBA approximation; CV, coefficient of variation (from Gillespie's algorithm,
Tmax = 100 ms, V = 1 fl); CaM, calmodulin; TnC, troponin C; PV, parvalbumin; EGTA, ethylene glycol tetraacetic acid; OGB-6N, Oregon Green BAPTA-56N.

saturation. Using the approximation yr = ¥ + z, valid under the
EBA assumption, the simplified deterministic dynamics can be
rewritten as:

X = —kTxy 4+ Kk [xr — %]

= —(K"y 4+ k7 )x + Kk x7. (4)

The free calcium concentration [Ca?T] follows an

inhomogeneous ODE with constant coefficients

Ki= k5 +k
Ky =k xr (5)

and with initial condition [Ca%t]y = xo:
X = —Kix; + K;. (6)

The equilibrium calcium concentration X in terms of the new
ODE coefficients is X = % The straightforward solution to
Equation 6 is

xr = (xo — X) exp ( — K1t) + x. (7)

Clearly, the EBA-simplified dynamics predicts a mono-
exponential relaxation of the single buffer system to calcium
elevations that do not violate the EBA-assumption, in other
words, the Ca?T peak must not alterate the free buffer
concentration significantly.

2.3. STOCHASTIC DYNAMICS

In this section, we introduce stochastic descriptions of the sim-
plified calcium dynamics. We first review Gillespie’s original
algorithm for exact stochastic simulations without re-deriving all
details. Extended presentations of the algorithm for general sys-
tems and for calcium dynamics in particular can be found in
the literature (Gillespie, 1977, 2007; von Wegner and Fink, 2010;
Wieder et al., 2011; von Wegner et al., 2012). Subsequently, we
formulate the chemical Langevin equation for the model systems
at hand, i.e., a single buffer system, a single buffer system with
calcium diffusion, and a multi-buffer system without diffusion.
Last, we introduce the Ornstein-Uhlenbeck process as the generic
Gaussian, exponentially correlated colored noise process.

2.3.1. Exact stochastic simulation algorithm—Gillespie’s algorithm
(SSA)

Systems of chemical reactions can be represented by multivari-
ate Markov processes (Gardiner, 2009). In the case of chemical
reaction systems, each variable describes the time-dependent
copy number of exactly one molecular species. The Gillespie
algorithm generates exact sample paths of the Markov process
alternating between two sampling steps. First, a sample of the
state-dependent waiting time distribution until the next reac-
tion event is generated. In a second step, exactly one reaction
is selected from the list of all possible reactions according to
their relative reaction propensities (Gillespie, 2000, 2007). We will
restrict the description of the algorithm to the notions that will be
used in the following sections. In order to correctly capture reac-
tion probabilities in small volumes, the deterministic reaction rate
constants k™, k= have to be transformed into the correspond-
ing stochastic rate constants c*, ¢~. For mono- and bimolecular
reactions, the transformations are elementary and only involve a
scaling by the reaction volume V for the bimolecular reaction:
ct = %, ¢~ = k~, using the notation used in Equation 1. As
we will exclusively deal with systems of mono- and bimolecu-
lar reactions, all non-vanishing stoichiometric coefficients v;; are
either —1 or +1. The coefficient vj; reflects the change in the copy
number of reactant i due to the reaction indexed by j. Diffusion
is implemented as derived in Elf et al. (2003) and as implemented
for calcium microdomains in von Wegner and Fink (2010). As
the waiting time to the next reaction event is a random variable,
Gillespie’s algorithm generates non-equidistant sample paths that
are linearly interpolated prior to further processing. We chose an
interpolation interval of df = 0.01 ms that is identical to the inte-
gration time step dt used for the chemical Langevin equation and
the Ornstein-Uhlenbeck process.

2.3.2. The chemical Langevin equation (CLE)

The CLE approach combines the deterministic dynamics as
described by reaction rates with the stochastic description of the
Gillespie algorithm. Mathematically, it is based on the approx-
imation of a Poisson-distributed random variable, representing
the number of reaction events in a short interval of time, by a
normally distributed random variable, thus achieving the con-
nection to the general Langevin equation (Gillespie, 2000). The
dynamics are driven by a stochastic process dW;. The terms
dW; represent the stochastic increments of a Brownian motion
(also called a standard Wiener process) (Gardiner, 2009). The
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increments are normally distributed as W, 4 — W, ~ N(0, dt)
and are pairwise uncorrelated. Furthermore, the initial condi-
tion is Wy = 0. Algorithmically, such increments are computed
using normally distributed pseudo-random numbers with mean
w = 0 and variance o2 = dt. Equivalently, pseudo-random num-
bers drawn from a standard normal distribution (N(0, 1)) can be
multiplied by the factor +/d to obtain the same process. Explicit
examples for systems as discussed here are given in von Wegner
et al. (2012); Higham (2001).

For the single buffer system, Equation 1, the chemical Langevin
equation reads:

AX; = —c" X, Yy dt + ¢ Zy dt — /ot X, Y, AW

+ Ve Z aw® (8)

where th(l), th(z) are mutually independent, standard Wiener
processes.

Second, consider a single buffer system with calcium diffusion,
i.e., a system where calcium ions can diffuse into and out of the
simulation volume. We will use a “constant pool” assumption,
meaning that the simulation voxel is surrounded by a volume
containing all molecular species at equilibrium concentrations.
Thus, Ca?T ions diffusing into and out of the simulation voxel
change the simulations voxel’s calcium concentration only, leav-
ing the influx rate of calcium ions constant over time while the
efflux rate varies. As diffusion is a monomolecular reaction, the
deterministic and stochastic rate constants k; and ¢, are identical
and given by kg = ¢5 = L—Dz (Elf et al., 2003; von Wegner and Fink,
2010). Here, D is the diffusion constant of calcium ions and the
voxel volume is V = L.

k+
Ca’t +B k;—\ CaB

The chemical Langevin equation for this system is:

dXt = —C+Xt Yt dt+C_ Zt dt—CdXt dt+Cdth
— Vet X, Y dw' + ez, aw® — Jeg X, dw

+ e Xdw®. (10)
Finally, we consider a multiple buffer system containing calcium
ions and M different calcium buffers B;, j =1, ..., M:

+

g A
Ca“" + B; = CaB;
ky

k+
Ca’t + By ‘ﬁi/l CaBys

ks

(11)

The corresponding chemical Langevin equation reads:

M M
;==Y x v dt+Y 2 dr
j=1

M M
-3 \/c]*XTf’)dwf””Jr S 20 awfPaz)

j=1 j=1

j=1

where any combination th(i’l), thU’z) is a pair of mutually
independent Wiener processes.

2.3.3. The Ornstein-Uhlenbeck process (OUP)
The Ornstein-Uhlenbeck process uses a minimum of parameters
to yield a stochastic process (X¢)¢=0, Xt € R, t € Rx, which is
stationary, Gaussian and exponentially autocorrelated in time. In
one dimension, it is fully described by an initial condition X, and
three parameters, the mean u, the autocorrelation time 7, and
the volatility 0. In the context of general stochastic processes, the
term volatility is used to indicate a time-dependent parameter
o1, leading to time-varying values of the variance of the pro-
cess. Whereas o is constant only for the more simple examples
of stochastic processes, e.g., Brownian motion or the Ornstein-
Uhlenbeck process, in general o is itself a stochastic process. To
take this feature into account from the beginning, we will use
the term noise volatility. The variance of the Ornstein-Uhlenbeck
process is constant and is given by Var(X;) = % (Gardiner,
2009). Both, buffered calcium dynamics and the OU-process are
mean-reverting processes, i.e., deviations from the mean value
w drive the system back toward the mean. The autocorrelation
time 7, or “noise color,” of the process quantifies how fast the
system responds to deviations from the equilibrium value. Large
T values indicate strongly colored noise, i.e., a stochastic pro-
cess with a slowly decaying exponential autocorrelation function.
Small values of t reflect short-lived fluctuations and the resulting
noise approximates Gaussian white noise with t approaching zero
(Gillespie, 1996). The following stochastic differential equation
describes the Ornstein-Uhlenbeck process:

dXy = —=1(X; — ) dt + o dW,. (13)
In the following, we will try to recast the chemical Langevin
equations presented above into forms similar to the Ornstein-
Uhlenbeck process, where possible.

All simulations in the manuscript were coded and run in
python 2.7.6 and can be obtained from the corresponding author
by mail request. For larger simulation runs, we recommend the
use of compiled code, e.g., Cython or C/C++.

3. RESULTS

3.1. APPROXIMATE STOCHASTIC KINETICS

In this section, the chemical Langevin equation is formulated
for different systems, in particular for (i) single buffer systems
without diffusion, (ii) single-buffer systems with calcium dif-
fusion, and (iii) systems with several buffers but no diffusion.
Application of the excess buffer approximation, Y; = ¥ leads
to approximations of the Langevin equation. These approxima-
tions have a functional form similar to the Ornstein-Uhlenbeck
process, however, the process parameters contain non-stationary
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terms. Substituting the equilibrium values of relevant molecu-
lar concentrations, non-stationarities can be eliminated and still,
good approximations to exact simulation results are obtained.
Furthermore, approximations of the CLE lead to estimates of the
autocorrelation time 7 and for the volatility o of the process.

3.1.1. A single buffer system

For the single buffer system described by Equation 1, we
substitute the EBA assumption Y,=Y and Z, =Xy - X;
in Equation 8. Next, we make use of the fact that the
sum of two independent, Gaussian random variables with
means [1, 42 and variances 012,022 yields another Gaussian
random variable: N (u1, 012) + N (s, 022) ~ N (1 + wa, 012 +
07) (Gillespie, 2000). Applying this formula to the mutually

uncorrelated Brownian motion terms th(]) of the chemical
Langevin equation, we obtain a single Brownian motion. The
simplified Langevin equation of the single buffer system is then
given by:

dth—(C+?+C_)Xt dt+C_ XT dt+ C+Xt?+C7 Zt th

Using the definitions of the constants K; and K, (Equation 5),
the analogous expressions in the stochastic framework are given
by C1 = ctY + ¢~ and C, = ¢~ Xr. We obtain:

dXt = _Cl (Xt — %) dt+ vV C+ Xt i]-i- c Zl‘ th (14)

Now, using the fact that the equilibrium calcium concen-
tration [Ca”]eq is related to X by [Ca”]qu:X: %

and defining t = C% and the time-dependent volatility o; =

Vet X, Y+ ¢ Z, we get:

dXy = -1 (X, — X) dt + oy dW,. (15)

The last expression is almost identical to an Ornstein-Uhlenbeck
process, Equation 13, except from the non-stationary term oy.

3.1.2. Single buffer with calcium diffusion

Consider a simple reaction system containing calcium ions, Ca?t,
and a calcium buffer B. For the single buffer system with calcium
diffusion, the CLE is transformed as:

dX, = = X, Ydt+ ¢ Xp — Xp) dt — cg (X; — X) dt
—Jer X, Vaw + Ve 7, aw® — Jeg X, aw®

+ X dW,(4)

= (- X+ C)dt —cqg (X, — X) dt

—I—\/C“‘th/—f—c—Zt—i—cht—i—cd)N(th (16)
The term —cg (X; — X) represents diffusion into and out of the
simulation volume under the constant pool assumption. The
term —cg X; is a function of the non-stationary calcium concen-
tration X; and represents the diffusive flux out of the simulation

volume. Assuming an invariant equilibrium calcium concentra-
tion (a constant pool) outside of the simulation volume, the
diffusive flux into the simulation volume, ¢4 X, is constant. Using
C1 2 as defined above, we get:

dX; = —(C1 4 ca)(X; — X) dt

+ \/c+ X V4o Zi+ca(Xe+X)dW,.  (17)
3.1.3. Multiple buffer systems

Consider a reaction system containing calcium ions and M dif-
ferent calcium buffers B;, j = 1, ..., M. For multiple buffer sys-
tems, the following substitutions are applied to the chemical
Langevin equation (Equation 12):

Y9 = 0
20 =Xr-x-Y z".

i=1

i#j

(18)

This last substitution, Equation 18, may seem to be of little help as

we substitute the single, time-dependent variable Zt(] ) by a more
complicated expression involving the time-dependent variables
X, as well as all other CaB concentrations Z, (i), i # j; however, this
representation leads to Cj , terms that can easily be interpreted as
modifications to the single buffer system. First, the corresponding
CLE in the excess buffer approximation regime reads:

M M M
X, =~ [ Yt | xde+ Y [ xr—x =320 | ar
j=1 j=1 i‘il'
i#]
M () ()
+ chfxty(;mrc]fzﬁ aw,”. (19)
j=1

To simplify, we will introduce a more compact notation. We will
reuse the variable names C; ;—however, it is important to note
that in the context of multiple buffers, C; is not a constant term.
This represents another source of non-stationarity. Defining

M
=Y T e

j=1

M M
=Yg [xr-) 2
j= i=1

i#]

aswellast = C% and u; = %, we can rewrite:

M
1 I
dXe = = —(X; = puo)dt + > X T+ Z29aw,. (20)
j=1
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Again, a functional form similar to an Ornstein-Uhlenbeck
process, but with remaining terms  is
obtained.

non-stationary

3.1.4. Estimated autocorrelation times T and noise volatilities o
In order to approximate the solutions of Gillespie’s exact simula-
tion algorithm and the chemical Langevin equation by a simple
Ornstein-Uhlenbeck process, the non-stationarity contained in
the terms p; and oy has to be eliminated by approximation.
We observe that non-stationarity is introduced by the time-
dependent reactant concentrations, X; and Z;. In the following,
we substitute these expressions with their equilibrium values X
and Z to obtain time-stationary expressions.

In the case of a single buffer without diffusion, the mean value
is = %, and the estimated autocorrelation time in the excess
buffer approximation is given by:

1=(TY+c)!

In terms of the deterministic rate constants, the total buffer
concentration [B]r and the equilibrium calcium concentration

[Ca?t], a more explicit expression for T is:

1
T =
kBl (1- (1 + Lo

Ca;2+]

)_1) _|_k—. (22)

Using the same approach to eliminate the non-stationary expres-
sion o; in Equation 15 using equilibrium concentrations, we
obtain the constant term:

o =VctXY +c 2.

The resulting variance of the calcium noise in the Ornstein-
Uhlenbeck representation is then given by Var(X) = 02%.

In the case of a single buffer with calcium diffusion, we obtained
stationary expressions for u = % andt = C%’ the mean calcium
concentration and the autocorrelation time, respectively. When

(23)

_ 1 1) substituting equilibrium reactant concentrations in the non-
C stationary expression for o, Equation 17, we get the stationary
10° 10 10*
A B -—a Kp— 01 C
[ I — Kp=10
10 +—+ Kp=350
10°H o—e Kp=10
10" L
v Kp =100
ol o B[], IR 1
7 A 7y
g g g}
(SIS = 00 S
i L : —
L [Bly =1 —a Kk, =001
W e [Blr=5 '—'(/H Ko — 0.05 ok . e A
+—+ [Blr=10 L e | 40— Koy = 010 |4 ; v
107 H oo [Bly =50 o—e k,, =100
> [B]r =100 |: —y k,, —10.0
1 E 1 1 il &3 1 1 2 1 1
10 10 1072 107! 10° 10 10? 10 1072 107! 10" 10! 10% 10 1072 107! 10° 10! 10%
-1 ; , 9 2
Kon[tMms) Ca?*[uiM] Ca’ [uM]
10? r r . v 10? : 10° v :
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FIGURE 1 | Theoretical noise autocorrelation time 7 and noise volatility
o for the single buffer system without diffusion. (A) Shows the
dependency of the noise autocorrelation time 7 on the calcium binding rate
constant kT and for constant [Ca2+]eq = 0.1 wM. Each curve corresponds to
a fixed total buffer concentration [B]t as indicated in the legend. (B) Shows
that 7 increases with increasing equilibrium calcium concentration [Ca“]eq,
and for a fixed total buffer concentration [B]r = 10 wM and fixed dissociation

Ca*{uM]

i i i
0’ 10 10° 107 107t 10¢ 10! 10%

Ca* [uM]

constant Kp = 1 wM. Each curve corresponds to a different calcium binding
rate constant k* (see legend). (C) Shows that T increases with increasing
[Ca2+]eq, and for a fixed total buffer concentration [B]r = 100 .M and fixed
k* =0.1 puM~1" ms=". Each curve corresponds to a different buffer
dissociation constant Kp (see legend). (D-F) In analogy to (A-C) these lower
row of panels shows the corresponding dependencies of the noise volatility
o. Note that all graphs are shown in log-log coordinates.
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FIGURE 2 | Equilibrium fluctuations and relaxation from transients. All
simulations represent the calcium-calmodulin single buffer system in a
microdomain of V = 0.125 fl. The panels on the left side (A-D) show
equilibrium fluctuations of the free calcium concentration [CaZ*] as
obtained from different methods. (A) Gillespie’'s exact stochastic simulation
algorithm (SSA, black), (B) chemical Langevin equation (CLE, red), (C) the
CLE in the excess buffer approximation (CLE-EBA, green), (D) the
Ornstein-Uhlenbeck process approximation (OUR blue). The values of the
basic statistical properties analyzed in this paper are given to the right of

1.0

0.8

0.6

Ca? (1]

0.4

0.0

each panel (mean u, standard deviation o, estimated autocorrelation time
7). The data suggests that all methods lead to similar statistical properties.
The right panel (E) shows the relaxational response of the system to an
initial perturbation, [CaZt];—¢ = 1 &M and colors indicate the
corresponding simulation method (see A-D). The analytical solution of the
corresponding deterministic system is also shown (dashed black lines).
Visually, the decay curves for different simulation methods are nearly
identical. A detailed and quantitative analysis of autocorrelation times and
decay time constants is given in the main text.

value o for the approximating Ornstein-Uhlenbeck process:

o= J(ct Y +2c¢5) X+c Z.
VI )

In the case of multiple buffers without diffusion, both parameters,
¢ and oy contain non-stationary terms as shown in Equation 20.
Applying the equilibrium approximation, we get:

o= i#]
Zj\il YO +c )
and
M ~ o~ ~
o= [y cJT"XY(i)—I—cj_Z(]).

1

j
Finally, the estimated autocorrelation time is

T= W
Zj:] G YU +cj

The results for the single buffer system are summarized in
Figure 1, where the expected noise autocorrelation time t and
noise volatility o are plotted as functions of different parame-
ters and a simulation volume of V = 0.125 fl. Figure 1A shows

the dependency of 7 on the buffer association rate k™, at constant
[Ca2+]eq = 0.1 pM. This relationship is computed for different
total buffer concentrations [B]r (see legend). The shape of the
curves can be derived from Equation 22, showing that the auto-
correlation time 7 decreases with faster buffer kinetics (k*) and
with increasing [B]r. Figure 1B illustrates the dependency of t
on the equilibrium free calcium concentration [Ca2+]eq and it is
observed that 7 is larger at elevated calcium levels. The total buffer
concentration was constant at [B]y = 10 wM, while the dissoci-
ation constant was set to Kp = 1 WM. Each curve represents a
different calcium binding rate k™ (see legend). Another section
of the parameter space is explored in Figure 1C, with [Ca2+]eq as
the independent variable again. The total buffer concentration is
constant at [B]7 = 100 i M and the buffer association rate is held
constant at kT = 0.1 pM ™! ms~!. This time, each curve corre-
sponds to a different buffer dissociation constant Kp (see legend).
The lower set of figures (Figures 1D—F) are analogous in design
to Figures 1A—C. Here, the same dependencies are shown with the
noise volatility o as the dependent variable. It is noted that even
in the range of physiological buffer kinetics, the noise parameters
7 and o differ substantially.

3.2. NUMERICAL RESULTS

3.2.1. Single buffer simulations

In this section, numerical results for a realistic single buffer
system without diffusion are presented. In Figure 2, we chose
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FIGURE 3 | Fluctuation-dissipation relations in a single buffer system
without diffusion: for the set of calcium buffers from Table 1, we
compare the noise autocorrelation time 7 of equilibrium calcium
fluctuations (Equation 22) and the time constant 7 that describes the
exponential relaxation from a perturbation (Equation 7), e.g., due to
the opening of a calcium channel. For each simulation method (SSA, red;
CLE, green; OUP blue), T was estimated for n = 10 sample paths starting
at [Ca?t];—¢ = 1.0 wM. The proximity to the identity (black line) shows that
TRT.

the calcium-calmodulin system Ca’t + CaM=Ca’* - CaM in a
microdomain of V = 0.125 fl and fixed the equilibrium cal-
cium concentration [Ca*t] at 0.1 uM for all simulations. On
the left side of Figures 2A-D, the intrinsic fluctuations of the
local calcium concentration are shown for different simulation
methods. From top to bottom, we show the results for Gillespie’s
exact stochastic simulation algorithm (SSA, black), the chemi-
cal Langevin approach (CLE, red), the CLE in the excess buffer
approximation (CLE-EBA, green) and the Ornstein-Uhlenbeck
approach (OUP, blue). To characterize these sample paths statisti-
cally, we show three basic statistical parameters of these processes,
i.e., the mean value u, the process’ standard deviation o and the
autocorrelation time t. Observe that these parameters show a
high similarity between the simulation methods tested. Figure 2E
shows the relaxational response of the system to a perturbation,
where the initial calcium concentration was set to [Ca?t],—¢ =
1 uM. Again, the response is tested for different methods as
indicated by color (see Figures 2A-D). Additionally, the deter-
ministic decay curve as calculated from analytical considerations,
Equation 7, is shown (dashed black curves in E). Visual inspection
shows a similar shape of the decay curves for the methods tested.
Furthermore, it is seen that exact and approximated stochastic
results fluctuate around the analytic solution of the determinis-
tic system. In both cases, the results of Gillespie’s exact stochastic
simulation algorithm (black curves) should be taken as the ref-
erence curve for stochastic systems, as the associated algorithm

samples the underlying process exactly. At this point, we conclude
that the stochastic approximations to Gillespie’s exact algorithm
do not seem to affect the dynamic and stochastic properties of the
single-buffer system significantly. A more detailed and quantita-
tive assessment of this observation is presented in the following
paragraphs. The relationship between equilibrium fluctuations
and the relaxational response of the system is further analyzed
quantitatively in Figure 3. For the frequently occurring calcium
buffers given in Table 1, we compare the noise autocorrelation
time 7 of equilibrium calcium fluctuations, as computed from
Equation 22, and the time constant 7 that describes the exponen-
tial relaxation from an initial perturbation at t = 0. The system
under consideration has a volume of V = 1.0 fl. As seen from
Equations 22 and Equation 14, both values should be identical.
In a realistic scenario, the perturbation could be due to the open-
ing of a calcium channel. The relaxation time constant 7 was
estimated from n = 10 samples for each simulation method (see
legend), and with an initial value of [Ca?*],—¢ = 1.0 uM. It is
observed that the values estimated from all simulations match the
expected identity T = 7 (black line) with good accuracy, under-
scoring the usefulness of the stochastic approximations. Finally,
in Figure 4 the expected values of v and o for several naturally
occurring and artificial buffer species are shown. Note that all val-
ues refer to single buffer systems (V = 1.0 fl). Figure 4A shows
the autocorrelation time 7 as a function of the buffer association
rate kT, and as a function of the buffer dissociation constant Kp
in B, respectively. The lower row of panels (C, D), o is shown
for the same range of parameters. It is observed that t and o
cover a range of several orders of magnitude. Numerical simula-
tions (n = 10) using the SSA (red), CLE (green), OUP (blue) are
shown as colored dots around the theoretical values (large black
dots). Simulation results from different algorithms again show a
high degree of accuracy and similarity among each other.

3.2.2. Multiple buffers and diffusion

In order to add complexity and simulate a more realistic sit-
uation, the effect of multiple buffers and calcium diffusion on
the autocorrelation time t is analyzed in Figure 5. In the given
example, T and o are analyzed for (i) a single buffer system
(CaM), (ii) two different systems containing two buffers each
(CaM+EGTA, CaM+Fluo-4), and (iii) a single buffer(CaM) sys-
tem with calcium diffusion. Comparing the kinetic constants of
the different buffers as given in Table 1, we see that both, EGTA
and Fluo-4, share a similar calcium affinity. However, the asso-
ciation and dissociation events to and from Fluo-4 occur much
faster than for EGTA. The constants as found in the literature
differ by an approximate factor of 100. Consequently, the auto-
correlation time of the CaM+EGTA system is mainly determined
by the fast CaM dynamics and is hardly changed by addition of
the two slow EGTA reactions. The comparatively few binding and
dissociation events between Ca’t and EGTA that can occur in
a given time interval accelerate the decorrelation of the calcium
fluctuations only slightly. Therefore, the autocorrelation time of
the combined buffer system is smaller, but almost identical to
the single buffer system containing CaM only (tc,m = 0.516 ms,
TcaM.EGTA = 0.483 ms). In the case of adding Fluo-4 however, we
find major changes in the statistical properties of the resulting
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FIGURE 4 | Noise autocorrelation times t and volatilities o for several row (C,D), the calcium noise volatility o is shown for the same parameters. It
physiological and artificial buffer species. The autocorrelation time 7 is is observed that t and o cover a range of several orders of magnitude.
shown as a function of the calcium binding rate constant k* (A), and as a Numerical simulations (n = 10) using the SSA (red), CLE (green), OUP (blue)
function of the buffer dissociation constant Kp (B), respectively. In the lower are shown as colored dots around the theoretical values (large black dots).

calcium signal. Table 1 shows that especially the dissociation con-
stant of the Ca-Fluo-4 complex is significantly larger than that
of the Ca-CaM complex. The faster pace of reactions leads to
an earlier decorrelation of the signal as shown by the resulting
autocorrelation times (Tcam, Fluo—4 = 0.044 ms). The magnitude
of diffusion effects lies in-between the effects of EGTA and Fluo-
4, in the present example. The reader is warned not to generalize
the relative effect of buffers and diffusion too quickly. From our
derivation, it is explicitly clear that the effects also depend on the
absolute concentration of buffers and calcium, respectively. In our
case, the calcium diffusion constant of 200 wm? /s at a mean cal-
cium concentration of 100 nM leads to an autocorrelation time
of Tcam,piff. = 0.190. At the same time, the noise volatility o is
influenced in the opposite direction. Clearly, the number of pos-
sible parameter combinations grows rapidly with the number of
parameters allowed. The current article does not aim to scan this
parameter space exhaustively.

3.2.3. Acolored noise-induced transition
In order to illustrate a potential physiological role of autocorre-
lated calcium noise, we revisit a generic example for the study

of colored noise effects on dynamical systems. In particular, we
consider the one-dimensional dynamics of a single variable X;
moving in a bistable potential represented by a fourth-order poly-
nomial V(X) = —%Xz + gX‘l (Haenggi and Jung, 1995). The
dynamics is driven by a colored noise process &; representing cal-
cium noise, and integration is performed using a first-order Euler
scheme with dt = 0.01 ms. The equation of motion is given by
dX; = —oxV(Xy) dt + &. (24)
The system can represent the generalized dynamics of an ion
channel whose two functional states (open, closed) are repre-
sented by the local minima of the potential (Liebovitch and
Czegledy, 1992). The system is an abstract representation of
bistable dynamics and can also represent more involved bio-
chemical systems whose common feature is bistability. Figure 6
shows the results of two simulation runs, both using the Ornstein-
Uhlenbeck approximation of calcium noise as the “noisy drive” &
of the target variable X;. To assess the effects of noise autocorrela-
tion time, we used two different driving signals, one with a small
autocorrelation time of v = 0.01 (Figures 6A,C), and another
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FIGURE 5 | The effect of multiple buffers and calcium diffusion on the
autocorrelation time . In the example, the calcium noise autocorrelation
time t and volatility o are analyzed for different conditions: a single buffer
system (CaM), two double buffer systems (CaM+EGTA, CaM+Fluo-4), and
a single buffer (CaM) system with calcium diffusion. Is is observed that the
presence of an additional buffer leads to a faster decorrelation of the
fluctuating calcium concentration, i.e., smaller t values. Analogously,
including diffusion effects also decreases t values.

one using 7 = 0.75 (Figures 6B,D). By comparison with our
previous results, we see that both t-values fall within the range of
autocorrelation times obtained with natural calcium buffers. In
both cases, the noisy drive & induces a motion of the variable X,
that shows bistable (or “on-off”) kinetics due to the double-well
shape of the potential. Using the analogy of a calcium-regulated
ion channel, the “on-off” kinetics of the variable X; represents
the continuous gating of the calcium sensitive ion channel and
we assume that the closed-open transition is calcium-dependent.
To show the influence of noise correlations on channel gating,
we look at the empirical joint probability distribution P(§, X) of
the noise variable & and the channel variable X;. At t = 0.01,
the joint distribution is almost radially symmetric around the
origin, indicating a lack of correlation between the noise & and
the channel variable X;. In other words, the joint distribution
approximately factorizes as P(&, X) ~ P(§) x P(X). At t = 0.75
however, the result is a heavily skewed joint distribution, showing
a strong coupling of channel gating (X;) to the correlated cal-
cium noise (&;). It could be argued that this effect only occurs for
the Ornstein-Uhlenbeck approximation of calcium noise. We also
tested other algorithms (Gillespie’s algorithm, chemical Langevin
equation) to simulate & and observed the same qualitative effects
(data not shown). Please note that in the present example, the
mean value of the noise was removed to comply with the symme-
try of V around the origin. Furthermore, in the example shown
only t was varied, keeping o constant. This leads to differing

variances for the noise processes, however, when correcting for
this, the described effects persist.

4. DISCUSSION

In the present article, we analyze stochastic simulation strategies
for intracellular calcium microdomains. In a previous article, we
investigated the potential of Gillespie’s exact stochastic simulation
algorithm to simulate calcium microdomains containing buffers
and calcium-regulated calcium channels (von Wegner and Fink,
2010). Here, we focus on the properties of calcium noise itself.
Already in our previous work, we assessed the effects of including
diffusion events in the simulation by analyzing the autocorre-
lation time and the power spectral density of calcium noise.
However, while our previous investigations were focused on accu-
racy, therefore implementing Gillespie’s exact algorithm, we here
concentrate on approximations to the exact solution of the chem-
ical master equation. In particular, we use the chemical Langevin
equation (Gillespie, 2000) and apply the excess buffer approxima-
tion (Heinemann et al., 1986; Smith et al., 2001; Fall et al., 2002)
to simplify our results. We find that close to the resting calcium
concentration, the excess buffer approximation (EBA) is a valid
assumption over the range of physiological buffer concentrations.
Fluctuations around the equilibrium buffer concentrations are
very small, yielding coefficients of variation smaller than 1073
(Table 1). For more complex situations, including Ca?* chan-
nels for instance, it has to be remembered that buffer saturation
can occur close to the channel pore, thereby invalidating the
EBA assumption (Smith, 1996). We are aware of only one very
recent publication using the chemical Langevin equation to ana-
lyze stochastic fluctuations of the calcium concentration in a
microdomain and the influence of calcium buffers (Weinberg and
Smith, 2014). For whole cell models, the chemical Langevin equa-
tion has been used more often (Li et al., 2005; Manninen et al.,
2006). Other stochastic approaches for microdomains are based
on explicit molecular random walk simulations (Franks et al.,
2002; Shahrezaei and Delaney, 2004; Keller et al., 2008) and on
the Fokker-Planck representation of the chemical master equa-
tion. The latter has been used to simulate calcium microdomains
as found in the dyadic cleft of cardiac myocytes (Winslow et al.,
2006; Hake and Lines, 2008).

The main focus of the present work are the autocorrelation
properties of calcium noise, i.e., the noise “color.” Examples from
many scientific areas show that noise color alone can deter-
mine a systems behavior and can even eventuate transitions
between distinct stable states (Haenggi and Jung, 1995). However,
so far there is no experimental evidence showing a functional
role of calcium noise properties within a microdomain reac-
tion network. To obtain quantitative results, we formulate the
chemical Langevin equations of simplified model systems con-
taining calcium ions, buffers and diffusion events. Combining
noise terms and using the excess buffer approximation, we obtain
surrogate processes that can be characterized by few parame-
ters (4, T, o), similar to an Ornstein-Uhlenbeck process. In
some expressions, non-stationary terms were further substituted
by their expected values at chemical equilibrium and thus, sta-
tionary expressions were obtained. With these expressions, the
influence of buffer kinetic parameters and the calcium diffusion
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FIGURE 6 | A colored noise-induced transition. (A,C) The continuous
gating of a calcium-sensitive ion channel can be reduced to the motion of a
single particle X; in a double-well potential. X; is the channel variable and &; is
the calcium noise variable driving the motion of X; (see Equation 24). The
shape of the potential then leads to characteristic time series with “on-off”
kinetics as observed in (A) (r = 0.01) and (C) (z = 0.75). Here, we assume
the closed-open transition of the channel to be calcium-dependent. Calcium
noise &; is implemented with the OUP method (other methods yield
qualitatively identical results, not shown). (B,D) Correlations between the
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calcium noise & and the channel state variable X are analyzed via their
empirical joint probability distribution P(&, X). For a short autocorrelation time
of the noise, T = 0.01, the joint distribution is almost symmetrical around the
origin, indicating that the noise and the channel variables have a low
correlation (B). At r = 0.75 however, the joint distribution is clearly skewed.
This indicates a strong positive correlation between both variables (D). Such
correlations between microdomain calcium noise and the functional state of
calcium-sensitive target molecules, controlled by the autocorrelation time of
calcium noise, await experimental validation.

constant were quantified and illustrated for a section of the physi-
ologically plausible parameter space. To summarize, we are able
to characterize microdomain calcium noise as a colored noise
process, noise color being characterized by physico-chemical sys-
tem properties. In terms of computational speed, the chemical
Langevin equation and the approximations presented here rep-
resent a major improvement in performance. Using the Ornstein-
Uhlenbeck type approximations, the implementation of calcium
noise is elementary and integration of realistic calcium noise into
other simulation frameworks reduces to adding one further equa-
tion. In the context of systems described by ordinary or stochastic
differential equations, adding calcium noise does not change the
simulation framework conceptually as would be necessary when
using Gillespie’s algorithm.

To discuss situations in which the statistical properties of local
calcium noise may be of physiological relevance, we chose a
well studied example of a noise-induced transition in a generic
bistable system (Figure 6, Haenggi and Jung, 1995). Bistability
is a dynamical feature frequently encountered in biological sys-
tems, especially in intracellular signaling networks. Prominent
examples are given by the genetic toggle switch (Tian and
Burrage, 2006), phosphorylation-dephosphorylation networks
(Kholodenko, 2006) and abstract representations of ion chan-
nels (Liebovitch and Czegledy, 1992). Each simulation method to

generate calcium noise, namely Gillespie’s algorithm, the chem-
ical Langevin equation, and the Ornstein-Uhlenbeck representa-
tion, yield results analogous to Figure 6. The simulations show
a coupling of the bistable variable to the noise process, or in
terms of a more biological interpretation, a possible coupling
of a calcium-regulated ion channel to the local calcium noise
surrounding the channel. Research on more specific examples
including realistic calcium channels and complex buffer situ-
ations are currently under way. Previously published complex
models of cellular signaling networks driven by calcium imple-
mented calcium noise as a random flux with a fixed rate (Bhalla,
2004). As our results suggest a possible functional role of cal-
cium noise properties on calcium-sensitive reaction networks, the
calcium noise implementation should be chosen carefully. Our
results show how system parameters can be used to calculate
realistic noise parameters.

In contrast to a full stochastic description of the system
(Gillespie’s algorithm), the Langevin method approximates the
number of reactions in a fixed time interval as an appropiately
scaled, normally distributed random variable with identical mean
and variance. The principal limitation of the method becomes
apparent with small reaction volumes, where the choice of a
normally distributed variable can lead to physically meaningless
negative molecule counts. While the solution to this problem
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would be to use the stochastically and physically correct Poisson
distribution, the Langevin approximation has deeper theoreti-
cal connections and provides formulae for spectral properties
and the cross-correlation structure of multi-variable systems
(Gillespie, 2000; Gardiner, 2009; Weinberg and Smith, 2014).
However, the validity of the Langevin approach has to be validated
for each new model. A yet unexplored, but possibly interesting
alternative could arise from the stochastic Cox-Ingersoll-Ross
process (Goeing-Jaeschke and Yor, 2003). The process is also
mean-reverting and its volatility o; scales as +/X;, similar to
Equation 15.

Finally, the numerical predictions presented should receive
further attention by experimentalists. An interesting perspective
in this context is the possibility of performing measurements
of localized calcium fluctuations by means of a fluorescent cal-
cium indicator dye and a stationary laser, namely a fluorescent
correlation spectroscopy (FCS) setup. To the best of our knowl-
edge, Ca?T-FCS measurements have not been performed yet but
the numerical results indicate that such a setup could be feasi-
ble. Such measurements would allow to quantify the magnitude
and correlation structure of calcium flucutations in different
cellular compartments and would allow conclusions about the
buffer composition. In summary, as the attention of researchers
shifts toward the stochastic nature of calcium dynamics, novel
insights on the regulation of microdomain signaling networks are
expected.
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