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Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) is a valuable tool for
epigenetic studies. Analysis of the data arising from ChIP-seq experiments often requires
implicit or explicit statistical modeling of the read counts. The simple Poisson model
is attractive, but does not provide a good fit to observed ChIP-seq data. Researchers
therefore often either extend to a more general model (e.g., the Negative Binomial),
and/or exclude regions of the genome that do not conform to the model. Since many
modeling strategies employed for ChIP-seq data reduce to fitting a mixture of Poisson
distributions, we explore the problem of inferring the optimal mixing distribution. We apply
the Constrained Newton Method (CNM), which suggests the Negative Binomial - Negative
Binomial (NB-NB) mixture model as a candidate for modeling ChIP-seq data. We illustrate
fitting the NB-NB model with an accelerated EM algorithm on four data sets from three
species. Zero-inflated models have been suggested as an approach to improve model fit
for ChIP-seq data. We show that the NB-NB mixture model requires no zero-inflation and
suggest that in some cases the need for zero inflation is driven by the model’s inability
to cope with both artifactual large read counts and the frequently observed very low read
counts. We see that the CNM-based approach is a useful diagnostic for the assessment of
model fit and inference in ChIP-seq data and beyond. Use of the suggested NB-NB mixture
model will be of value not only when calling peaks or otherwise modeling ChIP-seq data,
but also when simulating data or constructing blacklists de novo.
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1. INTRODUCTION
Chromatin Immunoprecipitation followed by sequencing (ChIP-
seq) is an experiment for the genome-wide location of events
such as transcription factor binding sites and histone modifi-
cations (Park, 2009; Cairns et al., 2013). These events provide
information on chromatin status, a topic of great interest in epige-
netics. As with all sequencing assays, ChIP-seq can be represented
as count data across the genome. Commonly, researchers need
algorithms that find sites where the counts are larger than one
would expect under a null noise model, a procedure known as
“peak-calling.”

Consider read counts xi, where i indexes over genomic bins,
for a single ChIP-seq sample. When modeling these counts as
independent samples from some Poisson random variable X, a
common problem is overdispersion—that is, the property that
the observations have greater variance than allowed for by the
model. In our case, the Poisson distribution requires that mean
and variance are equal, an assumption that (even when ignor-
ing between-sample variability) is violated by ChIP-seq data,
impairing model fit (Spyrou et al., 2009).

The choice of distribution for X is important when peak-
calling; in particular, underestimating the variance should
decrease specificity. Indeed, many have commented on the

presence of false positives in peak-calling and how this quantity
varies depending on the choice of peak-caller (Landt et al., 2012).

A number of strategies exist to account for the extra vari-
ance. For example, we can allow the Poisson distribution to have
site-specific means—that is, Xi ∼ Pois(λi). This strategy requires
some sort of smoothing criterion to make parameter estimation
robust (Zhang et al., 2008a). It is also difficult to expand this
model to account for between-sample heterogeneity.

Many researchers use more general distributions—for exam-
ple, the Negative Binomial (NB) model is used by Spyrou et al.
(2009); Wu et al. (2010); Cairns et al. (2011); Song and Smith
(2011) and others. The log-normal Poisson model has been
used to model data from other high-throughput sequencing
experiments, such as Serial Analysis of Gene Expression (SAGE)
(Thygesen and Zwinderman, 2006).

Other strategies involve regression. ZINBA (Rashid et al.,
2011) uses an NB model whose mean is regressed against known
covariates, though the dispersion is fixed. Such a strategy requires
knowledge of all appropriate dependent variables to capture the
full variability.

An increasingly common approach is to use blacklists (Myers
et al., 2011)—regions that have unusual mappability and pre-
viously have been seen to accumulate artifacts across many
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ChIP-seq experiments. Reads that fall in blacklisted regions are
removed.

Use of blacklists appears to improve peak-calling (Carroll
et al., 2014), but has a number of downsides. Firstly, this strat-
egy requires an organism-specific blacklist, and it is possible that
the blacklist is non-exhaustive. Secondly, there is no reason to
assume that enrichment cannot occur in these loci—a better alter-
native would be to model these regions appropriately, or perhaps
separately. Thirdly, there may be sample-specific or copy-number
specific events. For example, a transfected vector may artificially
inflate copy number at a particular locus.

We consider the general form of the above models, taking a
completely unsupervised random-effects approach. It is reason-
able to retain the Poisson element in our model, since it has been
shown that counts from a single site in a single library, sequenced
repeatedly, follow a Poisson distribution (Marioni et al., 2008).
However, by expanding to a mixture model setting, where xi is
a sample from Xi ∼ Pois(�) and the latent mixing variable �

satisfies � ∼ f (λ), we can use f (λ) to capture the genome-wide
variation in our sample. Indeed, if � has gamma distribution,
then Xi has NB distribution.

However, there is no biological or statistical reason, other than
convenience, to believe that � is best modeled with the gamma
distribution. We assess the fit of the NB model to the data; that
is, investigate the appropriateness of the gamma distribution as a
mixing distribution. Next, we use CNM to make inferences about
the distribution of �, and see that it suggests a mixture of two dis-
tributions. Thus, we consider the NB-NB distribution and show
that it provides a better fit to the data. We also consider zero infla-
tion, and show that the poor fit of the NB distribution can be
mistaken for the presence of zero-inflation in the data.

1.1. DATA
We use four different data sets, all of which are input samples
(that is, untreated data). We focus on input samples because, in
order to detect sites where counts differ from noise, it is impor-
tant to model the noise appropriately. However, the methods used
can also be applied to treated ChIP-seq data—see Supplementary
Material. Samples were chosen to represent a variety of species.
In each case, we considered only the first chromosome to avoid
inter-chromosome normalization issues (Schmidt et al., 2010;
Ross-Innes et al., 2012).

Sample Species Description Read # Reads Aligner

lengths

A C. Familiaris Normal liver tissue 45 480,843 MAQ
B M. Musculus Normal liver tissue 36 542,021 MAQ
C H. Sapiens Cancer cell line MCF7 44 633,931 BWA 0.5.5
D H. Sapiens Tumor sample BT82277 44 1,398,520 BWA 0.5.5

We partition the first chromosome into 100 bp bins, avoiding
conservatively-chosen regions that span the telomeres and cen-
tromeres, as obtained from the UCSC Genome Browser at http://
genome.ucsc.edu/. We did not remove duplicates—however, we
found that deleting duplicates did not substantially affect our
results (see Supplementary Material).

Code and data to reproduce the analysis are linked to in the
Supplementary Material section.

2. INITIAL MIXTURE MODELS
2.1. POISSON
The Poisson model’s Maximum Likelihood Estimate (MLE)
occurs when its expected mean is equated to the observed mean:
μ̂ = x̄.

2.2. NEGATIVE BINOMIAL
The MLE for the Negative Binomial (NB) distribution does not
have closed form. However, we can fit the model using standard
techniques, using the BFGS method implemented as fitdistr() in
the MASS R package (Venables and Ripley, 2002).

Though the MLE for the dispersion of the NB distribution is
biased, the bias is of the order 1/n (Saha and Paul, 2005) and we
have enough bins in our data sets for the bias to be negligible.

2.3. LOG-NORMAL POISSON
Here, � is a log-normal random variable: log (�) ∼ N(μ, σ 2).
The full log-likelihood involves a complicated integral:

�(μ, σ 2) =
n∑

i = 1

log

∫
R+

1

λ
√

2πσ 2

exp
(
− ( log λ − μ)2

2σ 2 − λ
)

λxi

xi! dλ

and the MLEs have no known closed form. Therefore, to estimate
the parameters of this distribution, we take the following Bayesian
approach:

1. Assume a weak prior distribution for each of μ (the mean) and
σ−2 (the precision). We use conjugate prior distributions:

μ ∼ N(0, 10)

σ−2 ∼ �(shape = 1, rate = 0.1)

The prior distributions should have very little effect on the
posterior, given that we have so many data.

2. Use the Metropolis-Hastings algorithm to sample from each
parameter’s posterior distribution.

3. Excluding a suitably-chosen burn-in period, take the mean of
the posterior samples as an approximation to the maximum a
posteriori (MAP) estimate.

We perform the analysis in WinBUGS (Lunn et al., 2000).

2.4. INITIAL RESULTS
Figure 1 shows an example of the fit of the above distributions
to sample A. We see that the empirical distribution has a large
tail that the fitted distributions cannot account for, which in turn
affects their ability to model bins with low counts.

To explore this effect further, we investigate the properties of
the underlying mixing distribution.

3. MIXTURE INFERENCE
As described in the introduction, suppose that we have multiple
samples {xi; i = 1, . . . , n} from a variable X distributed according
to a Poisson mixture—that is,

Xi|�i ∼ Pois(�i)

�i ∼ f (λ)
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FIGURE 1 | Illustrating the best fits of the commonly used

distributions to the count data for sample A. Note that none of these
distributions can model adequately the heavy tail of large bin counts.

Our aim is to estimate the density f (λ) from our
observations {xi}.

A formulation of the general problem, where Xi|�i has arbi-
trary distribution, is given in Roueff and Rydén (2005). In the case

of the Poisson distribution, it is known that f̂ (λ), the maximum
likelihood estimator (MLE) of f (λ), consists of a finite number
of point masses: that is, if we adopt the MLE f̂ (λ), then � is a
discrete random variable, taking values from some vector θ with
associated probabilities π , where θ and π both have length L. It
is also known that L, the number of support points used in the
MLE distribution, can never exceed the number of distinct values
in our X samples (Laird, 1978).

A number of methods have been proposed to infer the param-
eters L, θ , and π , including those of Tucker (1963); Boes (1966);
Simar (1976); Laird (1978). Here, we use the Constrained Newton
Method (CNM), described in Wang (2007).

The CNM algorithm takes an initial value for (L, θ ,π), then
repeats the following steps until convergence:

1. Update (L, θ), as follows: Suppose that G(λ) is our current
estimate for the mixing distribution, corresponding to the cur-
rent value of (L, θ ,π). Now, consider some new candidate
support point θ	, and let Hθ	(λ) be the distribution that has a
point mass at θ	—in other words, Hθ	 is the Dirac delta func-
tion Hθ	(λ) = δ(λ − θ	). Consider the “gradient function,”
the directional derivative

d(θ	; G) = ∂�

∂ε
{(1 − ε)G + εHθ	}

which we can think of as the rate at which the likelihood
increases, as we shift probability mass across to the new
support point θ	.
The value of θ	 that maximizes d(θ	; G) is added to θ , and L is
increased by one. If multiple values of θ	 maximize d(θ	; G),
then we add each of them to θ , increasing L by one for each
value.

2. Update π by calculating the MLE for π given (θ, L). Wang
(2007) show that this problem is equivalent to

π = min
π ′ ‖Sπ ′ − 2 × 1‖2

subject to
L∑

i = 1

πi = 1, π ′ ≥ 0, and where Sij = ∂
∂πi

�j (here, �j

refers to the likelihood for a single data point, xj). This min-
imization problem is solved using the Constrained Newton
(CN) method.

3. If πi = 0 for some i∗, then delete πi∗ and θi∗ and reduce L
by one.

Wang (2007) prove theoretical convergence and demonstrate
that, in practice, convergence is dramatically faster than previous
algorithms designed to find L, θ , and π .

CNM reported that it did not converge for data sets C or D, and
we check the output in the next section. In practice, we found that
the value of L ranged from around 4 to 11 in our input samples.

3.1. DISTRIBUTION RECOVERY
First, we show that the CNM estimate f̂ (λ) is appropriate for our
data, by demonstrating that the empirical distribution of X can
be recovered from the CNM estimate according to the following
procedure:

1. Calculate the empirical probability density f̃ (x) directly, from
the data.

2. Calculate the mixing distribution MLE f̂ (λ) from the data
according to the CNM algorithm.

3. Estimate the density f (x) from the mixing distribution
according to

f̂ (x) =
L∑

i = 1

πifP(x; θi)

where fP(x; θi) is the density of the Poisson distribution with
mean θi.

If the CNM algorithm retains the key features of the true distri-

bution f (x), then we expect f̂ (x) to be “similar” to the empirical
distribution f̃ (x). The results of this comparison are shown in
Figure 2.

3.2. SMOOTHING
The MLE f̂ (λ) is desirable in the sense that it is the “best fit”
to our data. However, it does not make physical sense to use

f̂ (λ) when modeling, which would make � a discrete variable.
In reality, drawing from � represents a complicated chain of
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FIGURE 2 | Distribution recovery in each data set. The empirical distribution obtained from the actual data (black line) appears to show a dramatic change in
behavior around x = 9. While CNM reported failure to converge for samples C and D, it can be seen that sample C’s distribution was adequately recovered.

library-preparation procedures, leading to wide variation across
hundreds of millions of sites across the genome. Therefore, it is
much more logical to model � as a continuous random variable.

As such, we adopt the following strategy to assess the fit of
various distributions:

1. Fit a continuous mixing distribution f̂
(λ) to the data.

2. Compare f̂
(λ) with the discrete MLE f̂ (λ), obtained from
CNM.

If f̂
(λ) is flexible enough to fit our data, then it should be

“similar” to the MLE f̂ (λ). Thus, we need to compare a dis-
crete distribution, f̂ (λ), with a continuous distribution, f̂
(λ).
Methodology for making such a comparison tends to be ad hoc,
as the general question is ill-defined.

A common strategy is to smooth out the data through
“kernel smoothing”—that is, replacing each point mass in
the discrete distribution with an appropriately-scaled ker-
nel distribution, often the normal distribution. The prob-
lem with this approach is that the support of the mixing
distribution’s MLE contains only a handful of points, and
the points become dramatically less dense at higher values.
Thus, by using this approach, we end up with a distribution
that is highly sensitive to the choice of length scale for the
kernel.

Instead, we take the following non-parametric approach.
Assume that CNM’s output [the discrete distribution with
support θ = (θ1, . . . , θL) and associated probabilities π =
(π1, . . . , πL)] has been generated from a “true” distribution f (λ)
through the following process:
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1. Take some partition P = (P1 = 0, P2, P3, . . . , PL,∞) of the
interval [0,∞].

2. For each i ∈ {1, . . . , L}, replace the probability mass of f (λ)
that lies in the interval [Pi, Pi + 1) with an equivalent point

mass of size πi = ∫ Pi+1
Pi

f (u)du placed at any point θi within
that interval.

Now, consider the true distribution’s CDF, F(λ) = ∫ λ

0 f (u)du. For
i > 1, we have:

F(Pi) =
∫ Pi

0
f (u)du =

i − 1∑
j = 1

∫ Pj + 1

Pj

f (u)du =
i−1∑
j = 1

πj (1)

For the case i = 1, we set

F(P1) = F(0) = 0 (2)

Note that Equation 2 assumes that � is not zero-inflated.
We can now place bounds on the value of F(θi). θi must

lie in [Pi, Pi + 1), by assumption. Therefore, F(θi) must lie in
[F(Pi), F(Pi + 1)), since F(λ) is a CDF and is therefore an increas-
ing function of λ. Thus, for i > 1, by Equation (1) we have

i−1∑
j = 1

πj ≤ F(θi) <

i∑
j = 1

πj (3)

and for i = 1, we have

0 ≤ F(θ1) < π1 (4)

We can use these upper and lower bounds to assess the fit of
various candidate mixing distributions to the observed mixing
distribution.

Figure 3 shows an example of this procedure, as applied to
sample A. We see that all of the candidate mixing distributions
considered thus far violate the CNM bounds early on, indicating
that these distributions cannot cope with large counts. This moti-
vates the selection of a mixing distribution that can stay within
the bounds.

3.3. NB-NB MIXTURE
The curves plotted in Figure 3 have insufficient curvature to
accommodate the sharp turn present in the shaded region.
This suggests that a mixture of two distributions is required—
consistent with the abrupt change in behavior seen in Figures 1, 2.

We consider the case where X is a mixture of two NB distri-
butions, equivalent to modeling � as a mixture of two gamma
distributions. In this case, we have a mixing parameter τ , and two
separate NB parametrizations (μ1, r1) and (μ2, r2). Thus,

Z ∼ Bernoulli(τ )

X ∼
{

NB(μ1, r1) (Z = 0)
NB(μ2, r2) (Z = 1)

We could find the MLE of the parameters with the EM algorithm
(Dempster et al., 1977). However, since the EM algorithm can

FIGURE 3 | Candidate mixing distributions, and their consistency with

the CNM-derived mixing distribution. For clarity, we plot log (1 − CDF )
where CDF is the Cumulative Density Function of �, and values are
calculated only at CNM’s λ support points. A mixing distribution that is
consistent with CNM’s predicted mixing distribution, as derived in Section
3.2, would have a line contained within the shaded region, with the black
lines representing upper and lower bounds. Here, the lines do not stay
within the bounds, indicating that all of the models deviate from CNM’s
prediction.

converge very slowly, we accelerated the process using SQUAREM
(Varadhan and Roland, 2008). SQUAREM assumes that each step
of the EM algorithm can be approximated using a particular
quadratic form, allowing us to estimate the cumulation of a large
number of EM updates in one go.

Note that we did not consider mixtures of Poisson distribu-
tions, since these cases are attended to by the CNM algorithm, and
we did not consider mixtures of log-normal Poisson distributions
due to the computational complexity.

4. RESULTS
4.1. MODEL FITS
We considered the following distributions:

Count distribution, f (x) Parameters Mixing distribution, f (λ)

Poisson 1 Single point
Negative Binomial (NB) 2 Gamma
Log-normal Poisson 2 Log-normal
NB-NB mixture 5 Gamma-gamma mixture

We visually inspect the fits of the various distributions to the
full data in Figure 4. To quantify the fit, we used Total Variation

distance: dTV (f , g) = 1
2

∑
x

|f (x) − g(x)|. The results for this are

given in Figure 5.
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FIGURE 4 | The fit of various distributions to the count data. We again see a striking change of behavior, occurring at around x = 9. The only distribution
that can model this change is the NB-NB mixture.

FIGURE 5 | Total variation. We see from the plot that the NB-NB mixture
outperforms all of the other distributions, achieving the closest fit to the
CNM estimate in the cases where it exists.

Then we examine the similarity between the mixing distribu-
tions used and the observed mixing distribution as calculated by
CNM, in Figure 6.

The NB-NB mixture is the only choice of distribution that can
consistently model the higher counts.

4.2. ZERO INFLATION
Zero-inflated models have been proposed to improve model fit
in ChIP-seq data (Rashid et al., 2011; Diaz et al., 2012). A zero-
inflated model is one such that, with some probability ν, we set
X = 0. Otherwise, we draw X from a candidate distribution as
before.

Having accounted for some of the variation in our data with
the NB-NB mixture model, we investigated whether or not zero-
inflation can improve model fit further. To quantify this, we
delete some proportion of zeros from the data, fit each model,
then assess the fit with Total Variation as defined in Section 4.1.
We also considered the case where we increase the number of
zeros. Note that the log-normal Poisson fit was excluded due to
computational complexity.

The results are given in Figure 7. For sample A (dog) we
see evidence of zero inflation, perhaps due to a less-established
genome assembly. In samples B-D, the NB-NB models showed
no evidence of zero-inflation. However, when using distributions
that cannot account for the heavy tail in the high bin-counts,
there is an erroneous indication that a zero-inflation component
is necessary.

The general problem of inferring the mixture distribution
whilst accounting for zero-inflation is difficult, though similar
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FIGURE 6 | Predicted mixing distributions, as per Figure 3, for each sample with the NB-NB mixture added. (Sample D is omitted since CNM did not
recover its distribution.) The NB-NB mixture is the only model whose mixing distribution consistently fits between the CNM bounds.

approaches exist (Lim et al., 2014; Morgan et al., 2014). We envis-
age an altered version of CNM that accounts for zero-inflation
by adding the parameter ν defined above, with its own update
step. Additional constraints may be required to make this model
identifiable.

5. DISCUSSION
We found that, of the distributions tested, a mixture of two
NB distributions best modeled counts in input data, even
after removing problematic centromeric and telomeric regions.
This result, and the observation that the empirical distribution

changes behavior at high counts, reflected two apparent sources
of counts in the data—one large population of counts, and
another smaller population of higher counts. The regions with
higher counts have higher variance than lower counts, and
could be mistaken for peaks if using a naïve peak-calling
method.

Importantly, we saw that the heavy tail of large counts could
cause inadequate models to suggest the need for a zero-inflation
component. Our results suggest that researchers should check that
large counts are not distorting model fit before assuming that a
zero-inflation component is necessary.
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FIGURE 7 | The effect of zero removal on the model fit. Each Subfigure
represents an individual sample. A proportion of zeros are removed (or added),
and after refitting each model, we reassess model fit with the Total Variation
distance dTV , plotted as −log(dTV ) on the Y -axis against zero proportion on the
X -axis. For severely zero-inflated data, deleting zeros should improve model fit,
so we expect to see a “peak” somewhere to the right of the black vertical line.

The NB and Poisson models recommend the removal of most of the zero-valued
data, a conclusion that seems biologically implausible. In contrast, the NB-NB
mixture consistently recommends either no zero-removal, or a modest level of
zero-inflation in the case of sample A. Note the dramatic change in the NB-NB
mixture’s fit in sample D as additional counts are added—this could be due to
the accelerated EM algorithm encountering alternative local maxima.

Several aspects of experimental design could influence the
abundance of large counts. Any biases in mapping that cause
reads to align preferentially to the same locus could cause high-
count artifacts. Thus, we might be able to reduce the abundance
of large counts by improving mappability (that is, reducing the
number of ambiguously-mapped reads). For example, better
genome assembly, or use of a better aligner, or using longer reads
could all accomplish this task.

Appropriate mixture modeling could apply when sim-
ulating ChIP-seq data—a simulation paradigm that fails
to account for these different populations of counts can-
not test peak-callers properly and overestimates their
performance (Zhang et al., 2008b). A better understand-
ing of the properties of the underlying mixture model
allows us to simulate noise in ChIP-seq data sets more
accurately.
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Mixture modeling is also of importance when peak-calling
in ChIP-seq data, allowing us to model large counts without
removing them. Models that regress on genomic covariates, such
as copy number or GC content, can help us explain some of
the variation in the data (Rashid et al., 2011; Robinson et al.,
2012). However, our unsupervised approach can model the noise,
even in the absence of appropriate covariates to regress over—
for example, if we have samples that are from less well-elucidated
species or that have abnormal copy number events (such as after
chromothrypsis). We may also be able to extend the approach to
make inferences about the variation that remains after regress-
ing out known covariates. Additionally, we note that Rashid et al.
(2011) assume constant dispersion due to general linear model-
ing restrictions—in contrast, a mixture model permits multiple
dispersions.

Alternatively, should we wish to adopt a blacklist strategy, we
can construct a blacklist de novo by classifying bins into artifact
and non-artifact regions (for example, by finding the probability
that a bin belongs to each of the NB components in our mix-
ture model). Again, this could be particularly useful for abnormal
samples or species.

An alternative approach to smoothing the MLE f̂ (λ) is to

enforce continuity of f̂ (λ) during maximum likelihood esti-
mation. For example, Liu et al. (2009) minimize a penalized
log-likelihood:

�p(f ) = �(f ) − α

∫ λ1

λ0

[
f ′′(λ)

]2
dλ

where α, the smoothing parameter, controls how smooth the
output function is required to be.

The methods we described have general applicability to other
sequencing experiments based on genomic DNA, and not just
ChIP-seq. As we increasingly see the emergence of large-scale epi-
genetic studies based on gDNA assays like ChIP-seq, it is impor-
tant to choose models whose false discovery rates are robust.
Properly accounting for the null variability in ChIP-seq data is
vital to avoid false positives.
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