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A single cell is inherently noisy. This noise
is observed as a variability or heterogene-
ity between individual cells’ responses in
an isogenic population, and emerges from
fundamental physical process governing
state of the cell over time. In practice, states
of two seemingly identical cells may be
different in the same environment; and
in fact the behavior of the population
average my not correspond to any of the
individual cells. Recent decades brought a
technological breakthrough in many areas
in our ability to measure and interpret
cellular heterogeneity, including live-cell
imaging (Spiller et al., 2010) and genome-
wide epigenetic and expression analyses
(in particular next generation sequencing)
(Chattopadhyay et al., 2014). The emerg-
ing picture is that the cellular noise is not
a nuisance, but a ubiquitous functional
trait that could perhaps be therapeutically
exploited. Here we discuss relevant tech-
nological advances as well as postulate the
need for more quantitative and integrated
temporal single cell biology approaches to
study cellular heterogeneity.

QUANTIFYING CELLULAR NOISE
Recent technological advances in single-
cell bioassays transformed our ability to
measure cellular noise and heterogeneity.
They vary in the number of parameters
that can be simultaneously monitored, the
spatio-temporal resolution, and the abil-
ity to provide quantitative understanding
(Table 1).

“Seeing is believing” and thus the
fundamental breakthrough to mea-
sure cellular noise has been the use of
genetically encoded fluorescent or lumi-
nescent probes for live cell microscopy

(Spiller et al., 2010). This is by far the
most temporarily and spatially resolved,
and quantitative approach (Locke and
Elowitz, 2009), which over last few decades
provided a step change in our ability
to visualize heterogeneity, for example
noisy gene expression (Molina et al.,
2013) or all-or-none cellular sensing
mechanisms (Tay et al., 2010). The key
applications involve genetically engi-
neered systems for expression of protein
fusions for monitoring of cellular dynam-
ics, or promoter-driven reporters for
analysis of transcriptional responses.
In fact, the combination of both, for
example simultaneous monitoring of
RNA (by labeling individual transcripts,
see below) and protein level in real-
time provides more statistical power for
dynamical correlation studies of gene
expression noise (Larson et al., 2013).
More advanced imaging methods such
as Förster Resonance Energy Transfer
(FRET) and Fluorescence Recovery After
Photobleaching (FRAP) also exist. They
allow detailed measurements of molecular
interactions and intra-cellular movement,
and ultimately absolute quantifications of
number of reacting molecules, for example
via Fluorescence Correlation Spectroscopy
(FCS) (Spiller et al., 2010). The advance
of live-cell imaging have been aided
with the development of tracking algo-
rithms for analysis of time-laps movies,
an essential part of the data quantifica-
tion pipeline (Shen et al., 2006; Zambrano
et al., 2014) as well as microfluidic sys-
tems for manipulations of individual cells
on the microscope (Yin and Marshall,
2012). This together enabled automatic
high-throughput analyses of hundreds

of cells at a time, removing the analysis
bottleneck. The imaging approach how-
ever is quite limited by the number
of probes that can be simultaneously
resolved and applications monitoring
more that three processes are still rare
(Gerlich et al., 2001). Better more spec-
trally resolved fluorophores are requited,
although combination of fluorescent
and luminescent probes allows further
multi-parametrization. At the same time,
engineering of model systems is not triv-
ial. Viral (Payne, 2007) and Bacterial
Artificial Chromosome (Gong et al.,
2010) systems are commonly used to
stably introduce transgenes into cells,
with the latter providing more contex-
tual expression, especially for reporter
(promoter-dependent) systems. However,
more physiological approaches such as
CRISPR also emerged allowing labeling
endogenous genes in their full epigenetic
context (Jinek et al., 2012). Moving from
cell lines into animal models proves to
be even a more challenging task, sim-
ply because of the Mendellian genetics
affecting transgene transmissions and
thus limiting ability to multiplex different
probes.

A notable part of the imaging approach
has been the development of RNA flu-
orescence in situ hybridization (FISH)
methods. They rely on targeting tran-
scripts with fluorescently labeled oligonu-
cleotide probes in fixed cells (Raj et al.,
2008). RNA FISH allows spatial visualiza-
tion and absolute quantification of indi-
vidual transcripts in cells without the need
for genetic engineering, and thus contex-
tual expression can be measured. As with
live-cell microscopy, physical properties
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Table 1 | Review of single-cell biology approaches.

Content (number of targets) Temporal resolution Quantification Genetic engineering

Live cell fluorescence imaging <10 Yes (very high) Yes (absolute) Yes

Live cell luminescence <3 Yes (very high) Yes (relative) Yes

Intracellular dyes for imaging <10 Yes (very high) No (relative) No

RNA fish <5 (∼1 for live cell) No (yes for live cell) Yes (absolute) No/Yes for live cell

Flow cytometry <20 No Low (relative) No

Mass cytometry <40 No Low (relative) No

Antibody capture assays <5 Some Low (relative) No

Digital RT-qPCR <100 No Yes (relative) No

Genomics ∼10,000 No Yes (relative) No

of fluorescent probes only allow simul-
taneous measurements of limited num-
ber of probes (Singer et al., 2014). The
static nature of RNA FISH measurement
is it largest limitation; however a substan-
tial effort has been made toward visu-
alization of transcripts in living cells.
A key development arrived with a MS2
system based on a RNA-binding pro-
tein (derived from bacteriophage MS2)
that is capable of targeting transcripts,
when tagged with a specific recognition
motif (Bertrand et al., 1998). Subsequently
MS2 system has been successfully trans-
ferred into an animal model with a devel-
opment of transgenic mouse expressing
MS2 probe for β-actin RNA (Lionnet
et al., 2011). While gaining the tempo-
ral resolution, live-cell RNA FISH requires
genetic engineering. Methods for label-
ing of endogenous transcripts in living
cell also have been introduced, for exam-
ple using human RNA-binding protein
PUMILIO1, which recognizes the target
RNA sequence rather than the secondary
structure as in case of MS2 protein (Ozawa
et al., 2007). However, multiplexing for live
cell RNA imaging is still limited by the
lack of well-characterized RNA-binding
motifs, and sensitivity required for detec-
tion of relative small number of target
molecules.

TOWARD HIGH-CONTENT
MEASUREMENTS: TARGETING
PROTEINS
The natural drive in the field has been
toward multi-parameter measurements
that are beyond capability of live-cell
imaging. These initially stemmed from
the antibody-based recognition systems,
which were historically used to pheno-
type cellular populations. After years of

development, current antibody based
fluorescent-activated flow cytometry
(FACS) systems now enable measurements
of up to 20 parameters simultaneously
(Chattopadhyay et al., 2006). This has
been possible due to developments of vast
array of chemically or biologically derived
dyes as well as advances in laser tech-
nology and equipment (Bendall et al.,
2012). An interesting approach is the
combination of flow cytometry with
microscopy by ImageStream cytometers,
which in addition of standard antibody-
based phenotyping provides additional
parameters by enabling visualization of
protein localization or cell morphology
(Rao et al., 2012). The most recent innova-
tion includes mass cytometry, theoretically
capable of measuring up to 100 parame-
ters (practically up to 40), which uses
purified isotopes rather than fluorescent
dyes to label antibodies, and therefore
can be resolved by mass spectroscopy
(Bjornson et al., 2013). Unfortunately,
single-cell methods for traditional label-
free mass spectrometry are not fully
developed yet, only allowing analysis of
selected, usually very highly abundant
proteins or metabolites (Rubakhin et al.,
2011). Most recent developments in the
antibody-based approaches involve minia-
turization of assays into microfluidic
capture devices (Lu et al., 2013). These
essentially enable measuring proteins
secreted by individual cells in sophis-
ticated micro-plate systems, and thus
facilitate temporal analyses. In general,
the antibody-based methods are capa-
ble of providing a quite rich single-cell
data, with some degree of quantifica-
tion, however there still relatively limited
to much fewer than 100 simultaneous
measurements.

THE SINGLE-CELL GENOMIC
REVOLUTION
A major step change in the field occurred
when the well-established “omics” tech-
nology, in particular next generation
sequencing was applied to single cells.
This, over few recent years transformed
our ability to measure cellular hetero-
geneity from monitoring few sometimes
arbitrarily selected markers into unbiased
genome-wide analyses (Eberwine et al.,
2014). In addition to providing abil-
ity to find and phenotype “rare” cells,
single-cell genomic data provided more
statistical power for association stud-
ies. Of the “omics” methods, single-cell
transcriptomics (scRNA-seq) is the most
advanced and widely used in the field.
In just few years, scRNA-seq enabled
characterizing transcriptional landscapes
of immune (Shalek et al., 2014), can-
cer (Ramskold et al., 2012) and embry-
onic (Islam et al., 2011) cells, among
others. The method enabled high con-
tent decomposition of cellular hetero-
geneity within a healthy (Jaitin et al.,
2014) or cancer (Patel et al., 2014) tis-
sues, as well as demonstrated single-cell
splicing events and random mono-allelic
gene expression patterns (Deng et al.,
2014). What follows now is the devel-
opment of methods for studying the
epigenome regulation led by establish-
ment of single-cell bisulfite sequencing
for measurements of DNA methylation
(Smallwood et al., 2014) or nucleosome
mapping (Small et al., 2014). While whole
genome single-cell DNA amplifications are
possible, there is still a sensitivity gap
for studying DNA-protein interactions or
histone modifications due to additional
purification steps required (Gilfillan et al.,
2012).
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Single-cell genomics is still very much
an emerging field and thus many questions
remain about reproducibility of data and
normalization standards required (Wu
et al., 2014). A simple fact that a mini-
mal amount of material can be collected
from a cell (∼10 pg of DNA and ∼20 pg of
RNA) implies the need for ample ampli-
fication before the measurement can be
taken. The amplification process naturally
introduces bias toward more highly abun-
dant molecules, affecting the dynamical
range of the measurement and specifically
detection of low-level expressing targets.
Many normalization and quality-control
protocols are used to improve quantitative
aspects of this analysis. The most rigor-
ous controls involve combination of cell
and molecular barcoding (so called unique
molecular identifiers, UMI); with allows
labeling of individual transcripts prior
to amplification and thus detecting indi-
vidual transcript molecules (Jaitin et al.,
2014). Other methods include external
RNA spike-in controls for amplification
bias, as well as RNA FISH or digital
RT-qPCR for transcript distribution nor-
malizations. The latter is capable of mul-
tiplexing up to 96 transcripts in 96 single
cells when combined with microfluidics,
for example C1 system (Wu et al., 2014),
and thus it is a single-cell method with
its own merit. The depth of sequencing
required for single cell analyses is also
debatable. Initial studies used depths of the
order of standard population level exper-
iments (∼10 mln reads), however recent
studies utilizing UMI barcoding suggest
that as low as 50 k reads per cell is sufficient
to measure up to 10 k unique transcript
molecules per cell (Jaitin et al., 2014). This
allows massive parallelization with thou-
sands of cell analyzed simultaneously and
thus reducing the cost. Despite this, single-
cell sequencing methods require further
optimization as current estimations sug-
gest that only a small fraction of tran-
scripts in a cell can be harvested and
measured.

TOWARD MORE INTEGRATED
TEMPORAL ANALYSES
The picture emerging from the single-cell
methods is that of unprecedented, pre-
viously unobservable levels of noise and
heterogeneity in single cells. This noise
emerges via all-on-nothing (Tay et al.,

2010) or graded (Warmflash et al., 2012)
transcription factor activation in fluctuat-
ing environments, the downstream com-
plex dynamics involving pulsatile and
oscillatory patterns (Paszek et al., 2010;
Levine et al., 2013), the cross-talk with
other intracellular signaling systems and
cell-to-cell communication, which ulti-
mately drives heterogeneous gene and pro-
tein expression patterns at the genome
wide-scale (Shalek et al., 2014). However,
despite the recent revolution in single-
cell biology very few methods exist that
is capable of integrating different mea-
surements. These are needed for the
association studies between different lev-
els of cellular organization, and ulti-
mately the understanding of how the noise
propagates in individual cells and tissues.

However, is the static measurement
going to be sufficient for studying asso-
ciations? One could expect that inte-
grated genome-wide studies would enable
correlating for example epigenetic, tran-
scriptomic, and proteomic heterogeneity.
However, existing analyses already sug-
gested that this correlation might be in fact
smaller than expected (Taniguchi et al.,
2010). More importantly, the ultimate task
of resolving how noise and heterogene-
ity contributes to disease, which is often
associated with heterogeneous and com-
plex genetic traits may be even more
challenging.

In the inference of dynamical systems
the statistical power and causality comes
from the quantitative and temporal rather
than static measurements under informa-
tive perturbation. This is best exempli-
fied by a number of theoretical analyses
and inference of cellular noise (Bowsher
and Swain, 2014). In the near future
no one expects a temporal resolution in
genomic data, therefore the breakthrough
has to come from elsewhere [although in
some biological systems, pseudo-temporal
ordering of cells undergoing differen-
tiation programmes can be obtained;
Trapnell et al., 2014]. One approach
is the integration of existing temporal
approaches, e.g., live-cell imaging with
genomic and proteomic end-point assays,
for example using microfluidic systems or
micro dissection techniques for cell iso-
lation. However, it is the integration of
different temporal approaches that per-
haps can provide a step-change in the field.

While simultaneous RNA and protein
visualization has already been achieved
(Larson et al., 2013), much richer dataset
are required. One avenue to provide those
temporally resolved data is integrating
imaging and antibody-based (e.g., cap-
ture) assays. In addition, more precise
ways to perturb cell are also required, for
example such as optogenetic (Deisseroth,
2011), and nanowire approaches (Shalek
et al., 2010). These will allow dissect-
ing contributions of complex intracellu-
lar networks that eventually control the
genome-wide heterogeneity.

Biological systems are inherently
complex, and a noisy cell is their com-
mon denominator. The single cell biology
approach is ideally suited to resolve this
noise and heterogeneity with further
developments of more integrated and
quantitative approaches.
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