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In the autoimmune disease systemic lupus erythematosus (SLE), our normal antiviral
defenses are inappropriately activated, resulting in over-activity of the type I interferon
(IFN) pathway. This increased activity of the type I IFN pathway is an important primary
pathogenic factor in the disease. Emerging evidence has implicated the antiviral helicases
in this process. The antiviral helicases normally function as nucleic acid receptors in viral
immunity. Genetic variations in antiviral helicase genes have been associated with SLE,
supporting the idea that helicase pathways are involved in the primary pathogenesis
of SLE. Studies have documented functional consequences of these genetic variations
within the type I IFN pathway in human cell lines and SLE patients. In this review, we
summarize the function of helicases in the anti-viral immune response, and how this
response is dysregulated in SLE patients. In particular, we will focus on known functional
genetic polymorphisms in the IFIH1 (MDA5) and mitochondrial antiviral signaling protein
genes which have been implicated in human SLE.These data provide fascinating evidence
for dysregulation of helicase-mediated innate immunity in SLE, and may support novel
therapeutic strategies in the disease.
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INTRODUCTION
Systemic lupus erythematosus (SLE) is a chronic autoimmune
disease characterized by multisystem inflammation commonly
including the skin, kidneys, and joints, and other systems. While
the pathogenesis of SLE is not completely understood, it seems
likely that both genetic and environmental factors contribute to
the disease. A number of genetic factors have been associated
with SLE in recent years (Harley et al., 2008; Ghodke-Puranik and
Niewold, 2013), providing a window into human disease patho-
genesis. Interestingly, many of these genetic variations associated
with risk of SLE have function within the type I interferon (IFN)
pathway (Ghodke-Puranik and Niewold, 2013). Type I IFN is a
classical anti-viral molecule which causes activation of antigen
presenting cells within the innate immune system and increased
expression of MHC and co-stimulatory molecules (Pestka et al.,
2004).

Many lines of evidence support the idea that type I IFN plays
a primary role in SLE pathogenesis (Niewold, 2011). Circulating
type I IFN levels are elevated in many SLE patients (Weckerle
et al., 2011), and this elevation is also observed in unaffected
members of SLE families, suggesting that high IFN levels are a
heritable risk factor for SLE (Niewold et al., 2007). Familial aggre-
gation has been observed with other cytokines in SLE, such as
tumor necrosis factor alpha and IL-10 (Grondal et al., 1999; Man-
gale et al., 2013), but in these cases unrelated family members
such as spouses shared the trait as well, suggesting a contribution
from environmental factors. Subsequent study of SLE-associated
genetic factors has confirmed that SLE-risk genes contribute to
the high IFN levels observed in SLE (Kariuki et al., 2008; Kariuki

and Niewold, 2010; Agik et al., 2012; Niewold et al., 2012), and
it seems that the high IFN trait is significantly polygenic (Harley
et al., 2010; Kariuki et al., 2010; Koldobskaya et al., 2012; Jensen
et al., 2013). The genetic data all support the concept that com-
mon gain-of-function variations in the type I IFN pathway are
associated with SLE pathogenesis. Additionally, rare variants in
the TREX1 gene have been described that are strongly associ-
ated with a SLE and Aicardi-Goutieres syndrome, a rare condition
characterized by alterations in type I IFN and neurologic symp-
toms (Lee-Kirsch et al., 2007; Namjou et al., 2011). Recombinant
human type I IFN has been administered as a therapeutic to
treat some malignancies and chronic viral infection, and in some
cases de novo SLE has developed (Ronnblom et al., 1990), which
typically resolves when the type I IFN is stopped (Niewold and
Swedler, 2005). These data taken together support the idea that
type I IFN is a primary pathogenic factor in human SLE. While
there are significant differences in SLE incidence between men and
women (9:1 female), type I IFN pathway activation seems to be
equal between men and women with SLE (Niewold et al., 2008a;
Weckerle and Niewold, 2011). There is an increased incidence of
SLE in African-Americans as compared to European-American
populations (4:1), and in this case is seems that there are some
differences in the way the pathway is activated, but high IFN
is clearly seen in both populations (Ko et al., 2012, 2013). Thus
type I IFN is a common pathway to SLE susceptibility, and it
follows that molecules operating upstream of type I IFN pro-
duction would play a role in disease. A large body of work has
supports the relevance of the endosomal Toll-like receptors in SLE
pathogenesis (Lovgren et al., 2004; Salloum and Niewold, 2011).
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In this review, we will focus on emerging data which implicates
RNA helicases in type I IFN pathway dysregulation in human SLE.
These data may also be relevant to other autoimmune diseases,
as a number of conditions have been associated with increased
type I IFN, including dermatomyositis, Sjogren’s syndrome, neu-
romyelitis optica, and others (Niewold et al., 2008b, 2011; Sweiss
et al., 2011; Feng et al., 2012; Mavragani et al., 2013). In particu-
lar, we will focus on known functional genetic polymorphisms in
the IFIH1 (MDA5) and mitochondrial antiviral signaling protein
(MAVS) genes which function in helicase pathways, and have been
implicated in human SLE.

PATTERN RECOGNITION RECEPTORS INVOLVED IN
ANTI-VIRAL RESPONSES AND SLE
Several families of receptors that recognize pathogen-associated
molecular patterns (PAMPs) have been described, such as the Toll-
like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-
like receptor (RLRs). TLRs are transmembrane receptors expressed
in specific immune cells, such as dendritic cells and macrophages.
TLR7, 8, and 9 are expressed in the endosomal membrane, and can
recognize viral nucleic acid. In anti-viral immunity, viral immune

complexes are taken up via Fc receptors, and then delivered to
the endosome resulting in TLR activation. RLRs, on the other
hand, are cytosolic proteins that can recognize viral nucleic acid
in the cytosol. Activation of either TLRs or RLRs results in IFN
production and an anti-viral response (Figure 1).

The endosomal TLRs have been implicated in SLE pathogenesis
in a number of previous studies. Genetic variations in TLR7 are
associated with SLE susceptibility in humans (Deng et al., 2013).
Mice which carry a duplication of the endosomal TLR region of the
X-chromosome have enhanced susceptibility to an SLE-like dis-
ease (Subramanian et al., 2006). Interestingly, the autoantibodies
which are characteristically produced in SLE target components of
the cell nucleus, for example antibodies against double-stranded
DNA and nuclear RNA-binding proteins. These SLE-associated
autoantibodies form immune complexes that contain RNA and
DNA, and the immune complexes can result in activation of the
TLR system with subsequent type I IFN production (Lovgren
et al., 2004, 2006). Thus, the anti-nuclear immune response that
characterizes SLE produces immune complexes that are viral mim-
ics, subverting normal viral immunity. These autoantibodies are
frequently high titer and continuously present in SLE, and the

FIGURE 1 | Diagram of nucleic acid sensing antiviral immune response

pathways. IFN, type I interferon; IL, interleukin; IRF, interferon regulatory
factor; LGP2, laboratory of genetics and physiology 2; MAVS, mitochondrial
antiviral signaling protein; MDA5, melanoma differentiation-associated gene

5; MyD88, myeloid differentiation primary response gene 88; NF-κB, nuclear
factor-κB; RIG-I, retinoic acid-inducible gene I; TLR, Toll-like receptor; TNF,
tumor necrosis factor; TRIF, Toll/IL-1R-domain-containing adaptor inducing
interferon β.
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antigens are ubiquitous, resulting in consistent inappropriate acti-
vation of the type I IFN pathway in SLE (Salloum and Niewold,
2011). Supporting this idea, one of the accepted and effective treat-
ments for SLE, hydroxychloroquine, seems to interrupt endosomal
TLR signaling (Kuznik et al., 2011; Sacre et al., 2012).

RNA HELICASES
Ribonucleic acid helicases are involved in almost all cellular pro-
cesses involving RNA (Steimer and Klostermeier, 2012). These
enzymes use ATP to bind or remodel RNA and RNA–protein
complexes (Linder and Jankowsky, 2011). Based on their shared
conserved motifs and three dimensional core structures, RNA heli-
cases are grouped into families and superfamilies (Linder and
Jankowsky, 2011; Steimer and Klostermeier, 2012). The major-
ity of RNA helicases belong to superfamily 2 (SF2; Pyle, 2008;
Steimer and Klostermeier, 2012). DEAD box proteins are the
largest family of helicases in SF2, and in humans these heli-
cases have essential physiological roles in cellular RNA metabolism
(Linder and Jankowsky, 2011). The DEAD box helicases work
by destabilizing short RNA duplexes close to the binding site of
the helicase. In contrast, the DExH group of helicases work in
a progressive fashion, unwinding longer stretches of RNA (Pyle,
2008). DEAD box helicases frequently play a role in viral immu-
nity by acting as sensors cytosolic viral nucleic acids. Besides the
RLR DEAD box helicases which include RIG-I, MDA5, and LGP2,
other DEAD box helicases likely perform this role as well, includ-
ing DDX1, DDX3, DDX36, DDX41, DDX60, and others (Fullam
and Schroder, 2013). In addition to sensing nucleic acid, some of
these functions may be helicases further downstream in the pat-
tern recognition receptor signaling pathways, potentially playing
roles in transcriptional regulation (Fullam and Schroder, 2013).
Interestingly, it appears that some RNA helicases are important
for viral replication, suggesting that viruses have adopted this cel-
lular mechanism to their own advantage in some cases (Fullam
and Schroder, 2013).

Retinoic acid-inducible gene-I and MDA5 are proteins encoded
by the DDX58 and IFIH1 genes, respectively. These RLRs are
induced by type I IFN, and each recognize specific types of
viruses (Yoneyama and Fujita, 2008). RIG-I and MDA5 recog-
nize distinct viral RNA structures containing 5′ triphosphate in
single and double-stranded RNA (Shrivastav and Niewold, 2013).
These two RLRs demonstrate some specificity in the types of
nucleic acids they recognize: while MDA5 senses picornavirus-
derived nucleic acid, RIG-I senses other viral nucleic acids,
such as those derived from influenza A (Yoneyama and Fujita,
2008). This differential recognition is based on the distinct RNA
patterns generated by different viruses (Yoneyama and Fujita,
2008).

Activation of RIG-I and MDA5 by nucleic acid leads to bind-
ing of the mitochondrial adaptor IFN β promoter stimulater 1
(IPS-1) also known as MAVS (Reikine et al., 2014). As the name
suggests, MAVS is found in the mitochondrial membrane, and is
critical to signal transduction via MDA5 and RIG-I. MAVS forms
large multimeric polymers on the mitochondrial membrane in
combination with RIG-I and MDA5 bound to target nucleic acids,
forming an active signaling complex (Reikine et al., 2014). This
leads to activation of NF-κB, IRF3, and IRF7 (Reikine et al., 2014).

These transcription factors are involved in IFN and interferon-
stimulated gene expression, and the production of type-1 IFN
and pro-inflammatory cytokines (Shrivastav and Niewold, 2013;
Figure 1).

MDA5/IFIH1
IFIH1 is the gene that encodes MDA5, and a common coding-
change polymorphism in the IFIH1 gene has been associated with
risk of SLE and other autoimmune diseases in humans (Smyth
et al., 2006; Sutherland et al., 2007; Harley et al., 2008; Gateva et al.,
2009; Strange et al., 2010; Molineros et al., 2013). This A946T
polymorphism in IFIH1 was identified in case-control genetic
studies of SLE (Harley et al., 2008; Gateva et al., 2009), and inter-
estingly this polymorphism was the major finding in a recent
admixture-mapping genetic screen to identify genes associated
with SLE in African-Americans (Molineros et al., 2013), sup-
porting relevance of this polymorphism across multiple ancestral
backgrounds. This polymorphism appears to be gain-of-function
in nature, being associated with increased IFIH1 mRNA expres-
sion (Downes et al., 2010), increased sensitivity to type I IFN and
increased IFN-induced gene expression in circulating blood cells
from SLE patients (Robinson et al., 2011), and modulation of
inflammation- and apoptosis-related gene expression (Molineros
et al., 2013). These studies support the general idea that over-
activity of the anti-viral helicases would result in greater type I IFN
signaling and risk of SLE. Rare loss-of-function variations in IFIH1
have been discovered in the IFIH1 gene, and interestingly these
loss-of-function variants appear to be protective against autoim-
mune disease (Nejentsev et al., 2009), further supporting the idea
that increased function of IFIH1/MDA5 is associated with risk of
autoimmune disease.

Studies in mice have also supported this hypothesis. A recent
study demonstrated that a single coding-change mutation in IFIH1
(Gly821Ser) generated by N-ethyl-N-nitrosourea (ENU) resulted
in constitutive activation of MDA5 (Funabiki et al., 2014). Mice
with this mutation developed a systemic autoimmune disease
similar to lupus, with nephritis characterized by lymphocyte infil-
tration as well as deposition of immunoglobulin and complement,
systemic inflammation in the heart and lung, and increased tumor
necrosis factor alpha, IL-6 and type I IFN (Funabiki et al., 2014).
This gain-of-function mutation in the mouse line has not been
observed in humans, but it supports the general concept that gain
of function in IFIH1 is associated with autoimmunity.

MAVS
Genetic studies in human SLE have also identified a functional
coding-change polymorphism in MAVS, a key adapter of both the
RIG-I and MDA5 helicases. The C97F polymorphism in MAVS
substantially reduced the expression of type I IFN and other proin-
flammatory mediators in human cell lines (Pothlichet et al., 2011).
Interestingly, this variation was almost exclusively found in the
African-American population, with a frequency of 10.2% in con-
trols (Pothlichet et al., 2011). In African–American patients with
SLE, the C79F allele was associated with low type I IFN and was
more than twice as common (22.4% frequency) in SLE patients
who lacked autoantibodies to RNA-binding proteins. This study
demonstrated that a coding-change genetic variation in the gene
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encoding MAVS has a functional impact on the antiviral IFN path-
way in humans, and is associated with a serologic subgroup of SLE
patients (Pothlichet et al., 2011). These studies in both MAVS and
IFIH1 demonstrate the importance of variations in these genes
upon immune function and autoimmune disease risk in human
populations.

CONCLUSION
Dysregulation of anti-viral helicase immune responses represent a
primary pathogenic factor in human SLE. This is demonstrated by
the presence of coding-change polymorphisms in both the IFIH1
and MAVS genes which modulate function of the type I IFN path-
way and risk of SLE in humans. While immune complexes formed
by SLE autoantibodies and nuclear material seem to be the likely
trigger for endosomal TLR stimulation in SLE, the exact triggers
of the cytosolic anti-viral helicases in human SLE are somewhat
less clear. Viruses may stimulate some of the early events in SLE
patients, as strong epidemiological data implicates Epstein–Barr
virus infection in the initial pathogenesis of SLE (James et al.,
1997; Poole et al., 2006). It is possible that this represents a gene –
environment interaction in human SLE – a hypersensitive or over-
active anti-viral helicase system coupled with a viral trigger, such as
Epstein–Barr virus infection, which then results in an exaggerated
type I IFN response and subsequent misdirection of the adap-
tive immune response against self-antigens. It is also possible that
viral-like elements, such as LINE elements, may also play a role in
the chronic stimulation of these cytosolic nucleic acid receptors
(Crow, 2010). Both Epstein-Barr virus and LINE-1 RNAs could
potentially be seen as “foreign” by the cytosolic helicases. The fact
that both the TLR and cytosolic pathways of viral recognition are
involved in human SLE and the convergence of these pathways
upon type I IFN and anti-viral responses is striking, suggesting
that over-active anti-viral immunity represents a major common
pathogenic pathway in human SLE. A number of therapeutics have
been developed to target type I IFN in SLE, including monoclonal
antibodies against IFN-α (Merrill et al., 2011; Kalunian et al., 2012;
McBride et al., 2012), as well as a vaccination strategy aimed at
inducing antibodies against IFN-α (Lauwerys et al., 2013). These
studies are in early stages, phase I to phase II, and thus far the
data generally support relative safety and proof-of-mechanism. It
is too early to make conclusions about efficacy, but some of the
larger phase II studies have reported potential subset effects within
the overall SLE patient groups (Kalunian et al., 2012). This would
suggest that anti-IFN therapies may not work for every patient,
but the genetics data we discuss in this review may also suggest
this outcome. It seems that the IFN pathway is impacted by a
number of genetic factors, and these factors will not be shared
by all patients. Therapeutics targeting the RNA helicases could be
potentially interesting in SLE, and further understanding of the
specific dysregulation of the helicase pathways in human SLE such
as the work summarized in this review could help to determine
optimal points of intervention in the pathway and in which group
of patients.
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