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The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects
of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation,
RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle
regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably,
recent studies suggest that DDX3 is a component of anti-viral innate immune signaling
pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators,
interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important
target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis
C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV
Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV
replication. Therefore, DDX3 could be a novel therapeutic target for the development of
drug against HIV-1 and HCV.
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INTRODUCTION
DDX3 belongs to the DEAD (D-E-A-D: Asp-Glu-Ala-Asp)-box
RNA helicase family, which is an ATPase-dependent RNA helicase,
is found in various organisms from yeast to human (Cordin et al.,
2006; Linder and Lasko, 2006; Linder, 2008; Jankowsky, 2011).
DDX3 has two homologs designated DDX3X (DBX) and DDX3Y
(DBY), which were located on X and Y chromosomes, respectively
(Lahn and Page, 1997; Park et al., 1998; Kim et al., 2001). DDX3X
is ubiquitously expressed in most tissues, while the expression of
DDX3Y protein is limited to the male germline (Ditton et al., 2004)
and DDX3Y seems to be involved in male fertility (Leory et al.,
1989; Mazeyrat et al., 1998; Foresta et al., 2000). DDX3 is involved
in various RNA metabolism, including transcription, translation,
RNA splicing, RNA transport, and RNA degradation (Chang and
Liu, 2010; Schröder, 2010).

REGULATION OF GENE EXPRESSION BY DDX3
DDX3 regulates gene expression at different levels, such as tran-
scription, splicing, mRNA export, and initiation of translation.
First, DDX3 participates in transcriptional regulation of gene
promoters. Indeed, DDX3 up-regulates the interferon (IFN) β

promoter (Soulat et al., 2008) and the p21waf1/cip1 promoter (Chao
et al., 2006), respectively. DDX3 binds to the transcription factor
Sp1 and enhance the p21waf1/cip1 promoter. On the other hand,
DDX3 down-regulates the E-cadherin promoter (Botlagunta et al.,
2008). In vivo association of DDX3 with the E-cadherin or the
IFNβ promoter was demonstrated by chromatin immunopre-
cipitation assay. Second, DDX3 seems to contribute to splicing.
DDX3 associates with spliced mRNAs in an exon junction complex
(EJC)-dependent manner (Merz et al., 2007) and DDX3 contains
C-terminal RS-like domain, which is stretches of protein sequence
rich in arginine and serine residues and is found in splicing factors.
Third, DDX3 contributes to the nuclear export of RNA. DDX3

shuttles between the cytoplasm and the nucleus (Owsianka and
Patel, 1999; Yedavalli et al., 2004; Lai et al., 2008; Schröder et al.,
2008). Accordingly, DDX3 interacts with two nuclear export shut-
tle protein: CRM1 as a receptor for protein containing the nuclear
export signal (NES) and tip-associated protein (TAP) as the major
receptor for mRNA export (Yedavalli et al., 2004; Lai et al., 2008).
DDX3 interacts with CRM1 and functions in the human immun-
odeficiency virus type 1 (HIV-1) Rev-dependent nuclear export of
HIV-1 mRNA (Yedavalli et al., 2004). Depletion of TAP resulted in
nuclear accumulation of DDX3, suggesting DDX3 exports along
with messenger ribonucleoprotein (mRNP) to the cytoplasm via
the TAP-mediated pathway (Lai et al., 2008).

Forth, DDX3 plays a role in translational regulation. DDX3
localizes in cytoplasmic stress granules under stress conditions (Lai
et al., 2008; Shih et al., 2012), suggesting a role for DDX3 in trans-
lational control. DDX3 represses the cap-dependent translation
by trapping eIF4E in a translationally inactive complex to block an
interaction with eIF4G (Shih et al., 2008), indicating that DDX3
acts as a translational suppressor. Since depletion of DDX3 does
not significantly affect general translation, DDX3 may be dispens-
able for general mRNA translation (Lai et al., 2008). Indeed, DDX3
associates with eIF4E together with several translation initiation
factors, including eIF4a, eIF4G, eIF2a, eIF3, and poly(A)-binding
protein (PABP), and facilitates translation of mRNA containing
structured 5′ untranslated region (UTR; Lai et al., 2008; Shih et al.,
2012; Soto-Rifo et al., 2012). In contrast, others reported that pri-
mary function for DDX3 is in protein translation via an interaction
with eIF3 (Lee et al., 2008). Accordingly, DDX3 interacts with eIF3
and 40S ribosome to support the assembly of functional 80S ribo-
some (Geissler et al., 2012). The yeast DDX3 homolog, Ded1, also
modulates translation by the formation of a translation initiation
factor eIF4F-mRNA complex (Hilliker et al., 2011). Taken together,
DDX3 modulates the protein translation.
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Finally, DDX3 interacts with Ago2, which is an essential factor
in RNA interference (RNAi) pathway that cleaves target mRNA,
and acts as an essential factor involved in RNAi pathway (Kasim
et al., 2013).

DDX3 IN CELL CYCLE REGULATION AND TUMORIGENESIS
It has been indicated a role of DDX3 in cell cycle regulation,
apoptosis, and tumorigenesis. In the temperature-sensitive DDX3
mutant hamster cell line tsET24 or the DDX3 knockdown cells,
cell cycle was impedes transition from G1 to S-phase (Fukumura
et al., 2003; Lai et al., 2010). DDX3 enhances cyclin E1 during cell
cycle by a translational regulation (Lai et al., 2010). On the other
hand, DDX3 regulates the cell cycle by inhibiting cyclin D1 and
causing cell cycle arrest (Chao et al., 2006). DDX3 is known to be
phosphorylated by cyclin B/cdc2 at threonine 204 to inhibit the
function (Sekiguchi et al., 2007). Furthermore, DDX3 interacts
with DDX5, which colocalizes with it in the cytoplasm through
the phosphorylation of both proteins during G2/M phase of cell
cycle (Choi and Lee, 2012), indicating the cell cycle-dependent
regulation of DDX3 localization and the function. During mouse
early embryonic development, DDX3 also regulates cell survival
and cell cycle (Li et al., 2014b).

It has been indicated the oncogenic role of DDX3 in
breast cancer (Botlagunta et al., 2008). Activation of DDX3 by
benzo[a]pyrene diol epoxide (BPDE) present in tobacco smoke,
can promote growth, proliferation and neoplastic transformation
of breast epithelial cells. Consistent with this finding, overex-
pression of DDX3 induced an epithelial-mesenchymal-like trans-
formation, exhibited increased motility and invasive properties,
and formed colonies in soft agar assays. In addition, DDX3 is
recruited to the E-cadherin promoter and represses the E-cadherin
expression resulting the increased cell migration and metasta-
sis (Botlagunta et al., 2008). Similarly, DDX3 also modulates cell
adhesion, motility and cancer cell metastasis via Rac1-mediated
signaling pathway (Chen et al., 2014). In fact, DDX3 knockdown
reduces the cell migration, the invasive and metastatic activi-
ties, suggesting that DDX3 is required for metastasis and the
oncogenic role of DDX3 in malignant cancers. The DDX3 knock-
down also reduces the expression of levels of both Rac1 and
β-catenin. DDX3 regulates Rac1 mRNA translation through an
interaction with its 5′UTR and affects β-catenin protein stabil-
ity in Rac1-dependent manner. In response to Wnt signaling,
DDX3 binds to casein kinase (CK) 1ε and stimulates CK1ε-
mediated phosphorylation of the Wnt effector disheveled and
thereby activates β-catenin (Cruciat et al., 2013), indicating a
role of DDX3 as a regulator of Wnt-β-catenin network. More-
over, DDX3 may aid cancer progression by promoting increased
levels of the transcription factor Snail (Sun et al., 2011). Snail
is known to repress the expression of cellular adhesion pro-
teins, leading to increased cell migration and metastasis of many
types of cancer. In addition, recent study reported that posi-
tive DDX3 expression is significantly associated with large tumor
size and high TNM (Tumor, Node, and Metastasis) stage, inva-
sion, lymph node metastasis in gallbladder cancers (Miao et al.,
2013), suggesting that DDX3 is a biomarker for metastasis and
poor prognosis of gallbladder cancers. TNM classification is an
anatomically based staging system that records the primary and

regional nodal extent of the tumor and the absence or presence of
metastases.

Hypoxia is a major characteristic of solid tumors and affects
gene expression, which greatly impacts cellular and tumor tis-
sue physiology particularly respiration and metabolism. Expres-
sion of hypoxia-responsive genes is predominantly regulated by
hypoxia inducible factors (HIFs). DDX3 is aberrantly expressed
in breast cancer cells ranging from weakly invasive to aggres-
sive phenotypes (Botlagunta et al., 2011). HIF-1 binds to the
DDX3 promoter and enhances the DDX3 expression (Botla-
gunta et al., 2011), indicating a DDX3 as a hypoxia inducible
gene.

In contrast, DDX3 has been proposed to be a tumor suppres-
sor (McGivern and Lemon, 2009). In fact, DDX3 inhibits colony
formation in various cell lines and down-regulates cyclin D1 and
up-regulates the p21waf1/cip1 promoter (Chao et al., 2006). DDX3
expression is deregulated in hepatocellular carcinoma (HCC;
Chang et al., 2006; Chao et al., 2006). Loss of DDX3 leads to
enhanced cell proliferation and reduced apoptosis (Chang et al.,
2006). Similarly, loss of DDX3 by p53 inactivation promotes
tumor malignancy via the MDM2/Slug/E-cadherin pathway and
consequently results in poor patient outcome in non-small-cell
lung cancer (Wu et al., 2014). In addition, DDX3 contributes
to both antiapoptotic and proapoptotic actions. Death recep-
tors are found to be capped by an antiapoptotic protein complex
containing GSK3, DDX3 and cIAP-1 and DDX3 protects from
apoptotic signaling (Sun et al., 2008). In contrast, DDX3 also
associates with p53, increases p53 accumulation, and positively
regulates DNA damage-induced apoptosis (Sun et al., 2013).
Furthermore, reduced p21waf1/cip1 via alteration of p53-DDX3
pathway is associated with poor relapse-free survival in early stage
human papillomavirus-associated lung cancer (Wu et al., 2011).
Thus, p21waf1/cip1 is considered to act as a tumor suppressor.
Since low/negative DDX3 expression in tumor cells is significantly
associated with aggressive clinical manifestations, low/negative
expression of DDX3 might predict poor prognosis in oral cancer
patients (Lee et al., 2014).

Altogether, DDX3 has both tumor suppression and oncogenic
properties. This may reflect on the cell type used in their exper-
iments. Further studies are necessary to clarify the potential role
of DDX3 in cell growth regulation. These studies may shed a light
on the development of drugs for chemotherapy against cancer and
viral infection described below.

DDX3 AS A TARGET OF VIRUSES
DDX3 has been implicated in a target of several viruses, including
hepatitis C virus (HCV), HIV-1, hepatitis B virus (HBV), West
Nile virus (WNV), Japanese encephalitis virus, norovirus, pes-
tivirus, vaccinia virus, and cytomegalovirus (Table 1). DDX3 is
required for several RNA viral replication such as HCV and HIV-
1, while DDX3 restricts HBV replication. At least, DDX3 may be a
therapeutic target for anti-viral drug against HCV and HIV-1.

REQUIREMENT OF DDX3 IN HCV LIFE CYCLE
Hepatitis C virus is a causative agent of chronic hepatitis, which
progresses to liver cirrhosis and HCC. HCV is an enveloped virus
with a positive single-stranded 9.6 kb RNA genome, which encodes
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Table 1 | DDX3 as a target of viruses.

Virus Effect of DDX3

on viral

replication

Viral binding

protein

Cellular function

HCV Up-regulation Core Translational regulation

HIV-1 Up-regulation Rev

Tat

Nuclear export of mRNA

Translational regulation

HBV Down-regulation Pol Inhibition of IFN induction

Vaccinia virus ? K7 Inhibition of IFN induction

WNV Up-regulation ? ?

DDX3 interacts with several RNA virus including hepatitis C virus (HCV), human
immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), vaccinia virus, and
West Nile virus (WNV). DDX3 is required for HCV, HIV-1, WNV replication, while
DDX3 restricts HBV replication. Furthermore, these viral proteins suppress the
DDX3-mediated type I IFN induction though an interaction with DDX3.

a large polyprotein precursor of ∼3,000 amino acid residues (Kato
et al., 1990). This polyprotein is cleaved by a combination of the
host and viral proteases into at least 10 proteins in the follow-
ing order: core, envelope 1 (E1), E2, p7, non-structural 2 (NS2),
NS3, NS4A, NS4B, NS5A, and NS5B (Hijikata et al., 1991, 1993).
The HCV core protein is a viral structural protein, which forms
the viral nucleocapsid, is targeted to lipid droplets (LDs). Recently,
LDs have been found to be an important cytoplasmic organelle for
HCV production (Miyanari et al., 2007). Budding is an essential
step in the life cycle of enveloped viruses. HCV utilizes the endo-
somal sorting complex required for transport (ESCRT) system as
the budding machinery (Ariumi et al., 2011b).

Several DEAD-box RNA helicases have been shown to interact
with HCV proteins and regulate the HCV replication (Schröder,
2010; Upadya et al., 2014). DDX3 was identified as an HCV

core-binding protein by yeast two-hybrid screening (Mamiya and
Worman, 1999; Owsianka and Patel, 1999; You et al., 1999). HCV
core protein was the first viral protein to be described as a
DDX3-binding protein. HCV core binds to the C-terminal RS-
like domain of DDX3 and the interaction is mediated by the
N-terminal 59 amino acid residues of HCV core. DDX3 and HCV
core colocalized in distinct spots in the perinuclear region of the
cytoplasm. However, these studies lack evidence regarding the
functional relevance of the DDX3-HCV core interaction in HCV
replication and the HCV-associated liver diseases. Recent studies
have demonstrated that DDX3 is required for HCV replication
(Ariumi et al., 2007; Randall et al., 2007). The accumulation of
both genome-length HCV RNA (HCV-O strain, genotype 1b;
Ikeda et al., 2005) and its replicon RNA were significantly sup-
pressed in the DDX3 knockdown cells. As well, HCV infection
(JFH1 strain, genotype 2a; Wakita et al., 2005) was also suppressed
in the DDX3 knockdown cells. Notably, HCV infection dynam-
ically redistributes DDX3 to the HCV production site around
LDs and colocalizes with HCV core (Figure 1; Ariumi et al.,
2011a). However, the specific interactions between DDX3 and
HCV core and the functional importance of these interactions for
the HCV viral life cycle remain unclear. In this regard, Muta-
genesis studies located a single amino acid in the N-terminal
domain of JFH1 core that when changed to alanine significantly
abrogated this interaction. Surprisingly, this mutation did not
alter infectious virus production and RNA replication, indicat-
ing that the core-DDX3 interaction is dispensable in the HCV
life cycle (Angus et al., 2010). On the other hand, there is a
contradictory report that the inhibition of HCV replication due
to expression of the green fluorescent protein (GFP) fusion to
HCV core protein residues 16–36 can be reversed by overex-
pression of DDX3 (Sun et al., 2010). These results suggest that
the protein interface on DDX3 that binds the HCV core pro-
tein is important for replicon maintenance. However, infection

FIGURE 1 | Dynamic recruitment of DDX3 and DDX6 around lipid

droplets (LDs) in response to HCV-JFH1 infection. Cells were fixed
60 h post-infection with HCV (JFH1 strain) and stained with either
anti-DDX3 or anti-DDX6 antibody and were then visualized with Cy3 (red).
Lipid droplets were specifically stained with fluorescent lipophilic dye

BODIPY 493/503 (green; Listenberger and Brown, 2007) and nuclei were
stained with DAPI (blue), respectively. Images were visualized using
confocal laser scanning microscopy. The two-color overlay images are also
exhibited (merged). Colocalization is shown in yellow. High magnification
image is also shown.
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of HuH-7 cells by HCV (JFH1) was not affected by expression
of the GFP fusion protein. These results suggest that the role of
DDX3 in HCV infection involves aspects of the viral life cycle
that vary in importance between HCV genotypes. Therefore, the
exact contribution of HCV core-DDX3 interaction remains to be
determined.

In addition to DDX3, other DEAD-box RNA helicases DDX1,
DDX5, and DDX6 have been involved in the HCV life cycle (Goh
et al., 2004; Tingting et al., 2006; Jangra et al., 2010; Ariumi et al.,
2011a; Kuroki et al., 2013). DDX1 bound to both the HCV 3′UTR
and the HCV 5′UTR and DDX1 knockdown caused a marked
reduction in the replication of subgenomic replicon RNA (Tingt-
ing et al., 2006). Furthermore, DDX5 was identified as an HCV
NS5B RNA-dependent RNA polymerase-binding protein by yeast
two-hybrid screening (Goh et al., 2004). Depletion of endogenous
DDX5 correlated with a reduction in the transcription of nega-
tive strand HCV RNA, suggesting that DDX5 participates in the
HCV RNA replication. Overexpression of HCV NS5B or the HCV
infection redistributes DDX5 from the nucleus to the cytoplasm.
Moreover, recent study reported that knockdown of DDX5 reduces
HCV (JFH1) virus production in the supernatant, suggesting that
DDX5 is important for a late stage of the HCV life cycle (Kuroki
et al., 2013).

The microRNA miR122 and DDX6/Rck/p54, a microRNA
effector, have been implicated in HCV replication (Jopling et al.,
2005; Scheller et al., 2009; Jangra et al., 2010; Ariumi et al., 2011a).
The liver-specific and abundant miR-122 interacts with the 5′UTR
of the HCV RNA genome and facilitates the HCV replication
(Jopling et al., 2005). DDX6 interacts with the eukaryotic initi-
ation factor 4E (eIF-4E) to repress the translational activity of
mRNP. Furthermore, DDX6 regulates the activity of the decapping
enzymes DCP1 and DCP2 and interacts directly with Argonaute-
1 (Ago1) and Ago2 in the microRNA-induced silencing complex
(miRISC) and is involved in RNA silencing. DDX6 predominantly
localizes in the discrete cytoplasmic foci termed processing (P)-
body. Thus, the P-body may play a role in the translation repression
and mRNA decay machinery (Parker and Sheth, 2007; Beckham
and Parker, 2008). The knockdown of DDX6 was found to reduce
the accumulation of intracellular HCV RNA and infectious HCV

production, indicating that DDX6 is essential for the HCV RNA
replication (Scheller et al., 2009; Jangra et al., 2010; Ariumi et al.,
2011a). Notably, HCV (JFH1) infection disrupts the P-body for-
mation of DDX3, DDX6, Lsm1, Xrn1, PATL1, and Ago2 and
dynamically redistributes them to the HCV production site around
LDs (Figure 2; Ariumi et al., 2011a), indicating that HCV hijacks
the P-body components around LDs and regulates the HCV repli-
cation and translation. Recent studies suggested that DDX3 is also
required for WNV, Japanese encephalitis virus, norovirus, and
pestivirus (Vashist et al., 2012; Chahar et al., 2013; Jefferson et al.,
2014; Li et al., 2014a; Tsai and Lloyd, 2014). Similarly, P-body
components LSM1, GW182, DDX3, DDX6, and XRN1 are also
recruited to WNV replication sites and positively regulate viral
replication (Chahar et al., 2013).

On the other hand, recent studies have suggested a potential
role of DDX3 and DDX5 in the pathogenesis of HCV-related liver
diseases. DDX3 expression is deregulated in HCC (Chang et al.,
2006; Chao et al., 2006) and single-nucleotide polymorphisms
were identified in the DDX5 genes that were associated with an
increased risk of advanced fibrosis in patients with chronic hepati-
tis C (Huang et al., 2006). DDX3 has been proposed to be a tumor
suppressor (McGivern and Lemon, 2009). In fact, DDX3 inhibits
colony formation in various cell lines, including human hep-
atoma HuH-7, and up-regulates the p21waf1/cip1 promoter (Chao
et al., 2006). Therefore, HCV core protein might overcome the
DDX3-mediated cell growth arrest and down-regulate p21waf1/cip1

through an interaction with DDX3, and it might be involved in
the development of HCC.

DDX3 IS ESSENTIAL FOR HIV-1 REPLICATION
Human immunodeficiency virus type 1 is the causative agent of
acquired immune deficiency syndrome (AIDS). HIV-1 is a retro-
virus with a positive strand RNA genome of 9 kb which encodes
nine polypeptides, structural proteins, Gag (group specific anti-
gen), Pol (polymerase) and Env (envelope), the accessory proteins,
Vif, Vpu, Vpr, and Nef, and the regulatory proteins, Tat and
Rev. The gene expression of HIV-1 is regulated transcription-
ally by Tat through its binding to a nascent viral trans-activation
responsive (TAR) RNA (Berkhout et al., 1989; Jeang et al., 1999),

FIGURE 2 | Hijacking of P-body components around LD by HCV. HCV disrupts the P-body and hijacks the P-body components including DDX3, DDX6, Ago2,
Xrn1, and Lsm1 around LD, an HCV production site.
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and post-transcriptionally by Rev through its association with
Rev-responsive element (RRE) in the env gene (Hope and Pomer-
antz, 1995; Pollard and Malim, 1998; Cullen, 2003). Since the
intron-containing host RNA cannot leave the nucleus before it is
completely spliced, HIV-1 needs to evade host surveillance system
to export unspliced or partially spliced viral RNA into cytoplasm
and produce HIV-1 structural proteins and accessory proteins. For
this, Rev contains a leucine-rich NES that recruits nuclear export
receptor CRM1 (Hope and Pomerantz, 1995; Pollard and Malim,
1998; Cullen, 2003). Upon binding to the RRE together with the
GTP-bound form of Ran (Ran-GTP), CRM1 forms the nuclear
export complex and Rev-CRM1-RRE-Ran-GTP complex exports
unspliced or partially spliced HIV-1 RNA from the nucleus to the
cytoplasm.

Several viruses are known to carry their own RNA helicases
to facilitate the replication of their viral genome, including HCV,
flavivirus, severe acute respiratory syndrome (SARS) coronavirus,
rubella virus, and alphavirus, however, HIV-1 does not encode
own RNA helicase (Utama et al., 2000; Kwong et al., 2005). Thus,
host RNA helicases may be involved in HIV-1 replication at mul-
tiple stages, including the reverse transcription of HIV-1 RNA,
HIV-1 mRNA transcription, the nucleus-to-cytoplasm transport
of HIV-1 mRNA, and HIV-1 RNA packaging (Cochrane et al.,
2006; Lorgeoux et al., 2012).

In fact, DDX3 was first found to involve in the Rev-dependent
nuclear export of unspliced and partially spliced HIV-1 RNAs
(Figure 3; Yedavalli et al., 2004). Over-expression of DDX3
enhanced the Rev-dependent nuclear export function. Conversely,
knockdown of DDX3 or expression of dominant negative mutant
of DDX3 significantly suppressed the Rev function as well as HIV-1
replication (Yedavalli et al., 2004; Ishaq et al., 2008). Rev is co-
immunoprecipitated with DDX3. DDX3 is a nucleo-cytoplasmic

shuttling protein, which binds CRM1 and localizes to nuclear
membrane pores.

In addition to DDX3, another DEAD-box RNA helicase DDX1
also associates with Rev and promotes the Rev-dependent RNA
nuclear export function (Fang et al., 2004). DDX1 interacts with
Rev via the N-terminal domain, suggesting a role of DDX1 in
initial complex assembly. DDX1 promotes Rev oligomerization
on the RRE through this interaction (Robertson-Anderson et al.,
2011). Thus, DDX1 and DDX3 act sequentially in the Rev-
dependent RNA nuclear export. DDX1 first binds to Rev and
promotes Rev oligomerization on the RRE. Then, the oligomer-
ized Rev recruits the CRM1/DDX3 complex that subsequently
exports the RRE-containing HIV-1 RNAs into the cytoplasm (Lor-
geoux et al., 2012). In addition to DDX1 and DDX3, we and
other group recently reported that other RNA helicases, includ-
ing DDX5, DDX17, DDX21, DHX36, DDX47, DDX56, and RNA
helicase A (RHA) associate with the Rev-dependent nuclear export
function (Figure 3; Li et al., 1999; Naji et al., 2012; Yasuda-Inoue
et al., 2013a; Zhou et al., 2013). Furthermore, DDX3 interacts with
DDX5 and synergistically enhances the Rev-dependent nuclear
export. As well, combination of other distinct DDX RNA heli-
cases such as DDX1 and DDX3 also synergistically facilitates the
Rev function (Yasuda-Inoue et al., 2013a) suggesting that a set of
distinct Rev-interacting DEAD-box RNA helicases cooperate to
modulate the HIV-1 Rev function.

On the other hand, HIV-1 Tat activates the HIV-1 RNA synthe-
sis. Tat binds to the TAR RNA and recruits several host factors
including p300/CREB-binding protein (p300/CBP), p300/CBP-
associated factor (PCAF), SWI/SNF chromatin-remodeling com-
plex, and positive transcription elongation factor b (P-TEFb)
to stimulate both transcription initiation and elongation (Jeang
et al., 1999; Ariumi et al., 2006; Lorgeoux et al., 2012). P-TEFb

FIGURE 3 | Role of DDX3 in the HIV-1 gene expression. DDX3 interacts with HIV-1 Rev and facilitates the Rev-dependent nuclear export of HIV-1 mRNA.
DDX3 interacts with Tat and contributes to the translation of HIV-1 mRNA. Other DEAD-box RNA helicases, including DDX1, DDX5, DDX17, DDX21, and
DDX56, also interact with HIV-1 Rev and facilitate its function.
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contains cyclin T1 and cyclin-dependent kinase 9 (CDK9). CDK9
hyperphosphorylates the C-terminal domain (CTD) of RNA Pol
II and activates transcription elongation. The Werner syndrome
(WRN) helicase and RHA were reported to act as co-factors of
Tat and enhance the HIV-1 gene expression (Fujii et al., 2001;
Sharma et al., 2007). In addition to WRN and RHA, DDX3
interacts with Tat (Figure 3; Lai et al., 2013; Yasuda-Inoue et al.,
2013b). Tat is partially targeted to cytoplasmic stress granules upon
DDX3 overexpression or cell stress conditions, suggesting a poten-
tial role of Tat/DDX3 complex in translation. Accordingly, Tat
remains associated with translating mRNAs and facilitates trans-
lation of mRNAs containing the HIV-1 5′UTR. In this regard,
DDX3 is essential for translation of HIV-1 genomic RNA (gRNA;
Figure 3; Soto-Rifo et al., 2012). DDX3 directly binds to the
HIV-1 5′UTR and interacts with eIF4G and PABP but lacking
the major cap-binding proteins eIF4E in large cytoplasmic RNA
granules (Soto-Rifo et al., 2013), indicating that DDX3 promotes
the HIV-1 gRNA translation initiation in an eIF4E-independent
manner.

Both HIV-1 and HCV have been shown to utilize DDX3 as
a cofactor for viral genome replication. Therefore, DDX3 could
be an important therapeutic target for development of anti-viral
drug (Kwong et al., 2005). Indeed, small molecule inhibitors were
used to inhibit ATPase activity of DDX3 with anti-HIV-1 activity
(Maga et al., 2008, 2011; Yedavalli et al., 2008; Radi et al., 2012).

DDX3 RESTRICTS HBV REPLICATION
Hepatitis B virus is also the causative agent of chronic hepati-
tis, which progresses to liver cirrhosis and HCC worldwide. HBV
belongs to hepadnavirus family and contains a small partially
double-stranded circular DNA genome of 3.2 kb. Even though
HBV is a DNA virus, HBV replicates its DNA genome via reverse
transcription. Upon HBV infection, the HBV DNA is converted
into covalently closed circular DNA (cccDNA) as the template
for the viral transcription. Pregenomic RNA (pgRNA) of 3.5 kb
is selectively packaged into nucleocapsid together with HBV Pol.
The pgRNA is reverse transcribed by HBV Pol to generate relaxed
circular (RC) DNA. The HBV reverse transcription occurs entirely
within nucleocapsid following encapsidation.

Recently, it was shown that DDX3 specifically binds to the HBV
Pol and is incorporated into nucleocapsid together with HBV Pol
(Wang et al., 2009). However, unlike HIV-1 and HCV replica-
tion, which is enhanced by DDX3 (Yedavalli et al., 2004; Ariumi
et al., 2007; Randall et al., 2007), HBV reverse transcription was
inhibited by DDX3. In addition, recent study reported that DDX3
suppresses transcription from HBV promoter (Ko et al., 2014).
The helicase activity is dispensable for this DDX3-mediated tran-
scription suppression. Thus, DDX3 is identified as a new host
restriction factor for HBV.

ROLE OF DDX3 IN ANTI-VIRAL INNATE IMMUNITY
Viral infection triggers host innate immune responses through
activation of the transcription factors NF-κB and IFN regulatory
factor (IRF)-3 leading to type I IFN production and anti-viral state
in mammalian cells (Gale and Foy, 2005; Saito and Gale, 2007).
Similar to NF-κB, IRF-3 is retained in cytoplasm in uninfected
cells. After viral infection, IRF-3 is phosphorylated by IKKε and

TBK1 and the phosphorylated IRF-3 then homodimerizes and
translocates into the nucleus to activate type I IFN. Type I IFNs,
such as IFN-α and IFN-β are essential for immune defense against
viruses. These IFNs activate the JAK-STAT pathway to induce the
IFN-stimulated genes (ISGs), which impact immune enhancing
and antiviral action of host cells.

Double-stranded RNA (dsRNA) produced during viral repli-
cation is recognized by the host cell as pathogen-associated
molecular patterns (PAMPs) by two major pathogen recogni-
tion receptor (PRR) proteins: the Toll-like receptors (TLRs; Akira
and Takeda, 2004) and DEAD-box RNA helicases RIG-I and
Mda5 (Andrejeva et al., 2004; Yoneyama et al., 2004). RIG-I con-
tains two N-terminal caspase activation and recruitment domains
(CARD) and a C-terminal RNA helicase domain that binds to
dsRNA. Binding viral RNA to RIG-I lead to a conformational
change that allows to interact with the RIG-I/Mda5 adaptor IPS-
1/MAVS/Cardif/VISA (Kawai et al., 2005; Meylan et al., 2005;
Seth et al., 2005; Xu et al., 2005) leading to the activation of
IRF-3 and NF-κB. Notably, RIG-I and Mda5 distinguish RNA
viruses and are critical for host antiviral responses (Kato et al.,
2006). RIG-I is essential for the production of IFN in response
to RNA viruses including paramyxoviruses, influenza virus and
Japanese encephalitis virus, while Mda5 is critical for picornavirus
detection.

DDX3 was recently reported to be a component of anti-viral
innate immune signaling pathway leading to type I IFN (Figure 4;
Schröder et al., 2008; Soulat et al., 2008; Gu et al., 2013). Indeed,
DDX3 contributes to enhance the induction of anti-viral media-
tors, IRF3 and type I IFN. DDX3 up-regulates the IFN-β induction
through an interaction with IKKε (Figure 4; Schröder et al., 2008;
Gu et al., 2013) or TBK1 (Soulat et al., 2008). Phosphorylation of

FIGURE 4 | Role of DDX3 in anti-viral innate immunity. DDX3 interacts
with TBK1/IKKε and is phosphorylated by TBK1/IKKε. TBK1/IKKε then
phosphorylates IRF3 and translocates into the nucleus leading to the
activation of IFNβ promoter. DDX3 is also recruited on the IFNβ promoter
and enhances the IFNβ production. In contrast, HCV core, HBV Pol, or
vaccinia virus K7 interacts with DDX3 and suppresses the IFNβ induction.
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DDX3 at serine 102 by IKKε was required for the recruitment of
IRF-3 into the complex. Both IKKε and TBK1 are IRF-3-activating
kinase to leading the NF-κB and IFN induction. Furthermore,
DDX3 is recruited to the IFNβ promoter (Figure 4; Soulat et al.,
2008), suggesting that DDX3 acts as a transcriptional regula-
tor. In addition, DDX3 also forms a complex with RIG-I and
Mda5 and binds to IPS-1 to facilitate IFNβ induction (Oshiumi
et al., 2010b), suggesting that DDX3 acts as a viral RNA sensor
and a scaffolding adaptor to link of viral RNA with the IPS-1
complex.

In contrast, viruses must overcome the host anti-viral innate
immunity. HCV NS3-4A protease cleaves IPS-1/Cardif to block
IFNβ induction (Figure 4; Meylan et al., 2005) In addition, HCV
core protein can disrupt the DDX3-IPS-1/MAVS/Cardif/VISA
interaction and act as a viral immune evasion protein preventing
IFNβ induction (Figure 4; Oshiumi et al., 2010a). Furthermore,
DDX3 is known to bind to HBV Pol and restrict the HBV repli-
cation (Wang et al., 2009). Conversely, HBV Pol acts as a viral
immune evasion protein by disrupting the interaction of DDX3
with TBK1/ IKKε (Figure 4; Wang and Ryu, 2010; Yu et al., 2010).
Similarly, vaccinia virus K7 protein targets DDX3 (Schröder et al.,
2008; Kalverda et al., 2009; Oda et al., 2009) and inhibits the IFNβ

induction by preventing TBK1/ IKKε-mediated IRF activation
(Figure 4; Schröder et al., 2008). Moreover, DDX3 contributes
the DNA sensor ZBP1/DAI-dependent IFN response after human
cytomegalovirus infection (DeFilippis et al., 2010).

In conclusion, DDX3 participates in anti-viral innate immune
signaling pathway leading to type I IFN induction. In contrast,
viruses must target DDX3 and evolve mechanisms to overcome
this host immune system. Indeed, several RNA viruses sequester
and utilize DDX3 for their viral replication and prevent IFN
induction.
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