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Mutations in genes potentially lead to a number of genetic diseases with differing
severity. These disease genes have been the focus of research in recent years showing
that the disease gene population as a whole is not homogeneous, and can be categorized
according to their interactions. Locus heterogeneity describes a single disorder caused
by mutations in different genes each acting individually to cause the same disease. Using
datasets of experimentally derived human disease genes and protein interactions, we
created a protein interaction network to investigate the relationships between the products
of genes associated with a disease displaying locus heterogeneity, and use network
parameters to suggest properties that distinguish these disease genes from the overall
disease gene population. Through the manual curation of known causative genes of 100
diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we
use network parameters to show that our locus heterogeneity network displays distinct
properties from the global disease network and a Mendelian network. Using the global
human proteome, through random simulation of the network we show that heterogeneous
genes display significant interconnectivity. Further topological analysis of this network
revealed clustering of locus heterogeneity genes that cause identical disorders, indicating
that these disease genes are involved in similar biological processes. We then use this
information to suggest additional genes that may contribute to diseases with locus
heterogeneity.

Keywords: locus heterogeneity, protein interaction network, systems biology, Bardet–Biedl syndrome, Leigh

syndrome, Kabuki syndrome

INTRODUCTION
The characterization of mutations in genes that cause human
genetic disease is vitally important. Once identified, these mutant
genes (termed disease genes) provide an opportunity to study
the origins of genetic disorders and develop potential therapeu-
tics to mitigate symptoms or deliver curative strategies targeting
these genes. In recent years, the discovery and classification of
disease genes within the human genome has received increas-
ing attention. As databases of disease gene associations, such
as the Online Mendelian Inheritance in Man (OMIM; Hamosh
et al., 2005), continue to increase in size and accuracy, we can
use these data to further understand disease pathogenesis. In
a previous study (Dickerson et al., 2011) we found that dis-
ease genes do not form a homogeneous group of genes with
shared characteristics – but instead cluster into distinct groups
each with shared characteristics. Isolating genes displaying similar
attributes may therefore lead to the discovery of further associ-
ated gene groups, allowing us to examine their relationship with
disease.

Is it now appreciated that human disease is characterized by
genetic heterogeneity, for which two different types exist. Allelic
heterogeneity refers to instances where mutations in different alle-
les at the same locus produce the same disease. By contrast, locus

heterogeneity describes mutations in different genes whereby any
one mutation generates the same disorder (Figure 1; McClellan
and King, 2010). Many genetic diseases display locus heterogene-
ity, with affected genes being associated with almost all disease
categories and cell types. Perhaps the most striking example
of locus heterogeneity is the disorder retinitis pigmentosa, a
retinal dystrophy resulting from the loss of photoreceptors in
the retina for which more than 45 genes have been identified
(Hartong et al., 2006). A number of recent studies into the mech-
anisms by which these genes cause identical disorders suggest that
protein products of affected genes are likely to be functionally sim-
ilar, interacting with one another and displaying an involvement
in the same biological pathways and processes (Wang et al., 2012;
Guo et al., 2013). With this is mind, an appropriate method to
study the associations between genes involved in these disorders
is to investigate the complex interconnections between cellular
components.

The advent of high-throughput, ‘omic’ technologies in the last
decade has resulted in rapid growth in the number of identi-
fied and mapped protein interactions available within interaction
databases. For example, BioGRID (Stark et al., 2006) provides
genetic and biological interaction data for a range of species and
the Human Protein Reference Database (Peri et al., 2004) curates
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FIGURE 1 | Differences in genetic heterogeneity. Locus heterogeneity
describes the ability of identical disorders to be acquired through mutations in
a number of different genes (A). Gray circles represent wild-type genes,
whereas red circles denote mutated genes. The developmental disease,
Cornelia de Lange syndrome, can be acquired through a single mutation in
any of three different genes; NIPBL (1), SMC1A (2) or SMC3 (3), producing

the same disorder in each case (Liu and Baynam, 2010). Allelic heterogeneity
describes the ability of different mutations within the same gene to cause the
same disease (B). Cystic fibrosis is used to demonstrate this form of
heterogeneity, with as many as 1,500 CFTR mutations being attributed to
causing the disorder (O’Sullivan and Freedman, 2009). Red bars indicate
different mutations within the CFTR gene.

literature sourced human protein interactions. Although by no
means complete, these individual “building blocks” have been
used to construct biological networks, ranging from small cel-
lular systems to genome-wide interactomes. Through examining
the topological properties of these networks, we can gain insights
into the complex relationships between proteins, and therefore
disease-associated proteins, in a branch of computational biology
commonly referred to as“network medicine”(Barabasi et al., 2011;
Thanh-Phuong and Tu-Bao, 2012).

Existing network analysis based studies have utilized the ana-
lytical advantages of interaction networks to reveal the highly
interconnected relationships between genes expressing locus het-
erogeneity. A study by Bauer-Mehren et al. (2011) used an
extensive gene-disease association database to create a gene-disease
network to examine how pathway perturbations result in disease
phenotypes, with the aim of assessing whether modularity applies
to a spectrum of different disorders. Modularity was observed for
genes of all disorder types, including those that expressed locus
heterogeneity. A more specific study considered the “pathogenic”
genes of functional pathways in autism spectrum disorder (ASD)
and intellectual disability (ID), an array of disorders caused by
heterogeneous gene mutations (Krumm et al., 2014). This study
showed, as previously hypothesized, that locus heterogeneity genes
associate within close proximity to one another in biological
pathways, and contribute highly similar functional roles to their
respective systems.

In this study we tested the hypothesis that within protein
interaction networks, locus heterogeneity genes are more highly
interconnected to other genes causing the same disorder than
genes associated with Mendelian diseases or non-disease genes.
Throughout, locus heterogeneity disorders were classed as those

caused by mutations in a number of genes, but inherited in
a monogenic/simple fashion. Complex heterogeneous disorders
caused by mutations in multiple alleles acting together were not
considered here. To complete our investigations we manually
curated a number of locus heterogeneous disorders and their asso-
ciated genes. We generated a global human protein interaction
network from various human interaction databases. By consider-
ing the local neighborhood of heterogeneous genes, we were able
to identify potential novel locus heterogeneity genes involved in
specific disorders. A comparison of the locus heterogeneity curated
genes with those that cause single-gene Mendelian disorders served
as a method to isolate and identify properties of locus hetero-
geneity genes. The results of this study demonstrate that locus
heterogeneity genes display distinct network properties, forming
clusters of disorder specific genes. These network clusters can be
utilized to suggest novel disease genes for further experimental
studies.

MATERIALS AND METHODS
DATA RETRIEVAL
Disease genes were parsed from the OMIM database genemap
(03/02/2014 update; Hamosh et al., 2005) and filtered according
to‘confirmed’genes (observed in at least two laboratories). Disease
genes that had no disease annotation in the “disorder” field of the
genemap were also filtered. A dataset of 5671 disease genes was
produced from this process, of which 2485 could be mapped onto
the protein interaction network.

Disease gene data relating to heterogeneous and Mendelian dis-
orders were obtained from a combination of ResNet (10/02/2014
update; Daiger et al., 1998), a database providing genetic data
relating to a number of retinal disorders, and Genetics Home
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Reference (GHR; Fomous et al., 2006), a resource of integrated
clinical information that curates disorder specific research to pro-
vide information for patients. The selection of both heterogeneous
and Mendelian disorder was aided by a number of review arti-
cles (McKusick, 1991; Chial, 2008; McClellan and King, 2010)
that classify the properties of genetic disorders, and using this
information, along with GHR to find related verified disorders
sharing the same inherited properties. Final datasets for hetero-
geneous and Mendelian disorders contained 674 and 397 genes
respectively.

Human protein–protein interaction data was retrieved using
ConsensusPathDB (CPDB, release 28; Kamburov et al., 2013),
an integration of 32 public interaction resources to provide
a high quality consensus of available protein interaction data.
The full dataset, containing 16363 nodes and 179685 edges,
was used for comparison and analyses throughout. Conversion
of protein IDs from official gene symbol to UniProt ID was
performed with the gene ID conversion tool of DAVID Bioin-
formatics Resources (version 6.7; Huang et al., 2009a,b) prior to
the mapping of disease genes onto the ConsensusPathDB (CPDB)
network.

DISEASE CATEGORIZATION
Genes were classified into appropriate disease categories using the
Medical Subject Headings controlled vocabulary (MeSH; Lowe
and Barnett, 1994). High level terms were merged with classifi-
cations used in Goh et al. (2007) and Dickerson and Robertson
(2012) to present 20 unique classifications representing a wide
range of physiological systems.

NETWORK VISUALIZATION AND TOPOLOGICAL ANALYSIS
Protein–protein interaction networks were visualized and ana-
lyzed using Cytoscape (version 2.8.3 and version 3.1.0; Shannon
et al., 2003). All networks presented here are undirected and
use the edge-weighted spring embedded layout, unless otherwise
stated, and have had self-loops and duplicated edges removed.
The Cytoscape plugin AllegroLayout (AllegroViva Inc, 2014a) was
used to produce spring-embedded visualization of the network.
NetworkAnalyzer was used to verify network properties such as
degree (total number of edges connecting to one node), degree
distribution (the probability distribution of all degrees within the
network) and clustering coefficient (the measure to which nodes
within the network tend to cluster together; Barabasi and Oltvai,
2004) within Cytoscape 3.1.0.

Topological analysis of the network was achieved within
Cytoscape using the clustering tool AllegroMCODE 2.1 (Allegro-
Viva Inc, 2014b). Clusters with an MCODE (Bader and Hogue,
2003) complex score higher than 3 were chosen for further study.
Default settings were used, unless otherwise stated.

Additional methods were utilized to validate selected clusters.
The Louvain method for network community analysis attempt
to reveal a hierarchical structure for larger networks, discussed in
Blondel et al. (2008).The overlapping clustering algorithm, EAGLE
(Shen et al., 2009), and the clustering coefficient-based clustering
algorithm, FAG-EC (Li et al., 2009), were also applied. The Louvain
method was implemented using a command line tool (Blondel
et al., 2008), while EAGLE and FAG-EC were applied using the

Cytoscape plugin ClusterViz (Wang et al., 2014). Default settings
were used throughout our analyses.

GENE FUNCTIONAL AND PATHWAY ANALYSIS
Identifying key properties of unannotated genes found with dis-
ease enriched clusters was achieved using Ingenuity Pathway
Analysis (IPA; Ingenuity® Systems, 2014). IPA was also utilized to
identify over represented signaling or metabolic canonical path-
ways to propose further similarities between genes and proteins
within network clusters.

The Cytoscape plugin BiNGO 3.0.2 (Maere et al., 2005) was
used to retrieve Gene Ontology (GO) annotations (Ashburner
et al., 2000), mapping them onto data within Cytoscape directly.
As in Dickerson et al. (2011), GO entries with their molecular
function category marked with the term “activity” were used for
functional analysis of the global network as well as individual
clusters.

STATISTICAL ANALYSIS
Statistical analyses were performed using R-Development-Core-
Team (2009). Pearson’s Chi-squared test was used to assess whether
disease classifications was significantly different between hetero-
geneity and Mendelian datasets. The Benjamini and Hochberg
False Discovery Rate was used to calculate corrected p-values
for GO functional classification testing to minimize multiple
comparison errors.

A Perl script utilizing the Graph module (Hietaniemi, 2014) was
written to determine the significance of locus heterogeneity gene
related observations within our network. This script calculated
the proportion of locus heterogeneity nodes having a locus het-
erogeneity neighbor, and determined significance through 10,000
randomizations of the dataset, assigning heterogeneity to the same
number of nodes and assessing the proportion for this randomized
dataset compared to the real observed dataset. For each random-
ization we assumed that the average topology of heterogeneous
nodes is the same.

RESULTS
LOCUS HETEROGENEITY AND MENDELIAN DISORDER CLASSIFICATION
Using a combination of OMIM’s genemap (Hamosh et al., 2005)
and disease specific databases (Daiger et al., 1998; Fomous et al.,
2006), disease genes (n = 2485), locus heterogeneity genes
(n = 674) ,and Mendelian genes (n = 397) were selected based on
etiological information accompanying human disorders. MeSH
classifications were applied to locus heterogeneity and Mendelian
genes to identify disease types associated with the two datasets.
This allowed us to examine differences in the physiological systems
affected by the diseases (Figure 2), which might impact upon our
analysis.

In order to prevent any potential bias, we chose Mendelian
disease genes to include in our dataset because they shared the
same disease classification proportions as our locus heterogene-
ity genes. It was not possible to eliminate all variation between
the two datasets, however, these differences have been mini-
mized by the selection of Mendelian disorders affecting the same
physiological systems as those affected in diseases showing locus
heterogeneity. A Pearson’s Chi-squared test confirmed that the
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FIGURE 2 | Proportional display of diseases by MESH classification.

The proportion of locus heterogeneity (left) and Mendelian (right) disease
genes characterized in our study that affect different physiological systems.
Colors correspond to specific physiological systems affected by these
disease genes (key at far right).

two datasets were not significantly different in the systems affected
(p = 0.372).

LOCUS HETEROGENEITY NETWORKS SHOW DISTINCT PROPERTIES
COMPARED TO OTHER DISEASE-ASSOCIATED NETWORKS
The full human protein–protein interaction network was retrieved
from CPDB, consisting of 16363 nodes and 179685 edges
(Figure 3). Since this interaction data is sourced from a number
of interaction databases and experimental studies, the resulting
collection of data contains protein interactions from multiple
sources, such as co-immunoprecipitation and yeast two-hybrid
studies. To extract and analyze specific networks in isolation, the
proteins encoded by disease genes, locus heterogeneity genes and
Mendelian genes were mapped onto the network. Although a total

FIGURE 3 | Full CPDB protein interaction network. The network displays
the full set of interactions available from CPDB used in this study. Circles
(nodes) represent proteins, whereas the lines (edges) connecting two
circles signify an interaction between two proteins. Locus heterogeneity
genes relating to our 100 selected disorders are highlighted red, with gray
nodes symbolizing other genes in the dataset.

of 674 locus heterogeneity genes and 397 Mendelian genes were
identified from ResNet (Daiger et al., 1998) and Genetic Home
Reference (Fomous et al., 2006), 13 locus heterogeneity and 32
Mendelian disease genes could not be translated onto the interac-
tion network. Redundancy among disease genes was the cause of
the majority of genes losses after mapping, as exemplified through
the diseasome bipartite network in Goh et al. (2007). For example,
the single disease gene ERCC2 causes both trichothiodystrophy
and xeroderma pigmentosum. Other potential causes for this
decrease in gene numbers include errors in gene ID conversion
between gene naming conventions and unavailable protein inter-
action data, either due to missing data within the database or
a current lack of experimental interaction data. We found dif-
ferences between the three categories of disease genes, confirming
that heterogeneous genes display network topology properties dif-
ferent to that of the disease gene population as a whole, and to
those of Mendelian disease genes (Table 1).

Analysis was performed on both the full network and the largest
connected component (the largest interconnected group of nodes
within the network, LCC) to exclude disconnected nodes. Ini-
tial parameter calculations revealed a large percentage of isolated
nodes (nodes with a degree value of 0) within the three networks.
As detailed in previous studies (Hirschhorn and Daly, 2005; Bauer-
Mehren et al., 2011), human inherited diseases arise due to genetic
mutations that disrupt the complex interactions between network
components. Although parameter calculation using the LCC may
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Table 1 | Disease network parameters.

Full networks Largest connected component

Full disease Heterogeneity Mendelian Full disease Heterogeneity Mendelian

Number of nodes 2485 535 301 2040 (82.1%) 323 (60.4%) 134 (44.5%)

Average degree 7.305 2.931 1.362 8.881 4.669 2.866

Isolated nodes 415 (16.7%) 163 (30.5%) 148 (49.2%) N/A N/A N/A

Network centralization 0.113 0.128 0.049 0.137 0.207 0.100

Clustering coefficient 0.119 0.141 0.049 0.145 0.233 0.094

Network properties were calculated for each of the three full disease networks, and the largest connected component of these networks.The LCC calculations ignore
isolated nodes and clusters. For specific parameters, the percentage of nodes within the full network displaying each property is listed in parentheses.

provide a more accurate representation of disease gene connec-
tivity, perhaps correcting for any bias introduced as a result of
unavailable interaction data, a high number of isolated nodes
within these specific networks provides vital information. The
smaller percentage of Mendelian disease genes within the largest
connected component (44.5%) in comparison to the full disease
(82.1%) and locus heterogeneity (60.4%) networks, suggests that
Mendelian disease genes are not as interconnected as other disease
genes.

In both the full networks and the LCC networks, average degree
(the average number of interactions across all nodes) is largest
in the disease network and lowest in the Mendelian network.
Although the full disease network has a larger average degree, we
would expect to observe clustering in the heterogeneous network
due to the perturbation of different genes causing identical dis-
orders as a result of their functional pathway similarities (Guo
et al., 2013). Network centralization is a relative measure of node
isolation, and describes how nodes are connected on the scale of
the whole network (Dong and Horvath, 2007). The locus hetero-
geneity network has a larger centralization measure than the total
disease network and the Mendelian network for the full networks,
and the LCC (Table 1). This larger centralization score implies that
the heterogeneous network is more densely connected compared
to the other networks.

Additionally, we analyzed clustering in the various disease
networks. The average clustering coefficient characterizes the
tendency of nodes to form highly connected clusters, used previ-
ously by Ravasz et al. (2002) to study the modular organization
of metabolic networks. Our data show that the locus hetero-
geneity network has the largest average clustering coefficient of
the three disease networks for both the full network and the
LCC. This suggests that locus heterogeneity genes form groups
of highly interconnected clusters, confirming the prediction that
gene-products causing the same disorder interact with each
other.

LOCUS HETEROGENEITY GENES SHOW SIGNIFICANT
INTERCONNECTIVITY WITHIN THE GLOBAL PROTEIN INTERACTION
NETWORK
To investigate the connectivity of locus heterogeneity associated
proteins within the full CPDB interaction network, we utilized
the Perl module package Graph (Hietaniemi, 2014) to allow the

calculation of gene connectivity, and to perform randomizations
by assigning heterogeneity to the same number of a random
set of proteins and testing the resulting connectivity. We per-
formed 10,000 random simulations and calculated the percentage
of locus heterogeneity proteins connected to another locus het-
erogeneity protein with the network for comparison to the true
dataset.

The connectivity of actual locus heterogeneity proteins within
the network was 79.7%, which was significantly higher than the
connectivity in any of our random simulations, which displayed
a mean connectivity value of 41.9% (p < 0.0001; Figure 4).
Whilst showing that the connectivity of locus heterogeneity genes
is higher than expected by chance, this test also further confirms
the high degree of connectivity of heterogeneity genes within our
interaction network.

Using this same method to examine the connectivity of pro-
teins associated with single-gene Mendelian disorders produced
a significant result, although in this case the initial connectivity
percentage was 64%. This interconnectivity between Mendelian

FIGURE 4 | Locus heterogeneity gene interconnectivity within the full

CPDB network compared to random simulations. There is a normal
distribution of random simulations (black bars), with a mean value of 41.9%.
The red arrow indicates the actual percentage connectivity of locus
heterogeneity genes (79.7%), showing a significant difference from 10,000
random simulations.
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genes may be due to the large number of Mendelian disease
genes in our dataset affecting the same physiological systems
(Figure 2). However, proteins associated with locus heterogene-
ity are more connected than proteins associated with Mendelian
disease (79.7% compared with 64%), despite both sets of dis-
orders showing an equal distribution of physiological patholo-
gies. This further emphasizes the greater interconnectivity of
disease-associated locus heterogeneity genes compared to disease-
associated Mendelian genes.

CLUSTERING ANALYSIS OF THE HUMAN PROTEOME REVEALS HIGHLY
INTERCONNECTED MODULES OF LOCUS HETEROGENEITY GENES
Clustering analysis was performed on protein interaction networks
in an attempt to find protein complexes and functional clusters,
which can be identified as highly interconnected subgraphs. Topo-
logical modules signify areas of dense local connectivity within
a network, and with the use of experimental data, can be vali-
dated as functional modules of proteins defining an aggregation
of proteins with similar or related biological function (Vidal et al.,
2011). Here, a pre-existing algorithmic approach was used to
identify densely interconnected groups within the locus hetero-
geneity disease network, and through the application of IPA and
GO, we were able to confirm the functional relatedness of these
genes.

As suggested by the average clustering coefficient of the locus
heterogeneity disease network, we found that locus heterogeneity
genes responsible for the same disease tended to be highly inter-
connected, and were present in the same topological modules.
This result provides additional evidence for the highly intercon-
nected nature of locus heterogeneity proteins. We further predict
that a number of proteins within these modules positioned in
close proximity to a group of locus heterogeneity proteins may be
involved in the pathology of similar disorders, or may in fact be an
undiscovered cause for locus heterogeneity disorders. The follow-
ing examples [Bardet–Biedl syndrome, Leigh syndrome (LS), and
Kabuki syndrome (KS)] demonstrate how genes within the local
modular neighborhood of a locus heterogeneity disease gene may
be possible disease gene candidates.

These functional modules displayed an MCODE complex score
higher than 3, which indicates a greater accuracy and reliability
of predictions. To determine if the clustering algorithm altered
the modules produced from the network, modules were vali-
dated using alternative clustering algorithms. The Louvain method
(Blondel et al., 2008), EAGLE (Shen et al., 2009), and FAG-EC
(Li et al., 2009) provided alternative implementations of clus-
tering within our network, but still produced our three locus
heterogeneity disease modules. Further examples of modules iden-
tified, but not covered here, can be found in the supplementary
data.

Bardet–Biedl syndrome
Bardet–Biedl syndrome (BBS) is a genetically and clinically het-
erogeneous disorder of developmental origin caused by mutations
in a number of loci, with primary features including retinal dys-
trophy, hypogenitalism, renal malformations, and obesity (Badano
et al., 2003). A number of studies have highlighted that the primary
cause of BBS is ciliary dysfunction, and it is noted as one of the first

disease to have an etiology associated with epithelia dysfunction
(Zaghloul and Katsanis, 2009). Genes involved in this disorder are
therefore suspected to play vital roles in cilia structures within cells
(Baker and Beales, 2009). For example, genes associated with BBS
are vital for sensory perception (such as hearing and sight), with
BBS gene products displaying an involvement in the maintenance
and function of cilia (Baker and Beales, 2009). Mutations in BBS
genes lead to defects in cell structures important in chemical sig-
naling pathways, causing aberrations of regular sensory perception
(Tobin and Beales, 2007).

Clustering analysis of our network using the MCODE algo-
rithm (Bader and Hogue, 2003) revealed a high scoring cluster, in
which many nodes were tagged as BBS affected proteins (Figure 5).
This module shows a number of locus heterogeneity genes (red),
all of which encode BBS causing proteins. Surrounding nodes
for genes not currently associated with BBS (gray) interconnect
with a minimum of two BBS causing genes, suggesting a poten-
tial involvement in or cause of BBS for these other connected
genes.

The most highly connected of these ‘healthy’ proteins is
CCDC28B. Literature searches confirmed that this gene-product
has known involvement in an alternative form of BBS. BBS is usu-
ally inherited in a monogenic autosomal recessive manner; in rare
cases three mutations across two loci modify the onset and sever-
ity of the phenotype. Along with genes already annotated within
our dataset, studies have shown that CCDC28B is one of these
modifier genes (Beales et al., 2003; Badano et al., 2006).

The proteins in our network currently lacking in BBS anno-
tations preferentially connect with BBS1, BBS 2, BBS4 and
BBS7, with the exception of PCM1, which also interacts with
BBIP1. According to GO analysis, a number of these proteins
are involved in cilium assembly (p = 7.37e-18) and epithelial neo-
plasia (p = 1.21e-22), similar to known BBS causing genes. The
molecular chaperone HscB only has three characterized protein
interactions, all of which are with BBS causing proteins. The
HscB protein displays similar cellular localization and interac-
tions with BBS proteins, and previous studies have shown the
HscB mutations have the ability to cause protein folding mal-
formations (Vickery and Cupp-Vickery, 2007). Therefore, these
data suggest that HscB may be a potential BBS candidate. Another
protein with no current disease annotations is RAB3IP. A num-
ber of studies have shown that core BBS proteins form a complex
that cooperate with GTPases, including RAB3IP, to promote cil-
iary membrane biogenesis (Nachury et al., 2007; Westlake et al.,
2011). Nachury et al. (2007) used zebrafish to show that block-
ing of GTPase production prevents ciliogenesis in cells, yielding
BBS-like phenotypes. Although this is yet to be proven in humans,
the interconnectivity between RAB3IP and known BBS causing
genes suggests that RAB3IP may be a candidate BBS causing
gene.

Leigh syndrome
Leigh syndrome is characterized by severe neurodegeneration aris-
ing typically within the first year of life, manifesting clinically
through rapid deterioration of cognitive and motor functions
due to lesions in the basal ganglia and brain stem of affected
patients, with clinical and genetic heterogeneity (Finsterer, 2008;
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FIGURE 5 | Interconnectivity of Bardet–Biedl syndrome genes. Circular nodes represent proteins, with the lines between them signifying an interaction
between the two proteins.

Baertling et al., 2014). Since LS is classed strictly as a mitochon-
drial disorder, associated mutations affect genes connected with
the mitochondrial and nuclear genomes, making the discovery
of genes suspected to be involved in the disorder challenging
(Finsterer, 2008). In healthy individuals, wild-type forms of
LS genes are involved in energy production in the mitochon-
dria. Many gene mutations associated with LS disrupt protein
complexes that are vital to the process of oxidative phosphory-
lation, therefore preventing maximal energy production by the
mitochondria. Other mutations known to cause LS also act to
obstruct protein complexes involved inoxidative phosphoryla-
tion, or other processes relating to energy production (Gerralds,
2014).

The module shown in Figure 6 involves four LS affected pro-
teins surrounded by a number of proteins without disease anno-
tations. Compared to the previous example, these non-disease
proteins show a more varied connection to locus heterogeneity
proteins. Two proteins, NDUFA6 and NDUFB10, both connect
to three LS genes and, according to IPA, belong to the identical
canonical pathways as these three LS affected proteins (mito-
chondrial dysfunction and oxidative phosphorylation). Further
inspection using GO analysis confirmed that the two unmarked
proteins are involved in the same biological processes as our LS

causing genes, for example the respiratory electron transport
chain (p = 6.94e-15). Previous studies analyzing these mitochon-
drial enzymes have suggested that they have an involvement in
neurodegeneration, and that their perturbation may play a role
in neurodegenerative disorders (Harris et al., 2007; Kaltenbach
et al., 2007; Satoh et al., 2013). Therefore, the interconnectivity
of NDUFA6 and NDUFB10 proteins with LS causative proteins
implies that specific mutations in these genes may produce an LS
phenotype.

In contrast, other surrounding genes only connect to one
LS protein and show less connectivity to the disorder, therefore
making them less likely to be disease candidates. Although these
proteins localize to the mitochondria, they are not found in the
same canonical pathways (mitochondrial dysfunction and oxida-
tive phosphorylation) as known LS genes. This result suggests that
genes with a higher degree of connectivity to multiple heteroge-
neous genes increases the likelihood of that gene’s involvement
in the same biological processes, and therefore increases a gene’s
potential to be a disease candidate.

Kabuki syndrome
Whilst the two disorders discussed previously show severe locus
heterogeneity, KS is only known to occur through mutations in
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FIGURE 6 | Leigh syndrome gene clustering. Each circular node denotes
a protein and a line illustrates an interaction between two proteins.

the histone methyltransferases KMT2D (also known as MLL2)
or KDM6A, causing a breakdown in the epigenetic control of
active chromatin states (Hannibal et al., 2011). KS is a congeni-
tal disorder presenting with multiple malformations of the facial
area, ID and cardiac defects (Bokinni, 2012). In a number of
cases, KS patients have no identified KMT2D or KDM6A gene
mutations (Miyake et al., 2013). Whilst in these cases the cause
of the disorder is unknown, these additional cases indicate that
the disorder may show further heterogeneity (Bokinni, 2012).
Wild-type KS genes produce enzymes that function as histone
methyltransferases, regulating the activity of genes in many of the
body’s organs and tissues. The absence of these functional enzymes
therefore prevents the correct activation of several genes, leading
the physiological abnormalities observed in KS patients (Bokinni,
2012).

Clustering analysis revealed a module whereby five proteins
interconnect with one another, including the two KS associated
proteins (Figure 7). Additionally, according to GO analysis all
proteins within this submodule localize within the nucleus, specif-
ically within histone methyltransferase complexes (p = 3.56e-7),
and have identical biological processes in chromatin modification
(p = 2.19e-7). Perhaps the most interesting of these connected
genes is KMT2C (MLL3), a lysine-specific methyltransferase that
acts in a similar manner to KMT2D, and has recently shown strong
associations to other neoplasmic disorders (Li et al., 2013a,b).
DPY30 is another of these connected proteins, for which experi-
mental evidence is limited in humans. Jiang et al. (2011) suggests
a role for DPY30 in histone methyltransferase complex regula-
tion, but its function in human disease is yet to be fully explored.
The final of these connected proteins, PAXI1, associates with
methyltransferases to maintain genome integrity during gene

FIGURE 7 | Heterogeneity of genes causing Kabuki syndrome. Lines
signify interactions between two proteins, represented by circular nodes.

rearrangements and has been labeled as “the gatekeeper of thymo-
cyte development” (Callen et al., 2012; Papatriantafyllou, 2013).
Callen et al. (2012) have shown that PAXI1 has specific roles
in DNA repair and transcription to prevent oncogenic DNA
damage.

Current knowledge of the roles of the genes KMT2C, KMT2D,
and PAXI1, along with their interconnectivity with the two known
KS proteins and evidence in the literature that KS may be caused
by mutations in additional genes, suggests that these genes should
be the target of genetic screening in patients where KMT2D and
KDM6A mutations have not been detected.

DISCUSSION
Our study demonstrates that disease genes expressing locus hetero-
geneity display properties that allow them to be distinguished from
disease genes causing simple Mendelian disorders, such as sickle
cell anemia, and disease genes as a whole. Analysis of the human
proteome revealed that proteins encoded by locus heterogeneity
genes are highly interconnected with those involved in the same
disorder, grouping together in the clustering analysis of the net-
work (Figures 5–7). In agreement with a study by Bauer-Mehren
et al. (2011), we found that locus heterogeneity genes display mod-
ularity and tend to associate within the same biological pathways,
suggesting that these disorders are associated with a set of biologi-
cal pathways, rather than single pathways. As suggested by Furlong
(2013) the modularity observed by locus heterogeneity genes is
similar to those involved in a numbers of cancers, including breast
(Walsh and King, 2007) and pancreatic cancers (Jones et al., 2008),
whereby the same cancer type can be the result of mutations in a
number of different genes. Walsh and King (2007) have suggested,
because these genes converge on specific biological functions, that
there are still other breast cancer genes to be identified. Examin-
ing the clustering and connectivity of genes connected to known
cancer genes within biological networks provides an opportunity
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to reveal candidate disease genes to promote further study and
investigation.

The techniques employed here have been used in recent studies
concerning ASD and ID, a group of disorders that display con-
siderable locus heterogeneity (O’Roak et al., 2012; Krumm et al.,
2014). Protein interaction networks have been used in these stud-
ies to show the significant enrichment of de novo mutations in a
group of Fragile-X syndrome genes (Iossifov et al., 2012), and to
demonstrate that previously identified ASD and ID risk genes have
a reduced network distance, therefore being more closely associ-
ated in the network (Neale et al., 2012). Most notably, O’Roak
et al. (2012) mapped ASD genes from patient exome data onto
a protein interaction network to show that the most severe de
novo mutations mapped to a highly interconnected network sig-
nificantly enriched for autism candidate genes. As well as further
confirming the “extreme” locus heterogeneity of ASD, these results
have provided a pathway for future discovery.

The use of protein interaction networks in this study allowed for
large-scale comparisons of 1000s of protein interactions curated
from a number of experimental sources. Despite the ability to eas-
ily identify relationships between genes, and the extent to which
proteins interconnect, these networks, and the methods used to
analyze them, have important limitations which must be consid-
ered. Firstly, even though interactions within the network have
been experimentally verified from a number of sources, pro-
tein interactions are often difficult to assay on a proteomic scale,
leading to false negative and false positive results. As well as an
inability to distinguish between transient and obligate interac-
tions within the network, data concerning the spatial and temporal
nature of interactions is often limited or ignored for network
reconstructions such as this. Finally, the importance of partic-
ular interactions can vary between nodes, even within clusters,
meaning that experimental validation of candidate predictions is
vital (O’Roak et al., 2012). Integrating various layers of experi-
mental data will become common practice in future studies, and
will facilitate the production of networks that are more biologi-
cally representative of the systems they are modeling. A potential
difficulty when using clustering algorithms on networks of this
scale is the reliability of the results obtained. This can be allevi-
ated through using sensible score thresholds, along with multiple
clustering methods to remove any spurious results (Barabasi et al.,
2011). In this study, we used a score threshold determined through
comparisons of theoretical and experimentally derived protein
pathways and complexes (Bader and Hogue, 2003). We then
implemented three alternative clustering methods to increase the
reliability of the disease modules obtained. The discovery of the
same clusters using different methods indicates that these sub-
modules are likely to be of biological relevance to the diseases
characterized.

Although the complete landscape of heterogeneous disease is
larger and more diverse than explored here, our results imply that
locus heterogeneity genes show distinct properties allowing the
identification of novel disease genes in the local network neigh-
borhood, providing a pathway for further experimental study and
candidate gene identification. Our finding that proteins encoded
by locus heterogeneity disease genes are more highly intercon-
nected than other types of disease genes indicates that clustering

analysis will have particular value in identifying additional as yet
unknown causative genes for diseases displaying locus heterogene-
ity. Increasing our understanding of specific gene classifications is
essential to improve our knowledge of human disorders. As shown
here, focusing on specific subsets of disease genes allows us to pro-
vide novel insights on a systems level to direct future research. As
proteomic research continues, delivering a greater depth and reli-
ability to human protein interaction data, we believe that studies
such as this will become essential in providing novel advances to
aid the identification of disease genes.
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