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It is widely accepted that aging is characterized by a gradual decline in the efficiency
and accuracy of biological processes, leading to deterioration of physiological functions
and development of age-associated diseases. Age-dependent accumulation of genomic
instability and development of metabolic syndrome are well-recognized components of the
aging phenotype, both of which have been extensively studied. Existing findings strongly
support the view that the integrity of the cellular genome and metabolic function can
be influenced by light at night (LAN) and associated suppression of circadian melatonin
production. While LAN is reported to accelerate aging by promoting age-associated
carcinogenesis in several animal models, the specific molecular mechanism(s) of its
action are not fully understood. Here, we review literature supporting a connection
between LAN-induced central circadian disruption of peripheral circadian rhythms and clock
function, LINE-1 retrotransposon-associated genomic instability, metabolic deregulation,
and aging. We propose that aging is a progressive decline in the stability, continuity,
and synchronization of multi-frequency oscillations in biological processes to a temporally
disorganized state. By extension, healthy aging is the ability to maintain the most
consistent, stable, and entrainable rhythmicity and coordination of these oscillations, at
the molecular, cellular, and systemic levels.
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GENOMIC INSTABILITY, ITS SOURCES, AND IMPACT ON
AGING
Genomic instability is a hallmark of many human diseases with
cancer and progeroid syndromes representing the most common
outcomes associated with the loss of genome integrity (Anisimov,
2003; Campisi, 2005; Coppede and Migliore, 2010; Vijg and Suh,
2013). The link between genomic instability, cancer, and aging is
not surprising as accumulation of mutations resulting in clinically
relevant tumors takes time. Further evidence for the importance of
cancer prevention for extended longevity resides in the resistance
of long-lived rodents to spontaneous and induced tumorigenesis.
These exceptional animals exemplify unique evolutionary adap-
tations preventing cancer development (Gorbunova et al., 2012;
Tian et al., 2013). Humans also possess genes positively associ-
ated with longevity (Jazwinski et al., 2010; Kim et al., 2012), and
exceptionally long-lived individuals typically do not develop can-
cer, often despite practicing unhealthy lifestyles. This is probably
achieved by assuring the fidelity of DNA damage repair, which
normally declines with age (Gorbunova et al., 2007).

Genomic instability arises from either exogenous or endoge-
nous sources. Numerous exogenous carcinogenic agents (IR, UV,
heavy metals, cigarette smoke, etc.) are well recognized. Artificial
LAN represents a recent and unique addition to the list of genome
offenders. Night shift work, which is regarded in epidemiological

studies as a surrogate for LAN, involving circadian disruption has
been recognized as a probable carcinogen (class 2a) by the World
Health Organization (Bonde et al., 2012; Stevens et al., 2013, 2014).
While the mechanistic relationship between this environmental
factor and genomic instability is not well understood, its negative
effect on genome integrity is substantiated by the fact that LAN
increases cancer risk in humans and promotes aging and cancer
growth in animal models (Davis et al., 2001; Schernhammer et al.,
2001; Anisimov et al., 2004; Megdal et al., 2005; Vinogradova et al.,
2009; Zhu et al., 2009; Wu et al., 2011).

Among established endogenous sources of DNA damage are
reactive oxygen species (ROS), stalled replication forks, replica-
tion errors, and mitochondrial dysfunction. Much research has
been dedicated to understanding their origin and their contribu-
tion to aging (Vijg and Suh, 2013). Another, frequently overlooked,
source of endogenous genomic instability are transposable ele-
ments. These entities, which are present in most analyzed genomes,
can rearrange the genetic material of their hosts in the process of
their mobilization (reviewed in Belancio et al., 2010a). While their
role in aging and cancer has long been debated, the empirical
evidence for their actual involvement in these processes has only
recently begun to accumulate (Gasior et al., 2006; Belancio et al.,
2010b; Evrony et al., 2012; Lee et al., 2012; Solyom et al., 2012;
De Cecco et al., 2013).
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Genomic instability manifests itself in different ways. Sin-
gle base-pair substitutions or deletions are the smallest genetic
changes that can completely abolish gene function when they
occur at positions critical for gene expression or activity. Another
type of mutation is large genomic rearrangements such as dele-
tions, insertions, inversions, and translocations, often referred to
as chromosomal instability. They commonly result from the mis-
repair of DNA double-strand breaks (DSBs), which can be caused
by stalled replication forks or external and endogenous DNA dam-
aging agents. While all types of mutations are known to contribute
to tumorigenesis, the rate and the spectrum of their accumulation
with age demonstrates significant variation and tissue-specificity
(Vijg and Dolle, 2002). Large genomic deletions, rather than point
mutations, are believed to contribute to the aging phenotype as
they are more likely to perturb regulation of gene expression, lead-
ing to accumulation of dysfunctional mosaic cells in aging tissues
(Vijg and Dolle, 2002; Hsieh et al., 2013).

The spectrum and rate of accumulation of mutations can be
greatly affected by genotype and environmental exposures with
many, seemingly independent, cellular processes, and external
factors influencing genome stability. Among the relevant genes
are those involved in DNA repair, circadian regulation, and
metabolism (Fu et al., 2002; Grimaldi et al., 2010; Kang et al.,
2011; Gotoh et al., 2014). The pathways they specify can be dis-
rupted or altered by various environmental cues such as LAN and
diet. Not surprisingly, mutations abrogating these pathways lead
to increased genomic instability and age-associated diseases. The
majority of proteins involved in DNA repair, metabolism, and
circadian pathways are highly conserved among evolutionarily
distant organisms, further underscoring the fundamental impor-
tance of maintaining DNA integrity. Thus, the genetic, metabolic,
and environmental effects on aging can be considered in the con-
text of interconnected entities of the same system, synchronized
with its environment, rather than individual, autonomous path-
ways. Here, we discuss emerging connections between genomic
instability, transposable elements, circadian regulation, and
metabolism.

RETROELEMENTS AND AGING
Retroelements are mobile genetic entities that are a universal
feature of many evolutionarily diverse organisms (reviewed in
Belancio et al., 2008). Only 25% of the genome of the naked
mole rat, a long-lived rodent, is occupied by transposon-derived
repeats compared to 40% in human, 37% in mouse, and 35% in
rat (Keane et al., 2014). Retroelements belong to two evolution-
arily related groups of LTR (long terminal repeat) and non-LTR
retrotransposons. In mammals, they are represented by endoge-
nous retroviruses and Long and Short Interspersed Elements
(LINEs and SINEs) and SVA elements, respectively (reviewed in
Belancio et al., 2008). Non-LTR retroelements amplify through
a “copy-and-paste” mechanism, which has allowed them to
amass to over 500,000 copies per genome (Lander et al., 2001;
Bibillo and Eickbush, 2002). LINEs, SINEs, and SVA are the
only retrotransposons currently active in the human genome
(Lander et al., 2001).

L1 elements can contribute to genomic instability through the
retrotransposition of themselves and their parasites Alu and SVA

(Moran et al., 1996; Dewannieux et al., 2003; Hancks et al., 2011;
Raiz et al., 2012), as well as by induction of DSBs (Gasior et al.,
2006; Belancio et al., 2010b; Kines et al., 2014). Both types of dam-
age rely on the function of the endonuclease domain (EN) of the
L1 ORF2 protein (Feng et al., 1996). EN is responsible for breaking
genomic DNA to initiate de novo integration. The L1 ORF2p also
possesses a reverse transcriptase (RT) domain, which functionally
connects L1 to all RT-using entities (Mathias et al., 1991).

Historically, L1 activity was believed to be restricted to the germ
line, early embryogenesis, and transformed somatic cells. The dis-
covery of endogenous L1 mRNA expression in normal human
tissues opened the possibility of L1 involvement in aging (Belan-
cio et al., 2010b), and the report of endogenous L1 mobilization
within human cortex and caudate neurons (Evrony et al., 2012)
provided the first direct evidence of L1 activity in normal cells.
Next generation sequencing (NGS) conducted at the single cell
level showed a rate of 0.04–0.07 somatic L1 inserts per neuron.
With an estimated 100 billion neurons per human brain and 50
trillion cells per human body, this finding suggests that there are
about 4 billion neurons containing somatic L1 inserts in an aver-
age human brain and millions of de novo L1 integration events in
every normal individual.

While some understanding of the rate of L1 retrotransposi-
tion in vivo is emerging, the amount of damage associated with
L1-induced DSBs remains unknown. Some evidence exists that
DSBs associated with L1 activity are 10–100 times more frequent
than de novo L1 integrations (Gasior et al., 2006), suggesting that
L1 may be responsible for 0.4–7 DSBs per cell. DSBs are one of
the most harmful lesions in mammalian cells, because they are
typically mutagenic when misrepaired by the NHEJ repair path-
way (Gorbunova and Seluanov, 2005). DSB-induced mutations
and unrepaired DSBs are known to accumulate with age (Vijg
and Dolle, 2002; Sedelnikova et al., 2004). DSBs can be toxic to
mammalian cells when unrepaired. Consistent with this notion,
transient L1 overexpression in primary normal human cells and
stem cells leads to apoptosis or senescence (Belancio et al., 2010b).
This could potentially be one of the reasons for detection of low
L1 retrotransposition in vivo, as normal cells supporting high L1
activity may be efficiently eliminated. L1-induced senescence of
adult stem cells could contribute to their depletion with age. All
of the above suggest that L1 may be responsible for the generation
of mutations reported to accumulate with age as well as for pro-
moting cellular senescence which is reported to increase with age
(Jeyapalan et al., 2007).

The estimated L1 insertion frequency reflects retrotransposi-
tion in a cellular environment with all mechanisms in place to
suppress these elements. There is a continually growing list of
mammalian genes that negatively regulate different steps of the L1
replication cycle (reviewed in Belancio et al., 2008). Even though
most of these have not yet been validated in vivo, their increas-
ing number and the diversity of the pathways reported to control
L1 activity underscore the necessity of their efficient suppression.
It has been hypothesized that genomes deficient in cellular func-
tions critical for L1 downregulation are burdened with higher rates
of L1-induced genomic instability. For example, most human
cancers support higher L1 expression than the normal tissues
from which they have originated (Bratthauer and Fanning, 1992;

Frontiers in Genetics | Genetics of Aging January 2015 | Volume 5 | Article 455 | 2

http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive


Belancio et al. The aging clock, metabolism, and genome stability

Bratthauer et al., 1994). Recent NGS studies of L1 retrotranspo-
sition in human cancers provide experimental support for higher
de novo L1 mobilization in human tumors relative to normal
somatic tissues (Lee et al., 2012; Solyom et al., 2012; Tubio et al.,
2014). As most human cancers harbor defects in many DNA repair
or DDR pathways, these findings suggest that the rate of de novo L1
retrotransposition in normal tissues may increase with acquired
elimination or age-associated decline of negative regulators of the
L1 replication cycle. The significant redundancy of pathways sup-
pressing L1 activity suggests that increased L1 mobilization may
occur with sequential inactivation of multiple pathways or through
circadian disruption of a “master regulator” controlling multiple
cellular processes.

There are several tangible connections between L1 activity and
the host circadian system (Figure 1). One of the recently discov-
ered factors suppressing L1 is melatonin signaling (Deharo et al.,
2014). Activation of melatonin receptor 1 (MT1) suppresses L1
expression in an in vivo cancer model and dramatically decreases
L1 retrotransposition in cultured cells. This connects the activity
of an endogenous DNA damaging entity with a component of the

FIGURE 1 | Light exposure at night accelerates aging by impeding or

enhancing processes associated with aging. (A) Usually aging involves
normal light exposure that is characterized by alternating intervals of light
and dark over a 24-h period, which result in circadian production of
nocturnal melatonin. This leads to the synchronization of peripheral clock
(PC) function controlling many biochemical processes in cells including L1
expression and activity (Deharo et al., 2014) and the DNA damage response
(DDR). (B) Exposure to light at night (LAN) is reported to accelerate aging.
LAN blocks nocturnal melatonin production which prevents synchronization
of PCs, leading to the disruption of timely function of many biochemical
processes in cells including L1 expression and activity, DDR, and
metabolism.

host circadian system and with the periodicity of environmen-
tal light exposure. In addition to its direct effect on L1 through
downregulation of L1 ORF1 protein, melatonin signaling is also
involved in the synchronization of uniquely timed biochemical
functions in peripheral tissues and their associated cellular clock
mechanisms which include the DDR. This suggests that circadian
disruption may also indirectly increase L1 activity via deregulation
of pathways important for the suppression of these elements. The
best example is the reported circadian regulation of the nucleotide
excision repair (NER) pathway activity in mice (Kang et al., 2009),
which is also a suppressor of L1 retrotransposition in cultured cells
(Gasior et al., 2008).

CIRCADIAN CONNECTION BETWEEN AGING, METABOLISM,
AND GENOME STABILITY
The functions performed by individual cells are coordinated
with the activity of their neighboring and distant cells by the
circadian system (Dibner et al., 2010). The circadian system typ-
ically contains three major components: a central clock (CC),
an entrainment pathway(s), and CC-responsive peripheral tissues
and their associated peripheral clocks (PCs). The CC is located
in the hypothalamic suprachiasmatic nucleus (SCN) of the brain
and it is often referred to as the “master clock” because of its
autonomous nature. The autoregulatory activity of the CC pro-
vides temporal organization of rhythmic function of PCs and thus
many molecular processes in somatic tissues. While self-sufficient,
the CC is entrained (synchronized) by external stimuli which is
essential for adaptation of various functions within organisms in
anticipation of daily changes in their environment.

The most potent external stimulus influencing the activity of
the CC is environmental light/dark cycle. Daily periodicity of
the light/dark cycle synchronizes the CC-driven oscillation of
melatonin production in the pineal gland. Melatonin is a neu-
rohormone that is produced during the dark phase of the 24 h
light/dark cycle. Melatonin is an ancient and evolutionarily con-
served molecule that is found in animals, plants, and microbes.
Its main role in mammals is to inform the CC and all periph-
eral cells (including their endogenous clockworks) of the onset of
nighttime (darkness) and to initiate actions associated with the
nighttime of the daily cycle (Pfeffer et al., 2012). Like light dur-
ing the daytime, melatonin during the nighttime helps to reset
the CC in mammals. Melatonin functions through its G-protein
coupled receptors MT1 and MT2 both of which are expressed in
the CNS and peripheral tissues (Masana and Dubocovich, 2001;
Poirel et al., 2003). Interestingly, the nocturnal mode of melatonin
production is the same in both nocturnal and diurnal animals
even though they exhibit inverse times of their sleep/wake activ-
ity (Dauchy et al., 2010). Despite these behavioral differences, the
disruption of the circadian melatonin signal in both leads to the
same negative effects on their health (Vinogradova et al., 2009),
supporting an important, sleep-independent role of melatonin on
health.

Melatonin production can be easily disrupted by LAN which
commonly occurs in shift workers (Lewy et al., 1980; Blask et al.,
2011). Melatonin synthesis also declines with age (Reiter et al.,
2002; Hill et al., 2010; Zhdanova et al., 2011; Baba et al., 2012).
LAN-induced melatonin suppression is associated with metabolic
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dysfunction, obesity, and an increased risk of several malignan-
cies (Anisimov et al., 2004; Blask et al., 2005, 2011, 2014; Lai et al.,
2009; Vinogradova et al., 2009; Wu et al., 2011). While the effect
of LAN on human aging is not known, the LAN-induced short-
ening of life span in rodent models supports the existence of a
biological connection between CC and PC functions, genomic
instability, metabolism, and aging (Reiter et al., 2002; Wood et al.,
2009; Figure 1). Recent findings have demonstrated a direct rela-
tionship between the biological clock, aging, and sphingolipid
metabolism, arguing for a conserved circadian-based mechanism
of aging from fungi to humans (Case et al., 2014).

Metabolic cycles are tightly coupled with both CC and PCs
allowing both diurnal and nocturnal mammalian species to
coordinate nutrient use and storage with light/dark entrained
sleep/wake cycles in the overall regulation of organismal bioener-
getics (Bass, 2012). Metabolically active tissues (e.g., liver, adipose
tissue, skeletal muscle) are highly responsive to circadian oscilla-
tions in circulating glucose, fatty acids, triglycerides, and metabolic
hormones (Bellet and Sassone-Corsi, 2010). Circadian clocks con-
trol several critical metabolic pathways and, conversely, metabolic
processes exert important feedback effects on the molecular clock
machinery. A significant player in the bidirectional interactions
between circadian signaling and metabolic activities is thought to
be nicotinamide adenine dinucleotide (NAD+) which functions
as an electron shuttle in oxidoreductase reactions. Additionally,
NAD+ is a critical cofactor for sirtuins, most notably SIRT1, which
regulate metabolism in response to caloric restriction and as mod-
ulators of oxidative damage and DNA repair processes that appear
to be critical for lifespan. The circadian regulation of NAD+-
dependent sirtuin activity may have implications for healthy aging
and oxidative metabolism that is particularly relevant to the asso-
ciation of circadian period length and longevity (Bass, 2012; Masri
and Sassone-Corsi, 2014). Further support for the presence and

conservation of this mechanism comes from the discovery that
human Sirt1 and six modulate the function of circadian clock
genes (Asher et al., 2008; Jung-Hynes et al., 2010; Chang and Guar-
ente, 2013; Masri et al., 2014) and the expression of Sirt1 and some
clock genes in normal tissues is enhanced by melatonin (Chang
et al., 2009; Yu et al., 2014).

Melatonin is a powerful antioxidant that suppresses ROS
(Reiter et al., 2010) and through its receptor downregulates L1
retrotransposons (Deharo et al., 2014), both of which may elicit
DNA damage in the absence of melatonin. Suppression of mela-
tonin signaling is also known to impair cell signaling pathways
important for DNA repair, apoptosis, and cellular differentiation
(Xiang et al., 2008; Hill et al., 2009; Blask et al., 2011). There is
growing support for a connection between systemic DDR, which
could be caused by L1 activity, and attenuation of p53 function and
metabolic changes, consistent with the age-dependent and LAN-
induced decline in DDR efficiency and development of metabolic
syndrome caused by decline in circadian clock activity (Erol, 2010;
Feng et al., 2012). Furthermore, caloric restriction delays age-
associated decline in melatonin production in rhesus monkeys
(Roth et al., 2001) and resets circadian rhythms in mice (Froy
et al., 2008). In contrast, high fat diet disrupts the normal circadian
cycle (Eckel-Mahan et al., 2013). Interestingly, DNA damage itself
can reset the circadian clock (Gamsby et al., 2009) suggesting the
possibility that controlled periodicity of intrinsic DNA damage
in tissues with a synchronized clock may facilitate its maintenance
(Figure 2). On the other hand, deregulation of intrinsic DNA dam-
age response caused by LAN may further promote desynchroniza-
tion of PCs. Thus, melatonin signaling is positively associated with
molecular functions that activate cellular pathways involved in the
maintenance of genome stability and metabolism that are central
to healthy aging. Collectively, current data suggest that LAN-
induced disruption of the CC and the associated disruption of the

FIGURE 2 | Longitudinal effect of LAN on PC function, DDR, and

metabolism. Schematic representation of the effect of normal light exposure
versus LAN on the age-associated deterioration of PCs. The maintenance of
the normal light/dark cycle promotes circadian melatonin output and
synchronization of the PC (black line) with DDR and metabolic function (red
line). An age-associated decline in melatonin production and melatonin
receptor expression (Hill et al., 2010) leads to the gradual decline in the

amplitude of the peripheral rhythms and potentially their synchronization with
DDR and metabolic function. We hypothesize that LAN accelerates aging by
promoting age-associated decline in the amplitude of the peripheral rhythms
and their synchronization with DDR and metabolic function at early age.
Individual genomes may provide molecular machinery to resist adverse
effects of LAN, explaining the variation in lifespan observed in the human
population.
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PC activate L1-associated DNA damage and metabolic changes
in normal tissues, which may contribute to the LAN-induced
acceleration of aging manifested in age-associated changes and
diseases.

CONCLUDING REMARKS
Aging has largely been discussed as a complex, but for the most
part, linear progression from the beginning to the end of life.
The multitude of differences between convenient experimental
and simplistic approaches and the actual complexity of life as
we age in a continuously changing environment (Chang et al.,
2009; Yu et al., 2014) forces us to refine this view. We propose
that during aging there is a progressive loss of synchronized
oscillation of biological processes along the axis of life accom-
panied by a continuous decline in their amplitude (Figure 2). By
extension, healthy aging is the ability to maintain the most con-
sistent light/dark entrainable rhythmicity and coordination at the
molecular, cellular, and systemic levels throughout the lifespan,
originating in the genetically programmed resistance to environ-
mental cues and stress capable of disrupting this balanced pro-
gression. This definition has the potential to explain the puzzling
coexistence of an unhealthy lifestyle with an exceptionally long
survival.
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