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The insulin-like growth factor 1 (IGF-1) signaling pathway regulates critical biological
processes including development, homeostasis, and aging. Dysregulation of this pathway
has been implicated in a myriad of diseases such as cancers, neurodegenerative diseases,
and metabolic disorders, making the IGF-1 signaling pathway a prime target to develop
therapeutic and intervention strategies. Recently, small non-coding RNA molecules in ~22
nucleotide length, microRNAs (miRNAs), have emerged as a new regulator of biological
processes in virtually all organ systems and increasing studies are linking altered miRNA
function to disease mechanisms. A miRNA binds to 3'UTRs of multiple target genes and
coordinately downregulates their expression, thereby exerting a profound influence on
gene regulatory networks. Here we review the components of the IGF-1 signaling pathway
that are known targets of miRNA regulation, and highlight recent studies that suggest
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INTRODUCTION

The insulin-like growth factor 1 (IGF-1) signaling pathway is
a highly conserved regulatory module that coordinates growth,
development, and metabolism. It regulates multiple cellular pro-
cesses including proliferation, differentiation, energy metabolism,
glucose homeostasis (Chen etal., 2010; Smith-Vikos and Slack,
2012). The IGF-1 signaling pathway is comprised of ligands,
IGF binding proteins (IGFBPs) that modulate ligand availability,
transmembrane receptors, and downstream signaling and effec-
tor molecules (Figure 1; Zha and Lackner, 2010). IGF-1 binds to
insulin-like growth factor 1 receptor (IGF-1R), a heterotetrameric
transmembrane receptor tyrosine kinase (RTK) comprised of two
alpha and two beta subunits. Binding of the ligand to IGF-1R leads
to receptor activation through autophosphorylation of IGF-1R.
Activation of IGF-1R results in the recruitment and phospho-
rylation of multiple adaptor proteins including insulin receptor
substrates (IRSs) and Shc, leading to activation of two pro-
survival signaling pathways. Phosphorylation of IRS-1 or IRS-2
activates phosphoinositol 3-kinase (PI3K)-PDK1-AKT signaling
pathway, while phosphorylation of Shc leads to activation of RAS,
RAF and extracellular signal-regulated kinase (ERK)/mitogen-
activated protein kinase (MAPK) signaling pathway. Activation
of AKT through phosphorylation at Threonine 308 by PDK1
or at Serine 473 by mTORC2 promotes cell survival by multi-
ple mechanisms, including inhibition of apoptosis and induction
of pro-survival gene expression. AKT signaling also influences
glucose metabolism by regulating GSK-3f activity and protein
synthesis and cell growth by regulating the activity of the mTORC1
complex (Efeyan and Sabatini, 2010). Phosphorylation of GSK3p
by AKT blocks its activity, leading to the dephosphorylation
and activation of the eukaryotic translation initiation factor 2B
(eIF2B) involved in protein synthesis and cell survival (Welsh
etal., 1998). AKT phosphorylation inhibits Tuberous sclerosis

therapeutic potential of these miRNAs against various diseases.
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protein 2 (TSC2), a GTPase activating protein (GAP), lead-
ing to activation of mTORI complex followed by activation of
S6K. This results in release of 4EB-P1 from eIF4E which can
then direct ribosomes to the cap structure of mRNAs to pro-
mote cap-dependent translation, one of major functions of the
IGF-1R axis (Tognon and Sorensen, 2012). The other parallel path-
way, the RAS-RAF-MAPK, stimulates cell proliferation (Pollak,
2008).

Dysregulation of the IGF-1 signaling pathway has been impli-
cated in a variety of aging-related diseases including muscle
disease, cardiovascular diseases (CVDs), neurodegenerative dis-
eases, metabolic diseases, and cancer (Andreassen etal., 2009; Zha
and Lackner, 2010; Zemva and Schubert, 2011; O’Neill et al., 2012;
Piccirillo etal., 2014). In addition, it is one of the major con-
served pathways of aging that regulate lifespan in model organisms
across a great evolutionary distance from Caenorhabditis elegans
(Kimura etal., 1997), Drosophila (Tatar etal., 2001), and to mice.
Reduced signaling of the IGF1 pathway has been implicated in
human longevity (Tazearslan etal., 2011; Milman etal., 2014) as
in model organisms. Therefore, there has been a great deal of atten-
tion toward development of therapeutic intervention targeting the
IGF-1 signaling pathway (Yuen and Macaulay, 2008). Clinical trials
are now ongoing with directed targeting of IGF signaling against
advanced solid tumors such as non-small cell lung cancer (NSCLC;
Karp etal., 2009; Ramalingam etal., 2011).

Recently, microRNAs (miRNAs) have emerged as a new regu-
lator of critical biological processes and shown to be involved in
disease mechanisms, including cancer, cardiovascular, and neu-
rodegenerative disease (Saugstad, 2010; Small and Olson, 2011).
miRNAs are small non-coding RNAs in ~18-25 nucleotides (nt)
length that regulate gene expression at the post-transcriptional
level. They are initially transcribed as primary-miRNA (pri-
miRNA) with a stem—loop structure and following cleavage by the
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FIGURE 1 | The insulin growth factor 1 (IGF-1) signaling pathway. IGF
binding proteins (IGFBPs) modulate IGF-1 bioavailability. IGF-1 functions
as a ligand to interact with IGF-1 receptor (IGF-1R) in the cellular
membrane, which leads to autophosphorylation and recruitment of the
adaptor proteins IRS-1, IRS-2, and Shc. The interaction of IRS-1 and
IRS-2 with IGF-1R induces the activation of the class | phosphatidyl
inositol 3" kinase (PI3K). PI3K converts PIP2 to the lipid second
messenger PIP3. AKT family of kinases is activated by PDK1 and by
mTOR-containing complex mMTORC2 resulting in the phosphorylation at
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Threonine 308 (Thr308) and Serine 473 (Ser473), respectively. Activated
AKT then regulates downstream signaling molecules including Tuberous
sclerosis protein 1/2 (TSC1/2) which inhibit mTORC1 complex and
regulate S6K1/2 and 4EB-P1 phosphorylation, FOXO transcription factors,
GSK-3B, p27 BAD, and BCL:2. These downstream molecules are involved
in several cellular processes including protein synthesis, glucose
metabolism and cell survival. In parallel, Shc activation induces the
activation of the RAS/MAP kinase pathway, which results in increased
cell proliferation.

RNase I1I enzyme Drosha become precursor miRNA (pre-miRNA;
Figure 2). The pre-miRNAs are then exported from nucleus into
the cytoplasm by exportin 5 (EXPO5). In cytoplasm, the RNase
III enzyme Dicer cleaves the pre-miRNA to generate intermediate
double strand RNA duplex (Jung and Suh, 2012, 2014; Smith-
Vikos and Slack, 2012). The ~22-nt long mature miRNA strand
obtained from the intermediate duplex is then loaded into the
Argonaute-containing RNA-induced silencing complex (RISC)
and target mRNA molecules by miRNA:mRNA sequence comple-
mentarity and negatively affects gene expression either through
mRNA cleavage and degradation via the perfect base-pairing with
target mRNA or translation repression via imperfect complemen-
tation with 3'UTR of target mRNA (Llave et al., 2002; Smith-Vikos
and Slack, 2012). A miRNA can target multiple mRNAs and one
mRNA can be controlled by multiple miRNAs (Hobert, 2008).

Predicted to target up to 1/3rd of the human genome (Lewis et al.,
2005), miRNAs profoundly impact gene regulatory networks and
influence the important physiological and pathological processes.
In addition, in contrast to other cellular mediators, miRNAs can
be easily manipulated and therapies based on antimiRs or miRNA
mimics are now being developed to repress pathological miRNAs
(Elmen etal., 2008; Lanford etal., 2010; Small and Olson, 2011)
or to overexpress protective miRNAs (Small and Olson, 2011),
respectively. Despite the pervasive role of miRNAs in essential
biological processes and as promising therapeutic targets, there
is only a few dedicated reviews on their role in regulation of the
IGF-1 signaling pathway (Lee and Gorospe, 2010). Here we pro-
vide a comprehensive review focused on the components of the
IGF-1 signaling regulated by miRNAs (Table 1) and discuss their
potential role as therapeutic agents.

Frontiers in Genetics | Genetics of Aging

January 2015 | Volume 5 | Article 472 | 2


http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive

Jung and Suh

miRNAs targeting IGF -1 signaling pathway

~

Y
Nucleus "~

~
N

@ ﬁ Cleavage

An)

St e

FIGURE 2 | The biogenesis of microRNAs. MicroRNAs (miRNAs) are
initially transcribed by polymerase Il (Pol Il) as primary-miRNA (pri-miRNA)
transcripts which are processed by Drosha to generate pre-miRNAs.
Pre-miRNAs are exported from nucleus to cytoplasm by exportin 5
(EXPO5). The Dicer complex is recruited to pre-miRNAs to remove the
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stem loop from pre-miRNAs, and then mature miRNAs which is one
strand of the miRNA duplex are incorporated into RNA-induced silencing
complex (RISC). Within the RISC, miRNAs bind to complementary
sequences of target mMRNAs to repress their translation or induce their
degradation.

THE KEY COMPONENTS OF THE IGF-1 SIGNALING PATHWAY
TARGETED BY microRNA REGULATION

INSULIN-LIKE GROWTH FACTOR 1

Insulin-like growth factor 1 is a classical circulating hormone that
is expressed in many tissues, especially in liver, indicating that apart
from the endocrine action, its autocrine and paracrine function
is a significant component of IGF-1 action. Unlike other growth
factors, IGF-1 acts as both a mitogen and a differentiation factor
involved in the mitogenic and myogenic processes during muscle
development, regeneration, or hypertrophy. Cardiac hypertrophy
has been inversely correlated with the expression of miR-1 (Care
etal., 2007; Sayed etal., 2007) and miR-1 depleted mice show car-
diac defects, including misregulation of cardiac morphogenesis,
electric conduction, and cell proliferation (Yang etal., 2007; Zhao
etal.,2007). In investigating the role of miR-1 in cardiac and skele-
tal muscle, it was shown that miR-1 expression level was decreased
in cardiac hypertrophy mouse, while IGF-1 protein level was sig-
nificantly increased, as compared to control (Care etal., 2007;
Sayed et al., 2007; Elia etal., 2009; Lee and Gorospe, 2010). It was
shown that miR-1 bound to IGF-1 3’UTR directly and controlled
its expression level. Consistently, when miR-1 was overexpressed
in skeletal muscle cells, IGF-1 signaling was markedly reduced

as measured by significant reduction in phosphorylation of both
FOXO3a and AKT.

Insulin-like growth factor 1 has an important role in brain
function such as neuroendocrine secretion and cognitive function
(O'Neill etal., 2012). Particularly, IGF-1 accelerates AB clearance
from the brain. Dysregulation of IGF-1-mediated signaling has
been associated with Alzheimer’s disease (AD; Hong and Lee, 1997;
Vargas etal., 2011). miR-98 has shown to increase in AD mouse
model (Wang etal., 2009) and miR-98 was found to target IGF-1
3'UTR directly leading to the decreased IGF-1 expression at both
mRNA and protein levels (Hu et al., 2013). In addition, the level of
AB42 was increased by miR-98 overexpression in the cell lysates of
AD cell culture model (N2a/APP) while IGF-1 supplementation
rescued the AB42 accumulation, suggesting that miR-98 is involved
in AD pathogenesis by negatively regulating IGF-1.

Insulin-like growth factor 1 has been demonstrated to play
an important role in Rett syndrome, a severe childhood onset
neurodevelopmental disorder caused by mutations in methyl-
CpG-binding protein 2 (MECP2). Administration of IGF-1 to
Mecp2 KO mice rescued disease-related symptoms (Castro etal.,
2014). Clinical trials of recombinant human IGF-1 for Rett syn-
drome have reported to be safe (Pini etal., 2012). A recent study
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Table 1 | Insulin-like growth factor-1 signaling pathway-targeting miRNAs.

IGF-1 signaling Targeting Disease Model Species Reference
pathway microRNA
IGF1 Let-7f Rett syndrome Mecp2 KO mice Mouse Mellios etal. (2014)
miR-1 Cardiac hypertrophy Mouse neonatal cardiomyocytes Mouse Elia etal. (2009)
miR-98 Alzheimer's disease APP/PS1 mice and N2a cell line Mouse Hu etal. (2013)
miR-486 Lung cancer Non-small cell lung cancer tissues Human  Peng etal. (2013)
IGF1R Let-7 Diabetes Transgenic mice Mouse  Zhu etal. (2011)
miR-7 Tongue squamous cell Tongue squamous cell carcinoma cell lines Human  Jiang etal. (2010)
carcinoma
miR-16 Osteosarcoma Osteosarcoma tissues and cell lines Human  Chen etal. (2013)
miR-99a Psoriasis Psoriasis skin tissues and keratinocytes Human Lerman etal. (2011)
Oral squamous cell carcinoma  Oral squamous cell carcinoma tissues and cell Human  Yen etal. (2014)
lines
miR-122 Breast cancer MCF7 cells Human  Wang etal. (2012)
miR-145 Hepatocellular carcinoma Tumorous liver tissues Human  Law etal. (2012)
Bladder cancer T24, 5637 and TCHuU169 cells Human  Zhu etal. (2014)
miR-148a Breast cancer Breast cancer cell lines Human  Xuetal. (2013)
miR-152 Breast cancer Breast cancer cell lines Human  Xuetal. (2013)
miR-182 Muscle aging Skeletal muscle tissues and myocytes Human  Olivieri etal. (2014)
miR-195 Lung cancer Non-small cell lung cancer tissues and Ab49, Human  Wang etal. (2014b)
H157 H1975, and Calu-3 cells
miR-223 Epithelial carcinoma Hela cells Human  Jia etal. (2011)
Muscle aging Skeletal muscle tissues, myocytes, and MCF7 Human  Olivieri etal. (2014)
cells
miR-378 Cardiac remodeling Heart tissues and cardiomyocytes Mouse Knezevic etal. (2012)
miR-383 Glioma Glioma cancer tissues and cell lines Human  He etal. (2013)
miR-470 Ames dwarf and GHRKO mice  Brain tissues and WI-38 cells Mouse Liang etal. (2011)
miR-486 Lung cancer Non-small cell lung cancer tissues and H460, Human Peng etal. (2013)
H1299, and A549 cells
miR-497 Cervical cancer Cervical cancer tissues and cell lines Human  Luo etal. (2013)
Colorectal cancer HCT116 cells Human  Guo etal. (2013)
miR-515-5p Breast cancer Ashkenazi Jewish DNA and breast cancer cell Human  Gilam etal. (2013)
lines
miR-669b Ames dwarf and GHRKO mice  Brain tissues and WI-38 cells Mouse  Liang etal. (2011)
miR-675 Development Embryonic tissues and cell lines Mouse Keniry etal. (2012)
miR-681 Ames dwarf and GHRKO mice  Brain tissues and WI-38 cells Mouse Liang etal. (2011)
IRS-1 miR-145 Colon cancer Colorectal cancer cell lines Human  Shietal. (2007)
Hepatocellular carcinoma Tumorous liver tissues Human Law etal. (2012)
Bladder cancer T24, 5637 TCHuU169 cells Human  Zhu etal. (2014)
miR-148a Breast cancer Breast cancer cell lines Human  Xuetal. (2013)
miR-152 Breast cancer Breast cancer cell lines Human  Xuetal. (2013)
IRS-2 Let-7 Diabetes Transgenic mice Mouse Zhu etal. (2011)
miR-145 Hepatocellular carcinoma Tumorous liver tissues Human  Law etal. (2012)

(Continued)
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Table 1| Continued

IGF-1 signaling Targeting Disease Model Species Reference
pathway microRNA
PIK3R1 (p85a) miR-486 Lung cancer Non-small cell lung cancer Human  Peng etal. (2013)
PIK3R3 miR-193a-5p  Lung cancer Non-small cell lung cancer tissues and cell lines Human  Yuetal. (2014)
AKT miR-100 Dermal wound healing Mouse dermal wound healing model Mouse Jin etal. (2013)
RICTOR miR-34a Glioma Glioma stem cell lines Human  Rathod etal. (2014)
miR-218 Oral cancer Oral squamous cell carcinoma cell lines Human  Uesugi etal. (2011)
mTOR miR-99a Cervical cancer Cervical cancer tissues and Hela cell line Human  Wang etal. (2014a)
miR-99b Cervical cancer Cervical cancer tissues and Hela cell line Human  Wang etal. (2014a)
miR-193a-5p  Lung cancer Non-small cell lung cancer tissues and cell lines Human  Yuetal. (2014)
S6K2 miR-193a-3p  Lung cancer Non-small cell lung cancer tissues and cell lines Human  Yuetal. (2014)
FOXO1 miR-370 Prostate cancer Prostate cancer cell lines Human  Wu etal. (2012)
FOXO3a miR-96 Breast cancer Breast cancer tissues and cell lines Human  Lin etal. (2010)
miR-223 Muscle aging Skeletal muscle tissues, myocytes, and MCF7 cells Human  Olivieri etal. (2014)

APF, amyloid precursor protein; PS1, presenilin 1; GHRKO mice, mice with targeted deletion of the growth hormone receptor.

implicates a role of miRNA in Rett syndrome through regula-
tion of IGF-1 (Mellios etal., 2014). In this study, treatment of
B2-adrenergic receptor agonist clenbuterol improved the behav-
ior of Mecp2 KO mice in terms of survival, respiratory deficiency
and motor coordination. It was found that clenbuterol treatment
decreased let-7f expression level, which was robustly increased
in the cerebellum of Mecp2 KO mice. let-7f was shown to bind
directly to 3’UTR of IGF-1 and dysregulated IGF-1 mRNA level,
which was rescued by clenbuterol treatment. These data suggest
that Mecp2-mediated let-7f upregulation leads to IGF-1 depletion
in Rett syndrome, implicating let-7f as a potential therapeutic
target for Rett syndrome.

Insulin-like growth factor 1 dysregulation has been reported
in many cancers including NSCLC (Scagliotti and Novello, 2012).
Peng etal. (2013) has investigated the role of miRNAs in lung
cancer focused on the IGF-1 signaling pathway as a therapeutic
target. They performed a high throughput miRNA array anal-
ysis using a cohort of stage 1 adenocarcinomas and found that
miR-486 was the most downregulated miRNA in lung tumors
compared to adjacent uninvolved lung tissues. miR-486 was
shown to bind directly to IGF-1 3'UTR decreasing IGF-1 mRNA
and protein levels in NSCLC cell lines (Peng etal., 2013). Con-
sistently, miR-486 overexpression in different lung cancer cell
lines reduced cell growth and migration. Furthermore, nude
mice injected with NSCLC cells overexpressing miR-486 showed
no detectable tumors and decreased IGF-1 level, while control
mice formed xenograft tumors. This study demonstrates that
miR-486 functions as tumor suppressor by targeting IGF-1 in
NSCLC.

INSULIN-LIKE GROWTH FACTOR 1 RECEPTOR

Since, the initial discovery that mutations in daf-2, an IGF-1R
homolog, extend lifespan in C. elegans, there is overwhelming
evidence that dampening of IGF-1 signaling increases longevity in

model organisms from worms to mice (Kenyon, 2010). Recently,
miRNAs have been shown to regulate life span of C. elegans by
targeting, in part, the components of the IGF-1 signaling path-
way including daf-2 (Smith-Vikos and Slack, 2012). To investigate
potential role of miRNAs in longevity, Liang etal. (2011) per-
formed high throughput profiling of miRNAs in brain tissues of
the two long-lived mutant mice, Ames dwarf and GHRKO mice.
They found three miRNAs, miR-470, -669b, and -681, were upreg-
ulated in these mice and these three miRNAs directly bound to
IGF-1R 3'UTR, downregulated IGF-1R at both mRNA and pro-
tein levels, and led to reduced phosphorylation of both AKT and
FOXO3a. These results suggest that miRNAs may contribute to
longevity in mice through downregulation of IGF-1R as in C.
elegans.

Insulin-like growth factor 1 pathway is an important path-
way in muscle mass regulation by activating protein synthesis and
inhibiting protein degradation (Velloso, 2008). Recently, Olivieri
etal. (2014) has investigated the effect of miRNAs on the IGF-
1 signaling pathway in skeletal muscle under estrogen hormone
treatment. The post-menopausal women using hormone replace-
ment therapy (HRT) have been reported to have ~5% greater
muscle strength than those not using HRT (Greising et al., 2009).
miRNA profiles of vastus lateralis muscle samples of nine healthy
monozygotic female twin pairs (54—-62-years old) discordant for
HRT showed that miR-182 and miR-223 were significantly down-
regulated in HRT treated groups as compared to non-treated
groups (Olivierietal.,2014). In MCF?7 cell culture model, estrogen
treatment also reduced the expression levels of miR-182 and miR-
223 and increased IGF-1 signaling. Among the predicted targets
of miR-182 and miR-223, IGF-1R and FOXO3a were validated as
their direct targets suggesting that HRT-mediated dysregulation
of miR-182 and miR-223 induces the activation of IGF-1 signaling
pathway by regulating IGF-1 signaling genes including IGF-1R and
FOXO3a.
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Insulin-like growth factor 1 receptor level has been known
to decrease in postnatal cardiac remodeling (Cheng etal., 1995).
Knezevic etal. (2012) has investigated the role of miRNAs as a
mechanism of decreased IGF-1R level during the postnatal period.
They tested the expression level of 23 randomly selected miRNAs
in the mouse neonatal heart (7 days after birth) and fetal heart at
16 days gestation. miR-378 was significantly increased with more
than 10-fold in neonatal heart as compared to fetal heart and
was a highly abundant miRNA in the heart. In this study, they
found that miR-378 bound to IGF-1R 3'UTR directly and miR-
378 overexpression enhanced apoptosis of cardiomyocytes with
decreased IGF-1 signaling activity suggesting that miR-378 has a
role in postnatal cardiac remodeling and cardiomyocyte survival
against stressors by negatively regulating IGF-1R.

Keniry etal. (2012) has investigated the role of H19 large inter-
genic non-coding RNA (lincRNA) which is known to be most
highly abundant and conserved transcripts in mammalian cells.
In this study, miR-675 embedded in HI19 was expressed in the
placenta but suppressed in the embryonic tissues. Based on the
target prediction analysis, they found that miR-657 indeed bound
to IGF-1R 3'UTR and miR-675 overexpression reduced the cell
proliferation in embryonic and extra-embryonic cell lines, suggest-
ing that miR-675 is involved in the H19-mediated developmental
control by targeting IGF-1R.

Psoriasis has been known to be a common chronic inflam-
matory skin disorder (Galadari etal., 2005). Lerman etal. (2011)
has investigated the mechanism of psoriasis focusing on miRNAs
since the involvement of miRNAs in skin development has been
reported in mouse model (Yi etal., 2006). In this study, miR-
99a expression level was decreased in lesion skin and uninvolved
skin as compared to normal skin (Lerman etal., 2011). Since,
IGF-1R has been known to be involved in the pathogenesis of
psoriasis and upregulated in psoriasis, they studied the relation-
ship between miR-99a and IGF-1R. miR-99a bound to 3'UTR
of IGF-1R directly and negatively regulated IGF-1R mRNA and
protein expression levels. Interestingly, miR-99a-overexpressing
human keratinocyte cells showed slower proliferation as compared
to the control cells suggesting that miR-99a may function in the
development of psoriasis by targeting IGF-1R.

The let-7 miRNA family members have been demonstrated to
function as tumor suppressors by targeting the oncogenes and cell
cycle regulators (Kumar et al., 2008). Zhu etal. (2011) investigated
the roles of let-7 miRNA in mammalian glucose metabolism. They
used inducible let-7 transgenic mice and measured the metabolic
changes such as glucose tolerance and signaling activity and found
that inducible let-7 transgenic mice showed decreased glucose
tolerance. To investigate the mechanism of let-7 effect on glu-
cose metabolism, they overexpressed let-7 in C2C12 myoblasts
and measured the PI3K-mTOR signaling activities. In addi-
tion, they found that let-7 bound directly 3’UTR of IGF-1R as
well as IRS-2 and insulin receptor (INSR) suggesting that let-7
may function as a regulator of glucose metabolism by target-
ing multiple components of growth/metabolic signaling pathway
genes.

Insulin growth factor 1 receptor-mediated pro-oncogenic sig-
naling has been demonstrated in multiple cancers and molecular
mechanisms leading to dysregulation of IGF-1R has been an

intense focus of cancer research. IGF-1R protein is overexpressed
in more than 40% of breast cancer (BC; Tamimi etal., 2011). Xu
etal. (2013) has investigated whether miR-148a and miR-152 are
involved in the regulation of IGF-1R-mediated signaling activity
in BC. In this study, they found that both miR-148a and miR-152
are downregulated in BC cell lines due to DNA hypermethyla-
tion as compared to normal breast cells. Both miR-148a and
miR-152 were shown to directly bind to 3UTR of IGF-1R and
inhibit IGF-1R-mediated PI3K/AKT activation. Cell proliferation
was suppressed in BC cell lines stably overexpressing miR-148a or
miR-152, while BC cells lacking IGF-1R 3’UTR binding sites of
miR-148a and miR-152 restored cell proliferation. These results
suggest that miR-148a and miR-152 affect cell growth via IGF-1R
regulation. Recently, Wang et al. (2012) has reported that miR-122
involves in BC. miR-122 has been well-known to play a role in liver
physiology and to be suppressed in primary hepatocellular carci-
noma (HCC) suggesting that miR-122 has a tumor suppressor
role (Bai etal., 2009). The authors have shown that the expres-
sion of miR-122 in human BC cells and specimens is reduced,
while their IGF-1R expression levels were increased (Wang etal.,
2012). From the luciferase binding assay, they found that miR-122
directly bound to IGF-1R and regulated IGF-1R-mediated signal-
ing pathway. Furthermore, the effect of miR-122 on inhibition
of cell proliferation could be reversed by IGF-1R overexpression
demonstrating that miR-122 has a role as a tumor suppressor in
BC through the IGF-1R inhibition. miR-515-5p has been also
shown as a regulator of IGF-1R in BC (Gilam et al., 2013). Interest-
ingly, this study showed single nucleotide polymorphisms (SNPs)
within miRNA binding sites of IGF-1R affected BC risk in BRCA1
mutation carriers. They performed genotyping of the A/G SNP
(rs28674628) in the 3'UTR of the IGFIR gene for 115 Ashkenazi
Jewish BC patients, all carriers of the 185delAG BRCAI mutation
and found that all BRCAI carriers harboring the G allele of the
1528674628 SNP were diagnosed with BC by age 45 years, whereas
almost 50% of the wild type (A) allele homozygotes were BC free
at that age. The IGF-1R targeting of miR-515-5p was disrupted by
A to G nucleotides substitution in the miR-515-5p binding sites of
IGF-1R 3'UTR, suggesting that the IGF-1R level in BC can be reg-
ulated by miR-515-5p binding on the polymorphic site in IGF-1R
3'UTR.

Following up on the study showing that that miR-7 is decreased
in advanced tongue squamous cell carcinoma (TSCC; Liu etal,,
2009a,b), Jiang etal. (2010) has investigated IGF-1R as a poten-
tial target of miR-7 in TSCC. In this study, miR-7 was shown
to directly bind to IGF-1R and reduced its protein as well as
mRNA levels in TSCC cell lines. In addition, they demonstrated
that miR-7-mediated downregulation of IGF-1R attenuated the
IGF-1-induced activation of AKT and led to reduced cell pro-
liferation and cell cycle arrest, and to an increase in apoptosis
rate. This study suggests that miR-7 regulates TSCC cell growth,
at least in part, by targeting IGF-1R. miR-7 has been known
to function as tumor suppressor in several human cancers and
target a number of proto-oncogenes, including IRS1, IRS2 and
epidermal growth factor receptor (EGFR; Kefas etal., 2008). In
oral squamous cell carcinoma (OSCC), IGF-1R has been known
to be overexpressed in OSCC tissues and cell lines (Brady etal.,
2007) and one of predictors of clinical outcome in patients with
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OSCC (Lara etal., 2011; Yen etal., 2014). Recently, Yen etal.
(2014) has shown that IGF-1R is one of direct targets of miR-
99a in OSCC, which has been reported in several studies to be
downregulated in clinical samples of OSCC in different stages
(Chen etal., 2012; Yan etal, 2012). miR-99a expressing OEC-
M1 cells showed decreased migration and invasion activities and
these effects were rescued by ectopic expression of IGF-1R indi-
cating that miR-99a has a role as a tumor suppressor in OSCC via
IGF-1R regulation.

miR-145 has been reported to target IGF-1R in several can-
cer studies (Law etal., 2012; Zhu etal., 2014). miR-145 level was
downregulated, while IGF-1R level was upregulated, in human
urinary bladder transitional cell carcinoma cell lines (124, 5637)
compared to normal bladder epithelial cells (TCHu169; Zhu et al.,
2014). They found that overexpression of miR-145 led to inhibi-
tion of IGF-1-induced cell proliferation and miR-145 was shown
to directly bind to 3’UTR of IGF-1R and IRS-1 in the bladder
cancer cells. These data suggest that miR-145 plays a role as a
tumor suppressor by targeting IGF-1R and IRS-1 in bladder can-
cer. miR-145 was also shown to modulate IGF-1 signaling pathway
by directly targeting IGF-1R in HCC (Law etal., 2012). In this
study, the expression level of miR-145 was found to be downreg-
ulated in a cohort of 80 HCC cases as compared to the adjacent
non-malignant liver tissues. Consistently, miR-145 overexpression
in HKCI-C2 cells induced G2-M arrest and apoptosis suggesting
that miR-145 has the repressive effect of hepatic malignant growth
through negative regulation of IGF-1R. miR-223 has been known
to be repressed in HCC cells as compared with normal liver tis-
sue (Su etal., 2009), but its role other cancer remained unknown
(Laios etal., 2008). Jia etal. (2011) has made miR-223 overexpres-
sion model in ovarian cancer cell line and found that miR-223
remarkably suppressed the proliferation, growth rate and colony
formation. miR-223 injected nude mice also showed the inhi-
bition of tumor formation. In this study, miR-223 was shown
to directly bind to IGF-1R and repress IGF-1 signaling cascade
including AKT/mTOR/p70S6K suggesting that miR-223 functions
as tumor suppressor through the suppression of IGF-1R-mediated
cell growth signaling.

Amplified IGF-1/IGF-1R signaling has been associated with
increased relative risk for development of colorectal cancer (CRC)
as well as CRC metastasis, and resistance to chemotherapeutic
drugs (Weber et al., 2002; Sekharam et al., 2003). Guo etal. (2013)
has investigated the role of miR-497 in aberrant expression of
IGF-1R in CRC. miR-497 expression was significantly decreased
in both CRC tissues CRC cell lines as compared to normal mucosa
from miRNA array analysis. miR-497 was found to target IGF-1R
3'UTR and downregulate PI3K/AKT signaling activities. In addi-
tion, miR-497 overexpression in CRC cells led to inhibition of cell
proliferation and invasive behavior thereby increasing the sensi-
tivity of CRC cells to apoptosis induced by anti-cancer drugs such
as CDDP and 5-FU. Interestingly, in this study, downregulation of
miR-497 was associated with the reduction of copy number in a
specific fragment of chromosome shown in ~71% of colon can-
cers suggesting that miR-497 may have a role as tumor suppressor
in CRC. Same with human cervical cancer, miR-497 targeted IGF-
1R directly resulting in the decrease of IGF-1R mRNA and protein
levels and suppressed migration and invasiveness of cervical cancer

suggesting that miR-497 functions as tumor suppressor in human
cervical cancer by post-transcriptionally targeting IGF-1R (Luo
etal., 2013).

Recently, Wang et al. (2014b) has reported that miR-195 expres-
sion was downregulated in NSCLC clinical tissue and cell lines
and inhibited NSCLC cell proliferation. They found that miR-195
could bind to IGF-1R directly and has a tumor suppressive effect,
which was attenuated by IGF-1R expression. In addition, miR-
486 was shown to have a potent tumor suppressor role in NSCLC
through direct targeting of IGF-1R as well as IGF-1 (Peng etal.,
2013).

He etal. (2013) has investigated tumor suppressive miRNAs
in glioma. They analyzed the published microarray-based, high
throughput microRNA expression dataset (GSE25631) to find
dysregulated miRNAs. Among them, miR-383 was significantly
downregulated in human glioma tissues as compared to normal
brain tissue. miR-383 overexpression induced the inhibition of
glioma cell invasion and miR-383 inhibition promoted glioma cell
invasion. They found that miR-383 targeted IGF-1R 3’UTR and
negatively regulated the expression of IGF-1R which resulted in
decreased IGF-1R and AKT signaling activity. Cell invasion pro-
moted by miR-383 inhibition was rescued by IGF-1R inhibition
suggesting that miR-383 functions as tumor suppressor by target-
ing IGF-1R directly and regulating IGF-1R-mediated cell invasion
in glioma.

Chen etal. (2013) has investigated the role of miR-16 in
osteosarcoma (OS). miR-16 expression level was known to be
downregulated in OS tissues compared to healthy bone tissue by
miRNA microarray analysis (Jones etal., 2012). Chen etal. (2013)
has shown that miR-16 overexpression in OS cells inhibited OS cell
proliferation while anti-miR-16 transfected OS cells promoted cell
growth. They found that miR-16 targeted IGF-1R 3’UTR directly
suggesting that miR-16 functions as tumor suppressor in OS by
targeting IGF-1R and regulating cell proliferation.

INSULIN RECEPTOR SUBSTRATE
Insulin receptor substrate-1 and -2 are two of the major sub-
strates of IGF-1R. IRS-1 and -2 have important roles in cell
growth and cell proliferation (Baserga, 2000). Dysregulation of
IRS-1 and -2 has been found in many types of cancer (Can-
tarini et al., 2006; DeAngelis et al., 2006). miR-145 has been shown
to regulate IRS-1 in colon cancer (Shi etal., 2007) and IRS-1/2
in HCC (Law etal.,, 2012). Shi etal. (2007) has investigated the
role of miR-145 in colon cancer cell lines including HCT116
and DLD1. miR-145 overexpression induced downregulated IRS-
1 protein level but not in the cells without IRS-1 3'UTR. In
this study, miR-145 overexpression also inhibited cell growth in
HCT116 cell lines suggesting that miR-145 functioned as a tumor
suppressor by negatively regulating IRS-1 in colon cancer cells.
In HCC, miR-145 directly targeted IRS-1 and IRS-2 by binding
3’UTR of them. Law et al. (2012) has shown that miR-145 overex-
pression repressed the expression level of IRS-1 and IRS-2 and
decreased B-catenin activity thereby resulting in decreased cell
growth.

Xu etal. (2013) has shown that miR-148a and miR-152 target
IRS-1 as well as IGF-1R in BC. They investigated if miR-148a
and miR-152 inhibited PI3K/AKT pathway via targeting IRS-1
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using IRS-1 loss- and gain-of-function experiments in BC cells.
They found that the knockdown of endogenous IRS-1 significantly
decreased PI3K/AKT signaling and this effect was similarly shown
in BC cells with miR-148a or miR-152 overexpression leading to
the inhibition of cell proliferation. Consistently, deletion of miR-
148a or miR-152 binding regions in 3'UTR of IRS-1 did not exert
the effect of miR-148a or miR-152 overexpression on inhibition of
cell proliferation, indicating that these miRNAs affect cancer cell
proliferation via IRS-1 suppression.

Let-7 was also shown to target IRS-2 by direct binding to its
3'UTR as well as those of IGF-1R and INSR (Zhu etal., 2011).
As previously described under the subsection of IGF-1R, the
authors investigated the let-7 function in glucose metabolism
using inducible let-7 transgenic mice model and found that let-7
overexpression induced glucose intolerance by targeting multi-
ple components of the insulin-PI3K-mTOR signaling pathway
including IRS-2, IGF-1R, and INSR.

PHOSPHOINOSITIDE-3-KINASE, REGULATORY SUBUNIT (PIK3R)

Recent study has been demonstrated that miR-193a-5p targeted
PIK3R3 by binding its 3'UTR directly in NSCLC (Yu etal., 2014).
Yuetal. (2014) investigated the role of miRNAs in NSCLC metasta-
sis and generated miRNA profiles of SPC-A-1sci (high metastatic)
and SPC-A-1 (weakly metastatic) cells. Among differentially
expressed miRNAs, miR-193a-5p was significantly downregulated
in human NSCLC as compared to non-cancerous lung tissue.
They also tested its effect on cell proliferation and epithelial-
mesenchymal transition (EMT). SPC-A-1sci cells stably expressing
miR-193a-5p showed suppressed rates of migration with inhib-
ited cell proliferation, while SPC-A-1sci expressing miR-193a-5p
inhibitors enhanced migration and proliferation, as compared to
control cells. The same effects were observed in terms of EMT
demonstrating that miR-193a-5p inhibited the EMT of NSCLC
cells. They tested if miR-193a-5p effect was induced by target-
ing PIK3R3 using PIK3R3 siRNA. When they treated si-PIK3R3
in NSCLC cells, the enhanced migration and invasion by miR-
193a-5p inhibitors were attenuated suggesting that PIK3R3 is a
direct and functional target of miR-193a-5p in NSCLC. Target-
ing PIK3R3 by miR-193a-5p suppressed phosphorylation of AKT
(Ser473). Another miRNA shown to target PIK3R1 in NSCLC
is miR-486 (Peng etal., 2013). miR-486 overexpression resulted
in decreased phosphorylation of PIK3CA, AKT (Ser473), and
FOXO3a and induced cell cycle arrest and reduced migration in
NSCLC.

AKT

Jin etal. (2013) has investigated the role of miRNAs in wound
healing. They performed microRNA expression profiling analysis
on skin samples of unwounded mice, and skin biopsy sam-
ples harvested at 1 and 5 days post-wounding. They found that
miR-99 family including miR-99a/b and miR-100 was signifi-
cantly downregulated on day 1 and returned to basal level on
day 5. Overexpression of miR-100 suppressed the cell prolifer-
ation and cell migration and reduced IGF-1-induced signaling
activity by dephosphorylation of p70S6K and 4EB-P1. miR-100
bound directly to AKT1 leading to reduced AKT1 mRNA and
protein levels. These data suggest that miR-99 family, especially

miR-100 regulates the wound healing process by targeting AKT1
and AKT/mTOR signaling pathway which is a major factors in cell
migration and proliferation that contribute to the replenishment
of tissues after injury.

RICTOR

RICTOR is a component of the mammalian target of rapamycin
complex 2 (mTORC2). This complex directly controls the phos-
phorylation of AKT at Ser 473 and promotes cell growth (Hresko
and Mueckler, 2005). Uesugi et al. (2011) has shown that miR-218
targets RICTOR by binding its 3’UTR and functions as a tumor
suppressor in OSCC. They identified tumor suppressor-miRNAs
silenced by DNA hypermethylation in OSCC and their targets
using function-based screening with a cell proliferation assay.
Among them, miR-218 was downregulated in OSCC cell lines and
primary tumor samples, which correlated with hypermethylation
in miR-218 promoter region. Either miR-218 to overexpression
or knock-down of RICTOR by specific siRNA in OSCC cells led
to reduced phosphorylation of AKT suggesting that miR-218 act
through the TOR-AKT signaling pathway by targeting RICTOR in
OSCC.

Recently Rathod etal. (2014) has reported miR-34a as a RIC-
TOR targeting miRNA in glioma stem cells. miR-34a expression
level was downregulated in glioma tissue samples compared to
normal tissue samples and in HNGC-2 glioma cells compared to
non-tumorigenic neural stem cell-line HNGC-1. When miR-34a
was overexpressed in HNGC-2 cells, cell proliferation and cell
cycle progression were decreased, while caspase-dependent apop-
tosis was increased, as compared to control cells. In addition,
they injected empty vector (EV)-expressing cells or miR-34a-
overexpressing cells to NOD/SCID mice and monitored tumor
growth for 45 days. They found that miR-34a-overexpressing mice
showed significantly reduced tumors as compared to EV-injected
mice suggesting that miR-34a functioned as a tumor suppressor
in vivo. They tested if miR-34a overexpression affects signaling
activity and found that miR-34a overexpression in glioma stem
cells profoundly decreased levels of p-AKT (Ser473) and increased
GSK-3p levels. Taken together, this data suggest that miR-34a tar-
gets RICTOR and thereby regulates AKT/mTOR pathway which
causes pronounced effects on glioma malignancy.

mTOR

mTOR is a serine/threonine protein kinase that regulates growth,
proliferation, and survival and a component of both mTORC1 and
mTROC2. mTOR 3’UTR was shown to be targeted by miR-99a/b
in cancer cell lines. miR-99a/b has been associated with tumor
pathogenesis and development of several types of human can-
cers such as renal cell carcinoma (Cui etal., 2012), HCC (Li et al.,
2011), and NSCLC (Kang etal., 2012). Wang etal. (2014a) has
investigated miR-99a/b function in human cervical cancer. They
measured miR-99a/b expression level in primary and metastatic
patients with cervical cancer and found that both of miRNAs are
downregulated in primary lesions with and without lymphatic
metastasis suggesting that miR-99a/b acts in metastasis of cervi-
cal cancer. In this study, miR-99a/b overexpression inhibited cell
proliferation and invasion of cervical cancer cells whereas miR-
99a/b knockdown by antisense oligonucleotides (ASOs)-based

Frontiers in Genetics | Genetics of Aging

January 2015 | Volume 5 | Article 472 | 8


http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive

Jung and Suh

miRNAs targeting IGF -1 signaling pathway

inhibition showed attenuated effect. From the miRNA target pre-
diction, they selected mTOR as a candidate target and found that
mTOR 3'UTR bound directly to miR-99a/b using luciferase bind-
ing assay. mTOR expression level was decreased by miR-99a/b
expression in cervical cancer cell line such as HeLa cells. When
they treated HeLa cells with rapamycin to inhibit mTOR activity,
they found that the cell proliferation and invasion were signifi-
cantly inhibited. However, this effect of rapamycin was reversed
when they transfected ASO-miR-99a/b suggesting that miR-99a/b
functions as tumor suppressor to inhibit the proliferation and
invasion of cervical cancer through the targeting of mTOR path-
way. Another miRNA shown to target mTOR is miR-193a-5p
involved in regulation of migration and invasion in vitro and
metastasis in vivo in NSCLC (Yu etal., 2014).

S6K

The ribosomal protein S6K (S6 kinase) is a major effector of
the mTORCI and controls fundamental cellular processes includ-
ing translation, protein and lipid synthesis, cell growth, and cell
metabolism (Yu etal.,2014). Yu et al. (2014) has showed that S6K2
were upregulated in NSCLC and S6K2 protein level was associ-
ated with lymph node metastasis. In this study, miR-193a-3p was
shown to target S6K2 directly, leading to reduced cell proliferation
and invasion in NSCLC cells. Conversely, miR-193a-3p inhibition
promoted tumorigenic effect, which could be diminished by S6K2
knock-down, suggesting that miR-193a-3p has a role in tumor
suppression in NSCLC through the targeting of S6K2.

FOX0

The FOXO subfamily represents evolutionarily conserved tran-
scription factors that play a critical role in a various biological
processes including apoptosis, cell cycle and, DNA repair (Greer
and Brunet, 2005). FOXO is often dysregulated in cancer. FOXO3a
has been reported to be negatively regulated by miR-96 in human
BC (Lin etal., 2010). In the study, miR-96 was found to be over-
expressed in BC cell lines and BC tissues (Lin etal., 2010). When
co-overexpressed with FOXO3a with 3'UTR, miR-96 accelerated
cell proliferation in BC cells. However, the accelerated cell growth
mediated by miR-96 overexpression was not observed in cells co-
overexpressing miR-96 and FOXO3a without 3'UTR indicating
that miR-96 is regulating cell proliferation by targeting FOXO3a.
Wau etal. (2012) has investigated the role of miR-370 and FOXO1
in human prostate cancer cells. In this study, they found that miR-
370 expression level was upregulated in prostate cancer cell lines as
compared to normal prostate epithelial cells and miR-370 directly
targeted the FOXO1 3'UTR. miR-370 overexpression increased
prostate cancer cell growth, and this effect of miR-370 on cell pro-
liferation was decreased in the absence of FOXO1 3'UTR. These
data suggest that miR-370 functions as an oncogenic factor by
targeting FOXO1 in prostate cancer.

REGULATION OF IGF-1 SIGNALING BY miRNAs IN MODEL
ORGANISMS

In model organisms, some of miRNAs have been demonstrated to
regulate IGF-1 signaling pathway. In C. elegans, miRNA lin-4 has
been firstly reported to target lin-14 mRNA which is negative regu-
lator of DAF-2. DAF-2 inactivation by lin-4 resulted in dampened

IGF-1 signaling through the inhibition of DAF-16 (Boehm and
Slack, 2005). miR-71 has been discovered to regulate lifespan of C.
elegans through the deep sequencing (de Lencastre etal., 2010). In
this study, PDK-1 expression was negatively regulated by miR-71
as a predicted target suggesting that miR-71 modulates lifespan via
targeting the IGF-1 signaling pathway component (de Lencastre
etal., 2010).

Hyun etal. (2009) has investigated the role of miRNAs in body
size of Drosophila through the screening of cell proliferation-
regulating miRNAs. They found miR-8 positively regulate body
size targeting a fly gene named as u-shaped (ush) which is negative
regulator of PI3K in fat body cells. In addition, they investigated
human miR-200 which is homologous with miR-8 in Drosophila
if it has also similar effect on PI3K-AKT activity. They found
that miR-200 targeted FOG2 which binds to p85a and nega-
tively regulate PI3K activity suggesting that miR-200 regulates cell
proliferation by regulating PI3K-AKT signaling activity.

THERAPEUTIC TARGETING OF miRNAs INVOLVED IN THE
IGF-1 SIGNALING PATHWAY

miRNAs have the profound potential as therapeutic agents due
to their unique properties. They regulate 100s of target genes,
exerting proficient and synchronous post-transcriptional gene
silencing effect for their targets (Chen etal., 2014). Their function
can be easily manipulated by carefully designed oligonucleotides
that lead to efficient and specific upregulation or downregulation
of miRNAs (Li and Rana, 2014), referred to as miRNA mimics
or antagomiRs, respectively. In addition, low molecular weight
oligonucleotides are easier to deliver into the target cells compared
with large viral vectors or plasmid normally used for gene therapy
and are less likely to induce high immune response and toxicity as
compared to plasmid DNA-based gene therapy and protein-based
drug molecules (Chen etal., 2014). Therefore, miRNA-targeting
therapies have been an active area of research, and many are already
in preclinical and clinical development including HCV infection,
different types of cancer, CVD, and insulin resistance (Li and Rana,
2014). miRNAs that regulate the IGF-1 signaling are prime tar-
gets for the development of novel therapies for several disease
including cancer (Table 1). Indeed, let-7, a well-known tumor sup-
pressor that regulates the multiple components of IGF-1 signaling
pathway (Table 1), is currently targeted as a potential miRNA
replacement treatment for cancer. Before the promising therapeu-
tic impact of miRNA can be realized, there are several challenges to
be addressed, which include but not limited to targeted delivery of
oligonucleotides to specific organs, tissues and cell types, poor
bioavailability, limited tissue permeability (Stylianopoulos and
Jain, 2013), potential drug resistance, and instability (Raemdonck
etal., 2008). Also, one of the biggest challenges is that miRNAs
can induce the off-target silencing since miRNAs are designed
to target multiple pathways via imperfect matching with 3’UTRs
(Chen etal., 2014). The combination strategy can be applied to
the miRNA therapy to minimize the unintended side effects and
maximize the therapeutic effect (van Dongen etal., 2008).

REGULATION OF miRNA EXPRESSION
Recently emerged question is how miRNAs are regulated under
certain condition such as diseases. Transcriptional regulation of
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miRNAs has been reported in a few studies and it is one of the
encouraged topics to be investigated for the role of miRNAs. miR-
NAs are classified into intergenic and intronic miRNAs by their
genomic location. Intergenic miRNAs are transcribed by their
own promoters while intronic miRNAs depend on the promoter
of their host gene. Genome wide approaches have shown to match
transcription factors to miRNA genes. For example, in mouse
embryonic stem cells (ESCs), several pluripotency factors includ-
ing Oct4 and Sox2 are associated with highly expressed miRNAs
(Marson etal., 2008). Martinez etal. (2008) has reported tran-
scription factors regulating miRNA expression in C. elegans using
yeast one-hybrid (Y1H) assays. Recently, epigenetic modifica-
tions have been suggested as a mechanism of miRNA expression
regulation. The atypical methylation of the CpG islands in the
promoter regions both of intergenic and of intronic miRNAs has
been involved in pathophysiology of various diseases (Chhabra,
2014). For example, miR-34 and miR-124 are most frequently
hypermethylated in their promoter regions under pathological
conditions while the promoter regions of let-7a-3 and miR-155
are hypomethylated in lung adenocarcinoma and B-cell lym-
phoma respectively (Costinean et al., 2006; Brueckner etal., 2007;
Lujambio et al., 2007; Toyota et al., 2008; Wilting et al., 2010; Roy
etal,, 2012). These results may provide the clues to regulate
miRNAs targeting IGF-1 signaling pathway.

PERSPECTIVES

Regulation of IGF-1 signaling pathway has been an intense area
of research in development of targeted therapeutics to improve
human health. Ongoing clinical trials have focused on targeting
protein components of IGF-1 signaling (Arcaro, 2013). For exam-
ple, IGF-1R antibodies such as MK-0646 have been reported to
be safe and reduce IGF-1R signaling in phase I and II clinical
trials (Scartozzi etal., 2010; Reidy-Lagunes etal., 2012). In addi-
tion, several clinical trials in phase I and II of IGF-1R tyrosine
kinase inhibitors such as OSI-906 are underway (Pitts et al., 2010).
However, these agents have generated certain issues related to
the different effects on signaling-reducing efficacy among patients
(Arcaro, 2013). miRNAs and miRNA-targeting oligonucleotides
offer promising therapeutic opportunities with several advan-
tages over traditional small-molecule drugs. As the number of
miRNAs targeting the IGF-1 signaling pathway increases, fur-
ther progress will be made in miRNA-therapeutics to modulate
many aspects of human disease through preclinical and clinical
development.
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