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Many genetic markers have been shown to be associated with common quantitative
traits in genome-wide association studies. Typically these associated genetic markers
have small to modest effect sizes and individually they explain only a small amount of the
variability of the phenotype. In order to build a genetic prediction model without fitting a
multiple linear regression model with possibly hundreds of genetic markers as predictors,
researchers often summarize the joint effect of risk alleles into a genetic score that is
used as a covariate in the genetic prediction model. However, the prediction accuracy
can be highly variable and selecting the optimal number of markers to be included in the
genetic score is challenging. In this manuscript we present a strategy to build an ensemble
of genetic prediction models from data and we show that the ensemble-based method
makes the challenge of choosing the number of genetic markers more amenable. Using
simulated data with varying heritability and number of genetic markers, we compare the
predictive accuracy and inclusion of true positive and false positive markers of a single
genetic prediction model and our proposed ensemble method. The results show that the
ensemble of genetic models tends to include a larger number of genetic variants than a
single genetic model and it is more likely to include all of the true genetic markers. This
increased sensitivity is obtained at the price of a lower specificity that appears to minimally
affect the predictive accuracy of the ensemble.

Keywords: genetic risk prediction, genetic risk score, ensemble-based classifiers, bagging predictors, prediction

accuracy

INTRODUCTION
Genome-wide association studies (GWAS) have been used
extensively to examine the association between common sin-
gle nucleotide polymorphisms (SNPs) and disease phenotypes.
While many of these studies have successfully found genetic vari-
ants that have highly significant associations with phenotypes,
typically their effect sizes are small and the predictive power is
limited. In order to build genetic prediction models with hun-
dreds of SNPs, investigators often combine multiple SNPs into
a genetic score that is used as a single covariate (Meigs et al.,
2008; Purcell et al., 2009; Paynter et al., 2010; Sebastiani et al.,
2012b; Kundu et al., 2014). The genetic score is built by adding
the number of alleles from a list of SNPs that are found asso-
ciated with consistent changes in the phenotype, often from the
result of a GWAS or previously published work, but one of the
difficulties in developing a genetic score for phenotype predic-
tion is the determination of the optimal number of SNPS to be
used. Including too few variants could limit the prediction accu-
racy, while including too many genetic variants could introduce
too many false positives SNPS and therefore impact the accuracy
of the prediction model.

Ensemble methods have been utilized to address these
challenges (Breiman, 1996), and we introduced an ensemble
of Bayesian classification rules for prediction of qualitative

phenotypes using genetic data in Hartley et al. (2012), Sebastiani
et al. (2012a), Hartley and Sebastiani (2013). In Milton et al.
(2014), we generalized the approach to prediction of a quan-
titative phenotype: fetal hemoglobin level in sickle cell anemia
patients. In this paper we formally describe the approach and
use simulations to compare the results of the ensemble-based
method vs. using a single “best” model, in the specific case of
unweighted genetic score. We show that an ensemble of genetic
models is more robust to the inclusion of genetic variants that
are falsely associated with the phenotype than using a single
model.

MATERIALS AND METHODS
DEVELOPMENT OF GENETIC SCORES AND GENETIC PREDICTION
MODELS
The method assumes that there is a list of S SNPs ordered by
decreasing statistical significance that result from a GWAS. We
assume that these SNPs are not in linkage disequilibrium. Let the
“risk allele” of each SNP be the allele that is associated with an
increase in the quantitative trait using an additive genetic model.
Therefore, an individual i can carry 0, 1, or 2 risk alleles for each
SNP j that we denote by Ri,j. For a fixed number of SNPs N, the
genetic score for individual i is computed by adding the number
of risk alleles of the N SNPs as follows:
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GSi,N =
N∑

j = 1

Ri,j

This genetic score GSi,N based on N SNPs is used as a covariate in
the linear regression model:

E(yi,N ) = β0,N + β1,N GSi,N (1)

where yi,N is the phenotype of the ith individual and the regres-
sion coefficients β0,N , β1,N can be estimated using the Maximum
Likelihood (ML) method. The prediction of the phenotype for
an individual with genetic score GSi,N is then provided by the
formula:

ŷi,N = β̂0,N + β̂1,N GSi,N (2)

where β̂0,N and β̂1,N are the ML estimates of the regression coef-
ficients. As the number N of SNPs included in the genetic score
varies, one can compute different genetic scores for each indi-
vidual and therefore different genetic prediction models. The
challenge is to choose the best number of SNPs to be included
in the genetic score for optimal prediction. A simple approach
is to randomly divide the data into a training set and a test
set, use the training set to generate cumulative genetic scores
by adding one SNP at a time from the sorted list of SNPs so
that GSi,N+1 = GSi,N + Ri,N+1 for N = 1,. . . ,S, and use these
S models to predict the outcome in the test set. The model
with the largest correlation between predicted and observed phe-
notype in the test set will identify the best genetic score, and
therefore the best number of SNPs. In this sampling strategy,
“single split,” the dataset is split into training and test sets only
once.

CROSS VALIDATION TO CHOOSE THE OPTIMAL N
K-fold cross validation (CV) can also be used to determine
the optimal number of SNPs (Alsultan et al., 2011). In K-
fold cross validation, the dataset is randomly partitioned into
K equally sized, non-overlapping datasets. Iteratively, one par-
tition is reserved as a test set and K-1 of the K partitions are
merged into a training dataset that is used to develop S genetic
models, one for each of the genetic scores GSi,N , N = 1,. . . ,S.
The S genetic models are used to predict the outcome in the
test set and the model with the largest correlation between pre-
dicted and observed outcome is selected as the most predictive
model.

DEVELOPMENT OF ENSEMBLE OF GENETIC PREDICTION MODELS
Phenotype prediction can also be accomplished by using an
ensemble of genetic models (Hartley et al., 2012; Sebastiani
et al., 2012a). The idea of the ensemble methodology is to
build a predictive model by combining predictions from mul-
tiple models. Here, we propose an ensemble of M cumulative
genetic models in which the predicted value of a phenotype is
computed as the average prediction from M genetic models as
follows:

ŷi,M = 1

M

M∑
N=1

ŷi,N. (3)

In Equation (3) ŷi,N is the prediction from the model with genetic
score GSi,N for individual i and the genetic scores are cumula-
tively built by adding one SNP at a time from the sorted list
of SNPs so that GSi,N+1 = GSi,N + Ri,N+1. Therefore, M rep-
resents the number of models in the ensemble as well as the
overall number of SNPs used for prediction. To choose the
number M, the data can be randomly divided into a training
set and a test set, and the prediction accuracy of the ensem-
ble of increasing number of genetic prediction models (M =
1,. . . ,S) generated in the training set can be evaluated in the
independent test set to identify the ensemble of M models
with best prediction (the model with the largest correlation
between the predicted and observed phenotype) (Mevik et al.,
2004).

SIMULATIONS
We tested the prediction accuracy of the single genetic model and
the ensemble of genetic models on simulated data. The following
simulation scheme was adapted from Yip and Lange (2011), Bae
et al. (in press).

(1) S = 1000 biallelic SNPs were generated with minor allele fre-
quency (MAF) that followed a uniform distribution in the
interval (0.05, 0.50). The 0.05 cutoff of the uniform distri-
bution was used to mimic a quality control process where
SNPs with a MAF < 0.05 are removed from a GWAS dataset.
The genotypes Gi,k where Gi,k is the additive genotype cod-
ing for the ith individual at the kth causal SNP, were generated
using a multinomial distribution, assuming Hardy–Weinberg
equilibrium for each SNP so that, for each allele frequency p,
genotypes were simulated in proportions p2, 2p(1 - p) and
(1 - p)2. A sample of 1000 individuals was generated for each
simulated data set.

(2) The phenotype was generated from a linear regression model
with m = 5, 10, and 30 causal SNPs (out of S = 1000) with
a total variability σ2

Total = 1. Here we define a causal SNP
to be a SNP truly associated with the phenotype (a true
positive). We chose three different levels of heritability: low
(h2 = 0.20), medium (h2 = 0.40), and high (h2= 0.60), and
for each h2 we defined the effect size ak for each causal SNP,
under a strictly additive model, as:

a2
k = h2

kσ
2
Total

2pk(1 − pk)
(4)

(3) The formula in Equation (4) was described in Yip and Lange
(2011), Bae et al. (in press), and σ2

Total is the total pheno-

typic variability, pk is the MAF of the kth causal SNP, h2
k = h2

m
is the heritability of the kth causal SNP, and m is the num-
ber of causal SNPs. The effect size in Equation (4) assumes
that all causal SNPs contribute to the total heritability by an
equal amount. For each causal SNP, we randomly drew yi,k ∼
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N

(
akGi,k,

σ2
Total
m

)
. The phenotype was then computed as

follows:

yi =
m∑

k=1

yi,k

resulting in yi ∼ N
(∑m

k=1 akGi,k, σ
2
Total

)
.

(4) The 1000 individuals in each simulated data set were ran-
domly separated into a set of 900 individuals (discovery
dataset) and 100 individuals (test dataset) that were used for
model building and testing.

This simulation procedure was used to generate 1000 data sets
for each combination of heritability and number of causal SNPs.
A single SNP analysis was performed in each discovery dataset
for all of the SNPs that were then sorted by order of statistical
significance. Cumulative genetic scores were then computed for
each of the 900 individuals in the training set by adding one SNP
at a time from the sorted list of 1000 SNPs (sorted in order of
decreasing significance), thus producing 1000 genetic scores for
each subject, in each group, for each simulated dataset. We then
generated genetic prediction models using the genetic scores as
the covariate as shown in Equation (1) and the 1000 genetic mod-
els estimated from the training set in each simulation were used to
predict the phenotype for the test dataset of 100 individuals using
the formula shown in Equation (2). Ensembles of these genetic
prediction models were also used to predict the phenotype for
the test dataset as shown in Equation (3). The Pearson correlation
between the predicted and observed phenotype was computed
for all these models and the model with the highest correlation
between observed and predicted values in the test set was selected
as the most predictive.

We also randomly divided each of the 1000 simulated set into
10 partitions and used 10 fold CV to select the most predictive
genetic prediction model in each simulated data set. For each of
the 10 folds the correlation between the observed and predictive
phenotype was computed for all genetic models. The results from
the 10 folds were then averaged to produce a single estimation
of the correlation between the observed and predicted phenotype
for each genetic model. The model with the highest correlation
was chosen to be the model with the optimal number of SNPs.

We summarize the results by the correlation between observed
and predicted values using the single and ensemble of genetic
models, the number of overall SNPs and the proportion of causal
SNPs included in each selected model.

RESULTS
Figure 1 displays the distribution of the correlation between the
predicted and the observed values for the single genetic prediction
model (GS correlation) and the ensemble methods (ENS GS cor-
relation) for increasing number of SNPs in the genetic score. The
phenotype was simulated assuming five causal SNPs (row 1), 10
causal SNPs (row 2), and 30 causal SNPs (row 3), and increasing
heritability, but with fixed phenotypic variability.

The most obvious result in Figure 1 is that, for fixed number
of causal SNPs, the correlation between the observed and pre-
dicted phenotype increases as the heritability of the phenotype
increases. This result is expected since the effects of the causal
SNPs increase with increasing heritability and fixed variability, as
shown in Equation (4), and therefore the causal SNPs are more
likely to be found statistically significant and ranked high in the
list of SNPs to be included in the genetic score.

Both the single genetic model and the ensemble of genetic
models show that the prediction accuracy tends to initially
increase as more and more SNPs are added to the model. The sin-
gle genetic model has a faster rate of increase than the ensemble
of models, and it reaches a peak of prediction accuracy followed
by a decline when the genetic score includes too many SNPs. On
the other hand, the ensemble of genetic models appears to require
a few more SNPs than the single genetic model to reach a peak of
prediction accuracy but the rate of decline is markedly slower rela-
tive to the single genetic model as more and more SNPs are added
to the models. These results suggests that the best single genetic
model, selected on the best predictive accuracy in the test set,
should include a smaller number of SNPs than the best ensemble
of genetic models.

Consistent with this observation, Table 1 reports summary
statistics (median and interquartile range) of the number of SNPs
selected using the single split for the single genetic model and
for the ensemble of genetic models and shows that the best sin-
gle genetic prediction model tends to include a smaller number
of SNPs than the best ensemble of genetic models. This smaller
number is close to the number m of causal SNPs used in the
simulations when m = 5 or 10, but it is an underestimate when
m = 30 and the severity of the under-estimation increases with
smaller heritability. The best ensemble of genetic models, on the
other hand, tends to include a number of SNPs that exceeds the
number of causal SNPs.

We next investigated how the different numbers of SNPs
included in the best single genetic model and the best ensemble
of genetic models affect the sensitivity of the methods, that is,
the selection of true positive SNPs, and the prediction accuracy.
Figure 2 (top panel) shows the sensitivity of the best ensemble of
genetic models and of the best single genetic model. The sensi-
tivity of the ensemble of genetic models is almost 100% with a
small number of causal SNPs and decreases when the SNP effects
become small, but it is higher than the sensitivity of the best sin-
gle genetic model. The higher sensitivity comes at a price of lower
specificity (Figure 2, mid panel) but the bottom panel of Figure 2
shows that the accuracy of the best ensemble of genetic models
is only slightly inferior to the accuracy of the best single genetic
model. Table 2 reports summary statistics (median and interquar-
tile range) of the correlation between observed and predicted
phenotypes and shows that the worst median loss of accuracy was
about 15% when the heritability was low (h2 = 0.20), and the
number of causal SNPs with large (m = 30), and it was within
5% in the other scenarios. The analysis suggests that the ensem-
ble of genetic models is more likely to capture all causal SNPs
than the single genetic model at the price of including some
false positive SNPs, without substantially reducing the predictive
accuracy.
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FIGURE 1 | Distribution of the correlation between observed values and

values predicted by the single genetic model (GS) and the ensemble of

genetic models (ENS GS). The side by side boxplots display the correlation
between the observed and predicted phenotype in the 1000 simulated test

data vs. the number of SNPs in the single genetic model (GS: odd columns)
and the ensemble of genetic models (ENS GS: even columns) for increasing
heritability (h2). Row 1: five causal SNPs; row 2: 10 causal SNPs; row 3: 30
causal SNPs.

Table 1 | Distribution of the number of SNPs included in the best

single genetic model selected with the single split of the data (GS),

the best ensemble of genetic models (ENS GS), and the best single

genetic model selected using cross-validation (CV).

SNP Method h2

0.2 0.4 0.6

5 GS 5 (5, 6) 5 (5, 5) 5 (5, 5)

ENS GS 8 (6, 11) 8 (7, 10) 8 (7, 9)

CV 5 (5, 6) 5 (5, 5) 5 (5, 5)

10 GS 9 (7, 11) 10 (9, 10) 10 (10, 10)

ENS GS 14 (10, 21) 15 (13, 19) 16 (14, 19)

CV 9 (7, 10) 10 (9, 10) 10 (10, 10)

30 GS 17 (8, 29) 23 (16, 29) 24 (20, 29)

ENS GS 30 (11, 48) 37 (30, 49) 40 (34, 49)

CV 15 (9, 24) 21 (16, 26) 23 (20, 27)

Numbers in the table are median and interquartile range.

We also investigated whether a different selection of the best
genetic model could produce a better inclusion of true positive
SNPs. We used 10 fold CV, as described in the methods, to select
the best single genetic model. The results in Table 1 show that
CV produced best single genetic models that included a number
of SNPs comparable to the strategy based on a single split of the
data but the analysis of the accuracy and sensitivity of the models
selected with 10 fold CV in Figure 2 and Table 2 suggests that the
approach may be slightly less sensitive.

DISCUSSION
One of the major goals of GWAS was to identify genetic variants
that are associated with disease or measures of disease sever-
ity in order to be used for personalized medicine. However,
genetic models have been of limited utility and the selection of
the best SNPs to be used for prediction is challenging (Schrodi
et al., 2014). SNPs that reach genome-wide significance often only
explain a small proportion of the variability of the phenotype
and have little value for prediction. Many studies have shown the
importance of including genetic variants beyond those that meet
the genome-wide association threshold of 5 × 10−08 (Makowsky
et al., 2011). However, many of these SNPs may be false positives
and their inclusion in the prediction model can lower the accu-
racy of the prediction in new data (Kooperberg et al., 2009; Yang
et al., 2010).

Our evaluation in simulated data suggests that using an ensem-
ble of genetic models provides a more robust solution compared
to selecting a single genetic model. The analysis showed that
when there are only a few causal SNPs, both the single genetic
model and the ensemble of genetic models perform similarly.
However, when the number of causal SNPs increases or, equiv-
alently, when the SNP effects are small, a single genetic model
tends to underestimate the number of causal SNPs, while the
ensemble of genetic models tend to include a larger proportion
of the causal SNPs. This increased sensitivity of the ensemble
is associated with only a slight decrease in the prediction accu-
racy. This analysis suggests that an ensemble of genetic models
would be particularly useful to identify true positive SNPs that
may be ignored in other analyses. The slow decline of predic-
tion accuracy also makes the ensemble of genetic prediction
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FIGURE 2 | Plots of the Model Selection Accuracy vs. Number of Causal

SNPs. The top panel displays side-by-side boxplots of the proportion of
causal SNPs that were included in the most predictive models, for increasing
number of SNPs (x-axis), and increasing heritability (h2). The mid panel
displays side-by-side boxplots of the specificity of the most predictive models

and the bottom panel displays summaries of the prediction accuracy of the
same methods. ENS GS: the ensemble of genetic models selected using a
single split of the data (red); GS: single genetic model selected using a single
split of the data (green); GS + CV: single genetic model selected using 10
fold CV model (blue).

Table 2 | Summary of the predictive accuracy of the best single

genetic model selected with the single split of the data (GS), the best

ensemble of genetic models (ENS GS), and the best single genetic

model selected using cross-validation (CV).

SNP Method h2

0.2 0.4 0.6

5 GS 0.41 (0.33, 0.39) 0.54 (0.49, 0.59) 0.60 (0.56, 0.65)
ENS GS 0.39 (0.33, 0.44) 0.51 (0.46, 0.56) 0.58 (0.53, 0.62)
CV 0.40 (0.38, 0.42) 0.53 (0.51, 0.54) 0.60 (0.59, 0.62)

10 GS 0.37 (0.31, 0.42) 0.52 (0.48, 0.57) 0.60 (0.56, 0.65)
ENS GS 0.34 (0.28, 0.40) 0.49 (0.44, 0.54) 0.57 (0.52, 0.62)
CV 0.38 (0.35, 0.41) 0.52 (0.50, 0.54) 0.60 (0.58, 0.62)

30 GS 0.26 (0.21, 0.31) 0.41 (0.35, 0.46) 0.51 (0.46, 0.56)
ENS GS 0.22 (0.16, 0.28) 0.38 (0.32, 0.44) 0.48 (0.42, 0.53)
CV 0.26 (0.21, 0.31) 0.44 (0.41, 0.47) 0.53 (0.51, 0.56)

Numbers in the table are median and interquartile range.

models more insensitive to the inclusion of false positive
SNPs.

In this manuscript we limited attention to the theoretical
aspects of the ensemble of genetic models. We applied this

methodology to real data in Milton et al. (2014) to predict fetal
hemoglobin (HbF) levels in patients with sickle cell anemia using
genetic data. To this end, we developed an ensemble of 14 genetic
models in a discovery cohort of 841 sickle cell patients. The
ensemble of 14 genetic models was used to predict the HbF lev-
els of sickle cell anemia patients in 3 independent cohorts and
reached a correlation ranging between 28% and 44% in the three
studies. Consistently with the analyses described here, using the
ensemble of genetic models produced more robust predictions
than using a single genetic model.

Many statistical methods have been developed to model com-
plex traits and increase the prediction accuracy including multi-
variate regression models and machine learning type approaches
such as support vector machines (Wei et al., 2009; Wu et al., 2011),
multifactorial dimensionality reduction (Moore et al., 2006), and
Bayesian networks (Rodin and Boerwinkle, 2005; Sebastiani et al.,
2005, 2012b; Jiang et al., 2011; Kang et al., 2011). Our analysis
only compared the results of an ensemble of genetic prediction
models to a single best genetic model. It will be interesting to
extend the comparison to include these alternative approaches to
generate genetic prediction models.

In our analysis we assumed that SNPs that enter the analysis
are not in linkage disequilibrium, as this is a commonly made
assumption (Paynter et al., 2010; Sebastiani et al., 2012b). The
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effect of including SNPs in linkage disequilibrium remains to be
investigated. This work only examined genetic prediction mod-
els with a genetic score that weighs all risk alleles equally. Further
work is needed to extend and evaluate this approach with more
sophisticated genetic scores that use varying weights for the risk
alleles (Kooperberg et al., 2009). In the genetic prediction of fetal
hemoglobin that we reported in Milton et al. (2014) we inves-
tigated ensembles of genetic models with either unweighted or
weighted genetic scores, and the results did not differ, although
the SNPs included in the genetic models had standardized effects
ranging between 3.7 and 12.5. However, it will be important to
investigate how different choice of weights could improve the
predictive accuracy of the ensemble.

Finally, the approach described made assumptions about the
genetic modeling that limit the generalizability of this study. We
assumed in our simulations that the genetic variants have an
independent additive effect on the phenotype, and that they all
explain the same proportion of variability. It will be interesting to
examine the effect of other modes of inheritance, of non-uniform
genetic effects, and of rare and common variants in future work.
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