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Most next generation sequencing experiments generate more data than is usable
for the experimental set up. For example, methyl-CpG binding domain (MBD) affinity
purification based sequencing is often used for DNA-methylation profiling, but up to
30% of the sequenced fragments cannot be mapped uniquely to the reference genome.
Here we present and evaluate a methodology for the identification of viruses in these
otherwise unused paired-end MBD-seq data. Viral detection is accomplished by mapping
non-reference alignable reads to a comprehensive set of viral genomes. As viruses
play an important role in epigenetics and cancer development, 92 (pre)malignant and
benign samples, originating from two different collections of cervical samples and
related cell lines, were used in this study. These samples include primary carcinomas
(n = 22), low- and high-grade cervical intraepithelial neoplasia (CIN1 and CIN2/3 - n =
2/n = 30) and normal tissue (n = 20), as well as control samples (n = 17). Viruses
that were detected include phages, adenoviruses, herpesviridae and HPV. HPV, which
causes virtually all cervical cancers, was identified in 95% of the carcinomas, 100%
of the CIN2/3 samples, both CIN1 samples and in 55% of the normal samples.
Comparing the amount of mapped fragments on HPV for each HPV-infected sample
yielded a significant difference between normal samples and carcinomas or CIN2/3
samples (adjusted p-values resp. <10−5, <10−5), reflecting different viral loads and/or
methylation degrees in non-normal samples. Fragments originating from different HPV
types could be distinguished and were independently validated by PCR-based assays in
71% of the detections. In conclusion, although limited by the a priori knowledge of viral
reference genome sequences, the proposed methodology can provide a first confined
but substantial insight into the presence, concentration and types of methylated viral
sequences in MBD-seq data at low additional cost.
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1. INTRODUCTION
The advent of next generation sequencing (NGS) has initiated
a revolution in molecular biology. Due to massively parallel
sequencing, new insights could be revealed in genetics, transcrip-
tomics and more recently epigenomics. However, the processing
of the sheer amount of data produced by these methods proved to
be a challenge. Identification of nucleotide sequences is often the
first step in many NGS analyses, yet a substantial fraction cannot
be properly identified. These unidentified fragments might arise
from low-complexity regions (e.g., repeats), bacteria, viruses,
other organisms or artificial noise (e.g., adaptor dimers, Head
et al., 2014).

Previous studies have identified viruses by screening reads
of RNA-seq from human samples. With this approach, the
occurrence of EBV and CMV could be demonstrated in colorectal

cancer and a landscape of viruses could be identified in a range of
cancers (Khoury et al., 2013; Salyakina and Tsinoremas, 2013). In
this project, we interrogated fragments from methyl-CpG binding
domain enrichment based sequencing (MBD-seq) for a putative
viral origin, thereby evaluating whether a similar approach could
also be successful for DNA methylation studies.

MBD-seq is a methodology for the detection of CpG-
methylation, an epigenetic modification that is essential for cellu-
lar differentiation and in processes such as genomic imprinting,
X-chromosome inactivation and silencing of transposable ele-
ments (Jones, 2012). This method is based on the enrichment
of CpG methylated fragments using methyl binding domains
followed by massive parallel sequencing. By mapping these frag-
ments to a reference genome, the putatively methylated locus can
be determined. Though affected by several biases, the amount of
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mapped fragments to a locus can be considered as a proxy for the
methylation degree of that locus. MBD-seq has been shown to be
sufficiently sensitive, specific and cost effective for genome-wide
studies (Serre et al., 2010; Aberg et al., 2012).

Viruses play an important role in public health. Aside
from causing infectious disease, some are known to be clear
risk factors for the development of cancer. Currently known
oncoviruses include human papilloma virus (HPV), Epstein-Barr
virus (EBV), Kaposi’s sarcoma associated herpesvirus (KSHV),
Human cytomegalovirus (CMV) and Merkel cell polyomavirus
(MCP). It is estimated that viruses have a causal role in about
16% of all human cancers (Schiller and Lowy, 2010; de Martel
et al., 2012). Therefore, prevention and vaccination for these
viral infections could prevent the occurrence of the cancers they
cause. Viral DNA detection has been previously achieved by a
range of other methods (Bexfield and Kellam, 2011). State-of-
the art methods are particularly sequencing based, for example
combined with enrichment techniques or ultra deep sequencing
(Allander et al., 2001; John et al., 2011; Lysholm et al., 2012).
Enrichment based methods are however dependent on viral par-
ticles, which restrains them from detecting integrated viruses.
Deep sequencing on the other hand gives an unbiased representa-
tion, but severely reduces the efficiency (Willner and Hugenholtz,
2013). With the advent of sequencing based viral research, also
the need for specific bioinformatics tools became urgent (Fancello
et al., 2012).

CpG methylation is known to play various roles in the life
cycle of viruses and their oncogenicity (Hoelzer et al., 2008;
Poreba et al., 2011). For example, papillomaviruses are generally
hypomethylated when being actively replicated, but are heav-
ily methylated while inserted into the host genome (Hoelzer
et al., 2008). HPV might be mediating the methylation of its
own genome, as HPV16’s viral protein E7 is found to bind
and stimulate the activity of DNA methyltransferase 1 (Dnmt1)
(Burgers et al., 2007). Also, viral DNA hypermethylation of
HPV is more prominent in carcinomas than in asymptomatic
infections or dysplasia (Fernandez et al., 2009; Marongiu et al.,
2014). In EBV, hypermethylation helps to hide its presence by
inhibiting expression of viral latency proteins that could be rec-
ognized by cytotoxic T-cells (Paulson and Speck, 1999). Even the
latency stage and the tumor type are associated with different
methylation patterns of the EBV genome (zur Hausen, 2006).
Adenoviruses have also been proven to be de novo methylated
by insertion, but never in a free DNA stage (Doerfler, 2009).
As several tumor-promoting and potentially methylable viruses
remain to be identified, we aim at identifying viruses in the typ-
ically ignored non-reference aligned sequence reads of MBD-seq
experiments.

Here, we demonstrate the usability and relevance of this
approach on a collection of cervical samples, including cervi-
cal cancer and cervical intraepithelial neoplasia (CIN), which
are putative cervical cancer precursors (Steenbergen et al., 2014).
Cervical cancer is the third most occurring cancer among women
worldwide and estimated prevalences of HPV in cervical cancer
range above 99%, strongly supporting the causal role of HPV
in cancer development (Walboomers et al., 1999; Ferlay et al.,
2010). Cervical tissue is known to be frequently infected by HPV
(Clifford et al., 2005) and HPV is often methylated (Hoelzer et al.,
2008). Therefore, cervical samples make an ideal test set for the
detection of methylated viruses, HPV in particular.

2. MATERIALS AND METHODS
2.1. SAMPLES AND MBD-SEQ
Of the 92 samples, 39 samples originated from the VU University
Medical Center (VUmc) in Amsterdam, further referred to as
Set 1. Of this set, 10 samples were obtained from carcinoma,
12 are high-grade cervical intraepithelial neoplasia (CIN2/3), 3
are low-grade cervical intraepithelial neoplasia (CIN1) and 15
originate from cell cultures (See Table 1). These included 2 iso-
lates of primary human foreskin keratinocytes (labeled EK), 10
DNA isolates of keratinocytes transfected with full length HPV16
and HPV18 DNA and the plasmid pcDNAIneo (Invitrogen)
(different passages of cell lines FK16A, FK16B, FK18A, FK18B;
Steenbergen et al., 1996), 2 DNA isolates of keratinocytes trans-
duced with HPV16E6E7 cloned in the retroviral vector LZRS-
MS-IERS-NEO/pBr (Kim et al., 2006; Steenbergen et al., 2013)
and the cervical cancer cell line SiHa. In addition, 52 samples
were collected from patients visiting the Department Gynecologic
Oncology of the University Medical Center Groningen (UMCG),
further referred to as Set 2. Of these samples, 12 samples are from
carcinomas, 18 from High-grade cervical intraepithelial neoplasia
(CIN2/3), 2 from leukocytes and 20 from normal cervical tissue.
The two leukocyte samples were pooled samples from each 2 per-
sons. This study has been approved by the ethical committees of
UMCG and VUmc, adhering to the declaration of Helsinki.

To obtain the DNA methylation profiles, the MethylCap kit
from Diagenode was combined with Illumina Genome Analyzer
IIx paired-end sequencing as described in (De Meyer et al., 2013)
except for using 500 ng of input DNA instead of 200 ng. Due
to data corruption in a compressed format, data for one CIN1
(complete) and one normal (partially) sample were unavailable
for further processing. Therefore, only 2 CIN datasets were avail-
able, resulting in a total of 91 samples for analysis. Bowtie 1.0.0
was used to subsequently map the obtained paired-end reads
(51 bp) from fastq-files to the human reference genome of NCBI
v37 (Langmead et al., 2009). A maximum insert size was set

Table 1 | Overview of the histological sample groups and their origin.

Cell culture Carcinoma CIN2/3 CIN1 Normal Leukocyte Total

Set 1 15 10 12 2 0 0 39

Set 2 0 12 18 0 20 2 52

Total 15 22 30 2 20 2 91
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at 400 bp and up to 3 mismatches were allowed in the seed
sequence to avoid too stringent mapping. For other parameters,
the default settings were used. DNA molecules for which the
paired-end reads could not be mapped to the reference genome
will be further referred to as “non-canonical” fragments, whereas
“canonical” fragments will be used to refer to fragments that
could be aligned to the reference genome. The non-canonical
fragments can be obtained from our website (http://www.biobix.
be/viralmbd/).

2.2. VIRUS DETECTION
We aimed to identify fragments of viral origin. This was achieved
by searching for sequence similarity between the non-canonical
reads and a set of viral reference genomes. For this purpose,
we used FR-HIT (Niu et al., 2011). All viral genomes from
NCBI and EMBL-EBI were used for the construction of a set
of viral reference genomes (http://www.ebi.ac.uk/genomes/virus.
html & http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.

cgi) (Wheeler et al., 2006; Leinonen et al., 2011). For reference
genomes with a sequence similarity of over 95% (cut-off), the
shortest genomes were removed with CD-HIT-EST (Fu et al.,
2012). This prevents a bias for those fragments for which there
are more similar reference genomes. Mapping of paired reads
on different, but very similar reference genomes are not being
withheld and would therefore otherwise create false negatives.
In order to diminish false positive identifications, several pre-
cautions were taken. First, reads featured by low complexity
(dust-score >4) were filtered out with prinseq-lite (Schmieder and
Edwards, 2011). Second, FR-hit was forced to utilize the complete
reads by using the “global mapping” strategy and only the best
hits with an e-value smaller than 10−5 were used. Finally, only
if both best hits from each paired-end originated from the same
virus, viral identification was affirmed. Duplicated fragments,
which have the same start for their first read and the same end
position for their second read, were removed. By default, FR-hit
masks reference sequences for low complexity regions, however
since such a filtering is performed on the reads, this function was
disabled. The end result of this approach is a dataset of virus (v)
specific counts (Nvs) for each sample (s). Whenever we observed
an Nvs > 0, we reported the virus to be present for that sam-
ple. Scripts for the execution of the pipeline can be found here:
https://github.com/klamens/viral-pipeline.

2.3. STATISTICAL TESTS
Testing for association between histological origin (carcinoma,
CIN2/3, CIN1, normal) and the presence of HPV in a sample
was performed by Pearson’s Chi-squared test with 2000 simulated
permutations. Association of high-risk HPV type occurrence and
histological groups was tested as well. The most abundant HPV
type per sample was used for the assessment of high/low risk
HPV type occurrence. When abundances of the most and sec-
ond most abundant type were equal and their risk was different,
the sample was rejected for testing. For a comparison of the frac-
tion of viral fragments, Nvs-values were normalized relative to the
total fraction of sequenced fragments. These normalized fractions
are denoted as Rvs. The fractions of counts mapped to specific
viruses were compared and tested for with the Kruskal-Wallis Test

between the different histological groups. These groups included
samples from carcinoma, CIN2/3, CIN1, normal and only for
HERV-K113 also cell cultures and leukocytes. Post-hoc analy-
ses were performed with the Mann-Whitney-Wilcoxon Test and
p-values were adjusted for multiple testing by Bonferroni correc-
tion (Hochberg, 1988). For both the Kruskal-Wallis Test and the
Mann-Whitney-Wilcoxon Test, a location shift assumption was
made, resulting in testing for a difference between the medians
of Rvs. Statistical analyses and graphical plot creations were per-
formed within the statistical environment R (Wickham, 2009; R
Core Team, 2012).

2.4. HPV TYPE VERIFICATION
Samples of Set 1 were assessed for HPV (type) presence using the
GP5+/6+ PCR followed by enzyme immunoassay (EIA) read-out
system using a probe cocktail of 14 high-risk HPV types (HPV16,
18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68) (Jacobs et al.,
1997). Reverse line blot was used to genotype all EIA-positive
samples (van den Brule et al., 2002) using probes for HPV-types
6, 11, 16, 18, 26, 30, 31, 33, 34, 35, 39, 40, 43, 45, 51, 52, 53, 54, 55,
56, 57, 58, 59, 61, 66, 67, 68, 69, 70, 71, 73, 81, and 82. Samples of
Set 2 were tested for presence of high-risk HPV-DNA with both
the HPV GP5+/6+ general primers, and HPV16- and HPV18-
specific primers (Wisman et al., 2006) as performed routinely in
the ISO-15189 accredited laboratory. In all tests a serial dilution
of DNA extracted from CaSki (ATCC; CRL1550; 500 integrated
HPV16 copies), HeLa (ATCC; CCL2; 20–50 integrated HPV 18
copies), SiHa (ATCC; HTB35; 1–2 integrated HPV16 copies),
CC10B (HPV45-positive cell line) and CC11 (HPV67 positive cell
line), and HPV-negative cell lines were included as control for the
analytical specificity and sensitivity of each hrHPV-PCR (Tjon
Pian Gi et al., 2014). To assess the MBD-seq based HPV type iden-
tification, concordances for samples with and without the specific
HPV types were calculated.

3. RESULTS
3.1. NON-CANONICAL FRAGMENTS
On average, 29% (SD = 9%) of all fragments in each sample
could not be aligned to the human reference genome. Of these
reads, only 0.31% (SD = 0.17%) could be mapped to the viral
reference genomes. In total, we tried to map reads of 4.3 ×
108 non-canonical fragments to 6433 different viral genomes,
obtained after removal of very similar genomes (see Materials
and Methods). More details about the mapping statistics can be
found in the Supplementary Material. As MBD-seq enriches for
methylated CpGs, a high-quality dataset should include only a
limited amount of fragments without any CpG, and most frag-
ments should have multiple CpGs (De Meyer et al., 2013). This
holds for both sample sets (1 and 2) as depicted in Figure 1A.
Differences in the number of CpGs per fragment per sample
between Sets 1 and 2 can be explained by differences in frag-
ment length (Figure 1B). Overall, this analysis suggests that most
identified viruses (see below) are indeed methylated.

3.2. DETECTED VIRUSES
In a first phase, the presence of specific viruses in the different
sample sets was assessed (see Table 2). For all samples, fragments
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FIGURE 1 | Fragment CpG content. (A) Histogram of CpG content per sample set. (B) Relation of CpG content and length per sample.

Table 2 | Sample counts (Nvs) of relevant identified viruses.

Cell culture Carcinoma CIN2/3 CIN1 Normal Leukocytes Total

HERV-K113 15 22 30 2 20 2 91
phage phiX174 7 20 29 2 20 2 80
Human adenoviruses 5 10 9 2 1 0 27
Merkel cell polypmavirus 0 0 2 0 0 0 2
Epstein-barr virus 0 6 4 0 1 0 11
Human cytomegalovirus 7 0 0 0 0 0 7
Human herpesvirus 1 0 1 0 0 0 0 1
Human herpesvirus 6 0 1 0 0 0 0 1
Human herpesvirus 7 0 0 0 1 0 0 1
Human papillomavirus 14 21 30 2 11 1 79

similar to the human endoretrovirus K113 (HERV-K113) could
be identified. However, as sequence identities of mapped reads
with HERV-K113 were sometimes as low as 75%, it is most likely
that these fragments originate from other HERV-Ks as well. A
significant difference in Rvs for these HERV-K113 similar frag-
ments could be demonstrated between the histological groups
(p < 0.0001), but post-hoc tests revealed only significantly higher
HERV-K113-like fractions in the cell cultures compared to nor-
mal tissue, CIN2/3 and carcinomas (all p ≤ 0.001, data not
shown).

Also phages were frequently observed in various samples,
though in very low abundances in all cell culture samples and
CIN1 samples. Enterobacteria phage PhiX174 is the most occur-
ring phage. This isn’t surprising, as PhiX174 is being used as
a spike-in for quality and calibration control in the Illumina
sequencing protocol. Other phages that were observed at lower
levels were, among others, phage lambda and phage P1 (data not
shown).

Human adenoviruses were discovered in multiple samples.
More fragments were observed in samples originating from Set
1 compared to those of Set 2. The most occurring types were
human adenovirus C and human adenovirus B. Two CIN2/3 sam-
ples contained a single fragment of the Merkel cell polyomavirus.

Multiple, particularly carcinoma and CIN2/3, samples were found
to contain one to 25 fragments of the Epstein-Barr virus.
Human cytomegalovirus was only detected in cell culture sam-
ples. However, these fragments most likely originate from the
CMV promoter which is included in the pcDNAI neo plasmid.
Human herpes virus 1, 6, and 7 were also identified, each in just a
single sample.

HPV was detected in all but one sample in the carcinoma
group and the cell culture group. It was discovered in all samples
originating from the CIN2/3 group and in 11 of the 20 normal
samples. Also in both samples of CIN1 and in one of the two
leukocyte samples HPV was detected. Association between the
presence of HPV and cervical groups (excluding cell culture sam-
ples and leukocytes) was assessed for by Pearson’s Chi-squared
test with simulated (p < 0.001).

Next to assessing the (differential) presence of specific viruses,
also a quantitative analysis can be performed. To illustrate the
feasibility, HPV Rvs in HPV-positive samples were compared
between the carcinoma, CIN2/3, CIN1 and normal groups (see
also Figure 2). A significant difference between these groups was
demonstrated (p = 0.0001). Post-hoc analyses reveal significant
differences between the normal group and cell carcinoma and
CIN2/3 samples (see Table 3). It should be noted that the absence
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FIGURE 2 | Normalized HPV fragment counts (Rvs) within each sample

for which HPV was found, per histological group.

Table 3 | Comparison of HPV fragment counts between cervical

histological groups.

Carcinoma CIN2/3 CIN1

CIN2/3 1

CIN1 0.4 1

Normal <10−5 <10−5 0.8

Values are p-values obtained by post-hoc Mann-Whitney-Wilcoxon test and

adjusted by Bonferroni correction.

of significance for the comparisons with CIN1 may be explained
by a lack of power (n = 2).

Often multiple HPV types were detected per sample as can
be observed in Figure 3A and Table 4. In Figures 3B–D one can
see which HPV types were detected in each histological group.
The most detected HPV type in primary cervical samples was
HPV16 (N = 30), followed by HPV31 (N = 12), HPV39 (N =
9), HPV18 (N = 6), and HPV36 (N = 6). Other HPV types could
not be observed in more than 4 different samples (see Figure 3).
We observed a higher relative occurrence of high-risk HPV types
in carcinoma and CIN2/3 samples with HPV compared to normal
samples, but the association was not significant.

Though the HPV type analysis yielded relevant results, the
overall accuracy of this approach should be evaluated as well.
Therefore, verification of the HPV types was performed using
independent methods (see Materials and Methods), which we
consider here as gold standard. The independent validation of the
HPV types yielded a positive verification in 71% of the detec-
tions. For HPV types indicated to be present by these methods,
results were 66% concordant with the MBD-seq approach. Vice
versa, verified absence of viruses was 98% concordant with the
proposed methodology. The more fragments that were detected
for an identified HPV type, the more likely it was to be validated
as can be seen in Table 5. As the verification methodology dif-
fered between Sets 1 and 2, results per sample collection can be
observed in Figure 4.

4. DISCUSSION
In this study, we demonstrated that the non-canonical fraction of
MBD-seq fragments can be used to identify viruses. Considering
the increasing importance of sequencing methods, this strategy
can provide key evidence regarding the involvement of specific
viruses in pathologies at minimal additional cost. Given the roles
of DNA methylation in virus biology, the outlined pipeline is
capable to generate valuable hypotheses from otherwise unused
data. As the outlined application has also several disadvantages
(see below), the generated hypotheses should of course be addi-
tionally validated by state-of-the art methods. The observed CpG
content in many cervical samples, in comparison with De Meyer
et al. (2013), suggests that most viral mapped fragments are
methylated. It should be noted that unmethylated viral fragments
picked up as “noise” may also be relevant, but that the sensitiv-
ity for these fragments will most likely be too low to link it to the
specific pathology under study.

Recently, some studies already achieved viral identification in
RNA-seq experiments by comparable methods (Chen et al., 2013;
Salyakina and Tsinoremas, 2013). These studies could find sub-
stantial presence of oncoviruses by their transcripts. However,
integrated viruses may be temporarily transcriptionally silent,
often by DNA methylation, making the proposed methodology
a good complement to RNA-seq for viral identification as tran-
scriptionally silenced viruses will also be detected. Moreover, it
is capable of revealing epigenetic information about the clinical
virus biology. Our method is generic and could be used in com-
bination with other NGS techniques. However, FR-HIT does not
account for splicing events which might restrict its applicability
to RNA-seq data.

The outlined approach was used on cervical samples of dif-
ferent origin, both histologically and study-wise, and multiple
viruses were detected. Not unexpectedly, fragments originating
from HERV-K were observed in every sample, which can be
considered as a positive control as HERV-K is an endogenous
retrovirus (Hohn et al., 2013). Significantly more HERV-K frag-
ments could be observed in the cell culture samples vs. normal
tissue, CIN2/3 and carcinomas, which might reflect methylation
differences between cell culture and primary samples (Smiraglia,
2001; Varley et al., 2013). This result therefore provides a first
indication that also a quantitative comparison of virus count
data may yield relevant information. Other expected detections
include Phage PhiX174 DNA from Illumina spike-ins and CMV
that originated from the pcDNAI neo plasmid in cell culture sam-
ples. Indeed, plasmids have been shown to be methylated, which
can interfere with specific experiments (Hong et al., 2001).

Interestingly, we detected several oncoviruses in the cervi-
cal samples besides HPV. Merkel cell polyomavius, known to
cause the Merkel cell sarcoma, was found to be present in two
CIN2/3 samples (Feng et al., 2008). Another identified oncovirus
is the Epstein-Barr virus. Although not significant, an apparent
association between the presence of the Epstein-Barr virus and
histological group hints toward its oncogenic role in cervical can-
cer as has been stated in (Szostek et al., 2009). However, since
the counts for Epstein-Barr were low, viral fragments originating
from infiltrating lymphocytes is at least an equivalent alternative
(Grywalska et al., 2013). Results from this study therefore indicate
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Table 4 | Overview of the number of identified HPV types in the different sample groups.

Cell culture Carcinoma CIN2/3 CIN1 Normal Leukocyte Total

No HPV 1 1 0 0 9 1 12
1 HPV type 7 12 17 1 5 1 43
2 HPV types 6 9 9 1 6 0 31
3 HPV types 1 0 4 0 0 0 5

Total 15 22 30 2 20 2 91

Table 5 | Overview of the number of validated HPV types according to

the amount of detected fragments.

1 2–10 11–100 >100 Total

Unvalidated 11 6 1 4 22

Validated 4 6 19 18 47

Total 15 12 20 22 69

that additional research should be performed regarding the
impact of Epstein-Barr virus and Merkel cell polyomavirus super-
infection in CIN2/3 and carcinomas, preferably in far larger
groups.

The most prevalent oncovirus however, as expected, was HPV.
As the prevalence of HPV in cervix and its causal role in cer-
vical cancer is well documented, the virus detection efficiency
of the proposed methodology verifies the capabilities of our
method (Clifford et al., 2005; Armstrong, 2010). The role of HPV
in cervical cancer was shown by two comparisons. First, there
is a significant association of HPV occurrence and histological
group. Second, in HPV positive samples we observed a signifi-
cant increase in total HPV fragments per sample in cell culture,
carcinoma or CIN2/3 samples vs. normal samples. The latter
observation could be due to more HPV and/or more HPV methy-
lation. More DNA methylation of the HPV genome in carcinomas
is in accordance with observations for HPV16 and HPV18 as
reported by Fernandez et al. (2009).
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However, note that the quantitative evaluation of methylated
viruses may also be affected by the global genomic methylation
state. Genomic hypermethylation, as often observed in cell lines
(Smiraglia, 2001), might suppress viral estimates as their rela-
tive abundance in the total methylated fraction may drop. On
the other hand, overall hypermethylation may also lead directly
to increased viral methylation, and therefore higher sensitivity for
MBD-based capturing. A similar reasoning may be relevant for
tumor samples, which might feature global hypomethylation (Li
et al., 2014). In other words, the overall methylation state will have
an important impact, but the exact effect depends on how much
viral methylation itself or the detection of methylation is affected
by it.

Phages were detected in primary samples from both sam-
ple sets and were absent in all cell culture samples. This is not
unexpected as the female genital tract is featured by complex
microbiological flora and phage genomes have since long been
reported to be methylated (Krüger and Bickle, 1983; Martin et al.,
2012). The presence of human adenoviruses might be explained
by contamination. Both human adenovirus B and C are known
to play a role in respiratory diseases, which might explain a pos-
sible way of contamination (Jones et al., 2007). The remarkable
difference of human adenovirus fragment occurrence between the
sample sets reinforces this hypothesis. Observation of HPV in one
leukocyte sample might be explained by contamination as well.

Hence, for virus detection with a low fragment count, one
should be cautious in concluding viral presence. The high sensi-
tivity of NGS will cause the results regarding presence or not to be
easily affected by contamination Yozwiak et al. (2012). For exam-
ple, HPV39 was detected several times at low fragment count in
samples that were run in the same illumina Genome Analyzer lane
as one sample with a remarkable high HPV39 fragment count.
Also, the high amount of HPV39 positive samples seems to devi-
ate from its relative low prevalence in Europe, this in contrast
with the other HPV types (16,18,31) (Clifford et al., 2005). These

fragments were most likely categorized in the wrong sample due
to carryover associated with common inaccuracies in Illumina
multiplex sequencing (Kircher et al., 2012). Improper identifica-
tions due to wrong mapping is less likely as viral genomes with
high similarity were represented by only one reference genome
per group. Furthermore, we checked some of the single HPV hits
by blasting them to NCBI nucleotide archive which gave us best
hits for the found HPV’s. Contamination might therefore partly
explain the seemingly high superinfection rate of HPV types. One
might therefore opt to only call virus presence upon identifica-
tion with a minimum fragment count, for example 10 (as also
suggested by Yozwiak et al., 2012 and Salyakina and Tsinoremas,
2013). Additionally, the use of double indexing during Illumina
multiplex sequencing will remove a major experimental source
of carryover contamination (Kircher et al., 2012). For example,
HPV detections in samples of Set 1 with more than 10 fragments
could all but two be verified. Alternatively, next to contamination,
MBD-seq might also be featured by a higher sensitivity due to
enrichment for methylation, compared to the methylation naive
verification methods. However, it will likely not detect viruses of
which no methylated DNA is present.

Another limitation of this best mapping hit based approach is
that it enterily depends on existing known viral genomes. In this
study, only full genomes of NCBI and ENA were used. However,
as the portion of sequenced genomes (6433 in our dataset) is
very limited compared to the amount of mammalian viruses esti-
mated at 320.000 (Anthony et al., 2013), it is very likely that
many viruses will be missed by this method. Related viruses can
be detected by lowering the stringency of sequence similarity.
However, this implies an increasing difficulty to distinguish viral
types. Distinct viral types will also be harder to distinguish when
the set of reference genomes increases as more similar genomes
enter. This problem can be solved by clustering and remov-
ing similar genomes or by technological advances that increase
the length of the sequenced reads. Finally, also horizontal gene
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transfer or ancestral viral integrations may create false positives.
De novo assembly of viruses using unmapped fragments largely
avoids the dependency on current knowledge and mapping prob-
lems, but will require large coverages to obtain sufficient amounts
of viral fragments and will be hampered by unmethylated regions
of the viral genome.

Generally, we can conclude that this method is effective in
detecting fragments of methylated viral DNA. This could be ver-
ified by HPV detection in the cervix case study, demonstrating
(i) association of HPV presence and histological group (ii) dif-
ferential quantities of HPV fragments in HPV positive samples
between normal samples and carinoma or CIN2/3 samples (iii)
type detection with good concordance as verified by indepen-
dent methods. In other words, if the impact of HPV in cervical
cancer would have been unknown, it might have been picked up
by the outlined approach, though additional validation would of
course have been absolutely necessary. It is therefore clear that the
methodology can generate novel knowledge regarding the pres-
ence of viruses in disease, and that the inherent disadvantages
are by far outweighed by the major benefit of obtaining informa-
tion regarding the presence of any sequenced virus in otherwise
typically discarded data.
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