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INTRODUCTION

Imputation is a commonly used technique that exploits linkage disequilibrium to infer
missing genotypes in genetic datasets, using a well-characterized reference population.
While there is agreement that the reference population has to match the ethnicity of the
query dataset, it is common practice to use the same reference to impute genotypes
for a wide variety of phenotypes. We hypothesized that using a reference composed of
samples with a different phenotype than the query dataset would introduce imputation
bias. To test this hypothesis we used GWAS datasets from Amyotrophic Lateral Sclerosis
(ALS), Parkinson Disease (PD), and Crohn's Disease (CD). First, we masked and then
performed imputation of 100 disease-associated markers and 100 non-associated markers
from each study. Two references for imputation were used in parallel: one consisting
of healthy controls and another consisting of patients with the same disease. We
assessed the discordance (imprecision) and bias (inaccuracy) of imputation by comparing
predicted genotypes to those assayed by SNP-chip. We also assessed the bias on the
observed effect size when the predicted genotypes were used in a GWAS study. When
healthy controls were used as reference for imputation, a significant bias was observed,
particularly in the disease-associated markers. Using cases as reference significantly
attenuated this bias. For nearly all markers, the direction of the bias favored the non-risk
allele. In GWAS studies of the three diseases (with healthy reference controls from the
1000 genomes as reference), the mean OR for disease-associated markers obtained by
imputation was lower than that obtained using original assayed genotypes. \We found that
the bias is inherent to imputation as using different methods did not alter the results. In
conclusion, imputation is a powerful method to predict genotypes and estimate genetic
risk for GWAS. However, a careful choice of reference population is needed to minimize
biases inherent to this approach.
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Geiger, 2004; Browning and Browning, 2007). Several imputation

In genome-wide association studies (GWAS), SNP data are used
to find genetic loci associated with various traits, particularly
common diseases. Due to the large number of tests performed
(more than 2.5 million for the latest chips), correction for multi-
ple hypothesis testing is necessary to avoid type I errors. However,
after correction, there is typically not enough power to detect
small effects (OR < 1.5), even with sample sizes exceeding
1000 cases and 1000 controls. A usual approach used in order
to increase n, consists in merging datasets from two or more
sources in a meta-analysis. However, if datasets were generated
using different genotyping platforms (a likely scenario), a small
minority of the total number of markers will be represented in
both. In this case, non-overlapping genotypes are imputed using
one or more reference populations (Guan and Stephens, 2008;
Huang et al., 2009; Nothnagel et al., 2009; Zheng et al., 2011).
Imputation methods are used to infer missing or untyped SNP
genotypes based on known information (e.g., linkage disequilib-
rium between missing or untyped SNPs and their flanking typed
SNPs) and can provide partial solutions for recovering missing
or untyped genotype data (Stephens et al., 2001; Greenspan and

methods using various statistical models such as the haplotype-
clustering algorithm (Scheet and Stephens, 2006), the hidden
Markov model (HMM) (Marchini et al., 2007), and the Markov
Chain model (Li et al., 2006), have been proposed. Imputed geno-
types, generated with these methods, have been used, successfully,
to improve power in association analyses (Scott et al., 2007; Servin
and Stephens, 2007; Sandhu et al., 2008; Sanna et al., 2008), to
facilitate meta-analyses (Patsopoulos et al., 2011), and to replicate
significant findings in follow-up studies (Willer et al., 2008).
Specifically, SNP imputation uses knowledge about haplotype
structure in a densely genotyped population [often healthy con-
trols from the HapMap International Consortium (2005), Jostins
et al. (2011) or as more recently proposed, the 1000 genomes
Project (Abecasis et al., 2010)] to infer unknown genotypes in the
query population. Though popular SNP imputation algorithms
vary in their details, they are based on the same general princi-
ple. To impute genotypes for a given individual, that individual’s
genotype is compared to the genotypes in the reference popu-
lation (e.g., the 1000 genomes data). At each genomic region,
a set of individuals from the reference population which closely
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matches the individual is chosen. The individual’s genotype is
assigned (i.e., “imputed”) based on a consensus using matching
individuals from the reference panel. Thus, the imputed geno-
type is derived from and highly dependent on the genotypes in
the reference population. This strategy can increase the power
of a GWAS, enable replication of findings from different array
types, and allow testing on a large number of SNPs to reveal the
fine structure of an association peak (Marchini et al., 2007; Sanna
et al., 2008; Willer et al., 2008; Zeggini et al., 2008; Becker et al.,
2009; De Jager et al., 2009; Hao et al., 2009).

Here we analyze publically available data on three complex dis-
eases and reveal a bias in SNP imputation that may confound
this approach. Our results suggest that when solely healthy con-
trols are used as reference for imputation, “risk” variants in the
target population are more likely to be mistakenly imputed as
“non-risk” alleles resulting in a deflation of the effect size in a
GWAS.

RESULTS

To test the hypothesis that imputation introduces a systematic
bias that ultimately results in a deflation of the effect size, we
used three publically available datasets in Amyotrophic Lateral
Sclerosis (ALS), Crohn’s Disease (CD), and Parkinson’s Disease
(PD). For each dataset, the following steps were performed. We
randomly split the dataset into two groups of equal age, gender,
and case/control distribution. The two halves were termed split
A and split B. We conducted a GWAS on split A. We ranked all
SNPs by GWAS effect size and selected the top 100 disease associ-
ated markers (DAM) and the bottom 100 non-associated markers
(NAM). We then proceeded to perform three imputations on the
SNPs of interest. Each time, the SNP of interest was masked and
an independent reference was used to impute the SNP. First, the
cases from split A were imputed using controls from split B as
reference for imputation, in order to measure the bias and error
of imputation. Next, the cases from split A were imputed using
cases from split B as reference for imputation, in order to see if
the use of cases for imputation can improve accuracy and decrease
bias. Finally, both cases and controls from the entire dataset were
imputed using a commonly used publically available reference
panel, in order to see if the measured effect size of a case control
study is affected by using imputed genotypes vs. true genotypes.

DISCORDANCE RATE OF IMPUTATION

As most imputation approaches use a healthy control population
as reference, we first conducted imputation of the masked geno-
types using an independent set of healthy controls as reference.
When imputing integer genotypes, discordance (Djy) at each
SNP was defined as the percentage of samples where genotype was
mistakenly inferred by imputation, and Djy = Dy + D, (where
D)y is the percent of genotypes where imputation over-estimated
the major allele by one or two copies, and D,, is the percent
of genotypes where imputation mistakenly over-estimated the
minor allele by one or two copies). In other words, Dy is per-
cent of genotypes which do not match imputation, composed
of the cases where minor allele is mistakenly predicted D,, and
cases where the major allele is mistakenly predicted Dy;. When
imputing fractional genotypes, discordance (D) at each SNP

was defined as the average of the absolute difference between the
imputed fractional genotype and the “true” genotype (coded as
0, 1, or 2; where 2 = homozygous for the major allele) across
all samples, where the “true” genotype is given by SNP-chip.
In general, the average Dj,; = 15-20% across all diseases and
Dfrac = 0.19 and 0.24 (Table 1). Interestingly, the lowest overall
discordance rate was found in CD, the dataset with the largest
sample size.

We observed that the imputation discordance rate (either Dy
or Dg,c) was significantly higher for DAM than for NAM. For
example, in the ALS dataset, Dj,; = 19.65% =+ 1.16 (mean &+ 2 x
standard error) for DAM and Dj,; = 17.4% = 1.11 for NAM, a
statistically significant difference (p = 0.005) (Table 1). Similarly,
imputation of PD samples was significantly less accurate (p =
0.0002) for the 100 DAM (Djp = 19.12% = 1.3) than for 100
NAM (Djnt = 15.74% =+ 1.23). We found no difference in Djy¢
between DAM and NAM in the CD dataset (p = 0.95). A sim-
ilar pattern was found when using fractional genotypes (Dfrac)
(Table 1).

When independent cases were used as a reference for imputa-
tion (instead of controls), a significant reduction in Djy or Dgac
was observed. For example, in the ALS dataset, the average discor-
dance at DAM (Dj,; = 18.04% =+ 1.15) using cases as reference
was significantly lower (matched pairs t-test, p = 10™#) than the
average discordance at the same SNPs using controls as reference
(Dint = 19.65% =+ 1.16), suggesting that more accurate imputa-
tion is obtained when matched cases are used as reference for
imputation. The average Djp; in the ALS dataset using indepen-
dent ALS cases as a reference was 18.04% (&4 1.15) for DAM and
17.6% (£ 1.2) for NAM, a non-significant difference (p = 0.6)
(Table 1).

Similar results were obtained in the PD dataset, in which the
average discordance at DAM using controls as reference (Diye =
19.12% = 1.3) was significantly higher than that observed when
matched cases were used instead (Dj, = 18.22% = 1.4) (matched
pairs t-test, p = 0.002). Although using independent cases as a
reference reduces the discordance in imputation, a significant
drop in imputation accuracy was still observed in the PD dataset
for DAM (Djn = 18.22% = 1.4) compared with NAM (Dj,; =
15.89% =+ 1.21) (p = 0.01) (Table 1). We observed similar results
using fractional imputation metrics.

In summary, the average total discordance rate of imputation
on each data set ranged from 15 to 20% and SNPs with large effect
sizes were significantly more discordant than SNPs with small
effect sizes (up to 3.5%) in two of three datasets (PD and ALS).
This discordance was attenuated when cases, instead of controls,
were used as reference for imputation.

SNP IMPUTATION BIAS

In order to determine whether the discordance observed was ran-
dom or systematic, we looked at bias. For integer imputation, we
defined bias (B) as the difference in imputation discordance when
predicting the major (M) and minor (m) alleles, Bj,s = Dy —
D,,. When using fractional imputation, bias (Bf,c) is defined at
each SNP as the average of the signed difference between the
imputed fractional genotype and the true genotype (coded as 0,
1, or 2; where 2 is homozygous for the major allele) across all
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samples. According to these definitions, a positive bias means
imputation favors the major allele, and a negative bias means
imputation favors the minor allele.

Before discussing the difference between using cases or con-
trols as a reference, or between DAM and NAM, it is important
to note that imputation is inherently biased toward the minor
allele. For integer genotypes, when using controls as a reference
to impute NAM (markers not associated with disease), there is a
small significant bias toward the major allele of 1-2% in all three
datasets (ALS p = 0.0067; PD p < 107% and CD p < 1077),
Table 2. This effect was reduced by using fractional imputation
(Table 2). This inherent bias is the reason that we defined bias
in terms of major or minor allele, and the reason that we split
the DAM (disease markers) into two groups for further analysis:
markers where the major allele is the susceptibility (“risk”) allele,
and markers where the minor allele is the risk allele.

When controls were used as a reference for imputation DAM,
a consistent bias against the risk allele was observed for all three
diseases. For example, when the major allele was the risk allele,
integer imputation was biased toward the minor allele (p <
1077 for each disease) and when the minor allele was the risk

allele, imputation was biased toward the major allele (p < 10~1°
for each disease). Similar results were observed when fractional
imputation was used.

Interestingly, when independent cases were used as a reference
to impute DAM, the bias against risk alleles remained. Similarly
to what we observed using controls as a reference, when the
major allele was the risk allele, imputation was significantly biased
toward the minor allele (p < 1078 in ALS; p = 3 x 10™* in PD;
and p = 0.012 in CD). Conversely, when the minor allele was the
risk allele, imputation was significantly biased toward the major
allele (p < 10~° for each disease).

Figure 1 shows the bias (Y-axis) when controls (left) or cases
(right) are used as a reference to impute SNPs in the ALS
dataset. With either reference population the bias is consistently
against the risk allele and can be observed for all DAM (cir-
cles) including the most significantly associated SNPs (dark gray)
as well as for more modestly associated (light gray). However,
the magnitude of the bias is lower when cases are used as ref-
erence. We observed similar results in the PD and CD data sets
(Supplementary Figures S1, S2). Of note, results were largely
unchanged when the call tolerance parameter T was changed

Table 1 | Discordance of imputation.

Marker type* Data** (n) Mean discordance using Mean discordance using
(n SNPs) integer genotypes [95% CI] fractional genotypes [95% Cl]
Reference:control Reference:cases Reference:control Reference:cases

NAM (100) ALS (137) 17.40% [16.30, 18.50] 1760% [16.41, 18.80] 0.2094 [0.1970, 0.2218] 0.2108 [0.1977, 0.2240]
NAM (100) PD (335) 15.74% [14.53, 16.96] 15.89% [14.69, 17.10] 0.1927 [0.1787, 0.2067] 0.1937 [0.1803, 0.2072]
NAM (100) CD (406) 15.73% [14.64, 16.81] 16.13% [15.02, 17.26] 0.1935[0.1818, 0.2051] 0.1978 [0.1857, 0.2099]
DAM (100) ALS (137) 19.65% [18.50, 20.80] 18.04% [16.90, 19.18] 0.2311 [0.2188, 0.243] 0.2156 [0.2031, 0.2280]
DAM (100) PD (335) 19.12% [17.84, 20.41] 18.22% [16.83, 19.61] 0.2274[0.2128, 0.2421] 0.218[0.2022, 0.2337]
DAM (100) CD (406) 15.77% [14.68, 16.87] 15.45% [14.34, 16.56] 0.1918 [0.1795, 0.2040] 0.1883 [0.1759, 0.2007]

*NAM, non-associated markers, DAM, disease-associated markers.

**Cases were imputed from ALS, Amyotrophic Lateral Sclerosis; PD, Parkinson'’s Disease; CD, Crohn’s Disease.

Table 2 | Bias of imputation.

Marker type* Risk Dataset** Mean Bias using integer Mean Bias using fractional
(n SNIPs) allele (nsamples) genotypes*** [95% CI] genotypes*** [95% CI]
Reference:controls Reference:cases Reference:controls Reference:cases
NAM (100) - ALS (137) 1.02% [0.29, 1.75] 1.64% [0.77, 2.51] —0.0019 [—0.009, 0.0053] 0.0071 [—0.002, 0.0161]
NAM (100) - PD (335) 1.67% [1.04, 2.30] 1.93% [1.17, 2.68] 0.0005 [—0.0056, 0.0067] 0.0039 [—0.0035, 0.0113]
NAM (100) - CD (406) 1.55% [1.05, 2.05] 1.94% [1.40, 2.49] 0.0017 [-0.0025, 0.0059] 0.0069 [0.0017, 0.012]
DAM (54) Major ALS (137) —10.67% [—12.59, —8.75] —4.32% [-5.57 —3.07] —0.126 [-0.147 —0.1051]  —0.0638 [-0.0762, —0.0514]
DAM (52) Major PD (335) —721% [-8.30, —6.12] —2.51% [-3.81, —1.22] —0.0934 [-0.1033, —0.0835] —0.0394 [-0.0522, —0.0266]
DAM (47) Major CD (406) —4.55% [-5.87 —=3.23] —0.90% [-1.58, —0.21] —0.0615 [-0.0762, —0.0467] —0.0232 [-0.0302, —0.0162]
DAM (46) Minor ALS (137) 12.51% [10.85, 14.18] 6.00% [3.98, 8.01] 0.1253 [0.1065, 0.1441] 0.0571 [0.0352, 0.0789]
DAM (48) Minor PD (335) 10.60% [9.24, 12.0] 5.98% [4.62, 7.35] 0.1018 [0.0875, 0.1161] 0.0476 [0.0328, 0.0625]
DAM (53) Minor CD (406) 8.97% [8.20, 9.73] 5.565% [4.37 6.37] 0.0812 [0.0722, 0.0901] 0.047 [0.0378, 0.0561]

*NAM, non-associated markers, DAM, disease-associated markers.

**Cases were imputed from ALS, Amyotrophic Lateral Sclerosis; PD, Parkinson’s Disease; CD, Crohn’s Disease.

***Positive values indicate preference for major allele.
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FIGURE 1 | Imputation bias vs. odds ratio of association in ALS. Each
circle represents one of the 100 DAM in ALS. For each SNF, the odds ratio
(OR) of association (x-axis) indicates whether the minor allele (OR > 1) or the
major allele (OR < 1) is the susceptibility allele (the allele more prevalent in
cases than controls). The imputation bias (y-axis) indicates whether
imputation error favors the major allele (positive values) or the minor allele
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(negative values). When controls were used as the reference for imputation,
imputation is biased against the susceptibility allele. When an independent
set of cases was used as the reference for imputation, the bias is
significantly decreased. For reference, the 100 NAM (OR ~ 1) are shown as
boxes. Points are shaded by the log10 p-value of association with disease.
The odds ratios of NAM are exaggerated for visual clarity.

from 0.5 to 0.3 or 0.1 (data not shown), or when fractional
genotypes were used (Supplementary Figures S3-S5).

To evaluate the potential effect of imputation on a genome-
wide association study (GWAS), the same three datasets (PD, ALS,
and CD) were used to perform three parallel association studies.
For this analysis, imputation was performed using the CEU sub-
set of the 1000 Genomes as a reference for imputation (Abecasis
et al., 2010). For any SNP, the odds ratio (OR) was defined by
logistic regression (OR = exp(b), where b is the estimate of the
logit coefficient in the logistic regression). Odds ratios computed
from imputed genotypes (imputed OR) were compared to those
obtained using data from experimentally determined genotypes
(from SNP chip; termed “true” OR). Imputed OR were com-
pared to true OR for each DAM. Figure 2 shows the distribution
of imputed/true OR for the top 100 DAM in each dataset. Using
integer imputation, the magnitude of the mean imputed OR was
only 64.2% =+ 2.8 (mean £ 2 X standard error) as high as the
magnitude of the true OR in ALS, 71.1% =+ 3.2 in PD, and
73.8% =+ 2.4 in CD. In all cases, it is evident that the distribution
of OR is shifted toward the left of 1.0, a vertical dotted line which
represents equality between imputed OR and true OR. Using frac-
tional genotypes yielded similar results (Figure 2). Using another
commonly used imputation software algorithm (Beagle) yielded

similar results (Figure 2). However, in contrast to Mach impu-
tation, the magnitude of the mean imputed OR was closer to
the magnitude of the true OR in each dataset. In summary, the
observed effect size after imputation is considerably lower for
both types of imputation although in the second analysis using
Beagle and a larger reference dataset improves the accuracy of
imputation. It should be noted that for a few SNPs, the imputed
OR is nearly equal or greater than the true OR (imputed OR/true
OR > 1). That is, for these SNPs, there is no decrease in observed
magnitude of association with disease when imputed genotypes
are used.

DISCUSSION

We have shown that imputation of DAM is consistently and sig-
nificantly biased against the risk allele. This was seen in three
diseases, and using two different software algorithms of impu-
tation. The number of top SNPs selected as DAM or NAM
was arbitrary and we acknowledge that many of these SNPs are
likely to be false positives. However, since this arbitrary thresh-
old was used for all datasets, we deemed this as a valid strategy.
Furthermore, the fact that using independent cases as a reference
(rather than controls) reduces the imputation bias indicates that
at least some of these SNPs may be truly associated with disease.
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FIGURE 2 | The distribution of (imputed OR/true OR) for 100 DAM in
each dataset. In each of three datasets, 100 DAM were selected and
the odds ratio of association with disease was estimated using both
genotyped (true) data and imputed data. The ratio of imputed odds
ratio to true odds ratio (x-axis) takes a similar distribution across the
100 SNPs in each disease. The odds ratio (OR) of association was
generally lower for imputed data than for true data (imputed OR/true

0.5
Imputed OR / Real OR (where OR = exp(logit))

1.0 15

OR < 1). This hold true whether we use whole number imputation by
Mach (top), fractional imputation by Mach (middle), or whole number
imputation by Beagle (bottom). In contrast to Mach imputation, the
magnitude of the mean imputed OR was closer to the magnitude of
the true OR for all three datasets when using Beagle imputation. ALS,
Amyotrophic Lateral Sclerosis; PD, Parkinson's Disease; CD, Crohn's
Disease.

While imputation bias is reduced when matching cases were
used as reference for imputation, the effect is still present. We
offer three possible explanations for the persistence of bias in this
scenario. First, as in most common diseases, significant genetic
heterogeneity could result in reference cases not carrying the same
“risk” haplotype structure as the original cases, thus leading to
underestimation of “risk” alleles during imputation. Second, the
disease variants/mutations may occur in relatively small genetic
windows which are not spanned by enough SNPs to make impu-
tation effective. Third, the disease alleles are rare. If the frequency
of the “non-risk” allele greatly outweighs the frequency of the
“risk” allele, then the inherent bias for common alleles will add
to the apparent bias for the “non-risk” allele. Future analyses
aimed at describing the relative contribution of these hypotheses
in diseases of varying genetic complexity are needed.

Although the Beagle imputed odds ratios are closer to the real
odds ratios than the Mach imputed odds ratios, they are still
significantly less than the real odds ratios. The reduced bias for
Beagle imputation can be explained by at least two reasons. First,
Beagle may be using a more accurate algorithm for imputation
though this is unlikely given previously published head-to-head
analysis of Beagle vs. Mach, and, second, the reference panel may
be more up to date and consists of more individuals.

In conclusion, while combining datasets by imputation can
lead to a more powerful GWAS (Becker et al., 2009; Hao et al,,
2009) by allowing successful identification of SNPs associated
with various phenotypes (Sanna et al., 2008; Willer et al., 2008;
Zeggini et al., 2008; De Jager et al., 2009), the described decrease
in signal inherent to imputation can partially offset any gain
in power resulting from the combination of studies. Important
implications of this finding include the fact that some truly
associated variants may not be detected, and that some genome-
wide significant findings may have larger true effect sizes than

estimated. Since the imputation error of any given SNP cannot
be known a-priori, individual genotyping of candidate SNPs by
imputation should always be performed as a follow-up (Halperin
and Stephan, 2009). In summary, imputation is a powerful
method to estimate genetic risk at the population and individ-
ual level, but a careful choice of control population is required to
minimize biases inherent to the approach. A plausible strategy is
to consider deeper genotyping or whole genome sequencing of a
small panel of ethnically matched cases and controls to be used as
a reference for imputation.

METHODS

DATASETS: THREE CASE-CONTROL GWAS

Quality controlled, genotype-level data from three previously
published independent case-control GWAS in individuals of
European ancestry in Amyotrophic Lateral Sclerosis (ALS),
Crohn’s Disease (CD), and Parkinson’s Disease (PD) were
obtained from dbGAP (Mailman et al., 2007) (Supplementary
Table S1). In CD (Rioux et al., 2007) and PD (Fung et al., 2006),
cases and controls were matched by sex, age (or year of birth),
and ancestry (Rioux et al., 2007; Simon-Sanchez et al., 2009). For
ALS cases (Schymick et al., 2007), a sample from neurologically
normal controls (Simon-Sanchez et al., 2007) were matched for
age and gender and ancestry (Schymick et al., 2007). After quality
control done by the original authors, we performed a second layer
of quality control on markers (MAF > 0.05, HWE p-value > 107°
in controls, genotype success rate > 95%).

For each disease dataset, half of the patients and a matched
number of controls were extracted (split “A”) while maintaining
original ratios of gender and age. This half of the data (split A) was
used to perform a association study (using software Plink Purcell
etal., 2007), using a genotypic model or a linear dose model. Here
we report results using the genotypic model; results for the linear
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trend model were largely similar and not shown. The 100 markers
with the largest absolute effect size (DAM) were considered for
imputation (OR > 1.88 in ALS, OR > 1.53 in PD, OR > 1.44 in
CD). As a control, 100 SNP markers with the smallest absolute
effect size (NAM) were imputed with the same procedure (1 <
OR < 1.001).

For each marker of interest (DAM or NAM), genotypes of
cases of split A were masked with the goal of predicting them
using imputation. Next, imputation of the masked genotypes was
carried out using all markers within a 1 Mb window centered on
each query SNP. The imputation window size was chosen large
enough so as to include neighborhood SNPs that have 12 > 0.2
with the query SNP. The imputation was repeated with each of
two reference sets: (a) the previously unused healthy controls
from split B of the same study, (b) an equal number of the
previously unused affected case individuals from split B of the
study.

Next, for each marker of interest (DAM or NAM) the geno-
types of all cases and all controls from each study (split A and split
B) were masked with the goal of predicting them with imputa-
tion. Imputation was performed using the CEU subset of the 1000
Genomes as a reference for imputation (Abecasis et al., 2010).

Imputation was carried out using Mach (Li et al., 2006) (see
Nothnagel et al., 2009 for an evaluation of the relative perfor-
mance of this algorithm compared to others), with default set-
tings and default quality control criteria for SNPs (MAF > 0.05,
HWE p-value > 107°, genotype success rate > 95%). For each
imputed genotype, Mach outputs a fractional genotype (Gimp)
between zero and two that corresponds to the inferred number of
copies of the minor allele, where minor allele is determined using
dataset frequencies (cases and controls). The fractional geno-
type is compared to the genotype by SNPchip (Gy), or “true”

genotype.

DISCORDANCE AND BIAS USING INTEGER GENOTYPES

Using a call tolerance parameter (7T'), the integer imputed geno-
type (Gint) is homozygous for the major allele if Gimp < T,
heterozygous if 1 — T' < Gimp < 1 + T, or homozygous for the
minor allele if Gjmp > 2 — T; otherwise the genotype is consid-
ered missing. Results using T = 0.5 are shown here. Results using
stricter tolerance thresholds T = 0.3 and T = 0.1 were largely
similar and are not shown. When using integer genotypes, dis-
cordance Di,y = Dy + Dy, is the percent of imputed genotypes
that do not match genotypes from SNP chip, where Dy is the
percent of samples where rounded imputation mistakenly over-
predicts the major allele in the genotype (by one or two copies),
and Dy, is the percent of samples where imputation mistakenly
over-predicts the minor allele in the genotype (by one or two
copies). The bias B is defined as Bj,; = Dy — Dyy,. The bias Bjy
is positive when the major allele is over-predicted and negative
when the minor allele is over-predicted. The bias cannot exceed
the discordance: |Bint| < Dijnt.

The discordance (or bias) calculated at individual SNPs is the
sum (or difference) of two proportions. To compare groups of
SNPs, a Gaussian approximation of the discordance (or bias)
distribution was employed and ¢-statistics compared the differ-
ence in means between two groups of SNPs. Normality of the

distributions were tested by the Anscombe-Glynn test of kurto-
sis. Further, non-parametric tests of differences in medians were
used in parallel to confirm results.

DISCORDANCE AND BIAS USING FRACTIONAL GENOTYPES
For each SNP, we computed across samples the mean discor-
dance Dgc = mean |Gimp — Gol, and the mean bias Bf,c =
mean (Gimp — Go). The bias B, is positive when the major
allele is over-predicted and negative when the minor allele is
over-predicted across all samples. The bias cannot exceed the
discordance: | Bfac| < Dfrac-

The discordance (or bias) calculated at individual markers is
a mean across the samples. To compare groups of markers (e.g.,
DAM vs. NAM), a Gaussian approximation of the discordance (or
bias) distribution was employed and ¢-statistics compared the dif-
ference in means between two groups of SNPs. Normality of the
distributions were tested by the Anscombe—Glynn test of kurtosis.
Further, non-parametric tests of differences in medians were used
in parallel to confirm results (not shown).
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