
REVIEW ARTICLE
published: 13 February 2015

doi: 10.3389/fgene.2015.00037

Pericytes as targets in hereditary hemorrhagic
telangiectasia
Jérémy Thalgott , Damien Dos-Santos-Luis and Franck Lebrin*

INSERM, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Group Pathological Angiogenesis and Vessel Normalization, Collège
de France, Paris, France

Edited by:

Salma Abdalla, University of
Toronto, Canada

Reviewed by:

James B. Hoying, Cardiovascular
Innovation Institute, USA
Christine Mummery, Leiden
University Medical Center,
Netherlands

*Correspondence:

Franck Lebrin, INSERM, Center for
Interdisciplinary Research in Biology,
UMR CNRS 7241/INSERM U1050,
Group Pathological Angiogenesis
and Vessel Normalization, Collège
de France, 11 Place Marcelin
Berthelot, Paris F-75005, France
e-mail: franck.lebrin@
college-de-france.fr

Defective paracrine Transforming Growth Factor-β (TGF-β) signaling between endothelial
cells and the neighboring mural cells have been thought to lead to the development of
vascular lesions that are characteristic of Hereditary Hemorrhagic Telangiectasia (HHT).
This review highlights recent progress in our understanding of TGF-β signaling in mural cell
recruitment and vessel stabilization and how perturbed TGF-β signaling might contribute
to defective endothelial-mural cell interaction affecting vessel functionalities. Our recent
findings have provided exciting insights into the role of thalidomide, a drug that reduces
both the frequency and the duration of epistaxis in individuals with HHT by targeting mural
cells. These advances provide opportunities for the development of new therapies for
vascular malformations.
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INTRODUCTION
Hereditary Hemorrhagic Telangiectasia (HHT) also known as
Osler-Weber-Rendu syndrome is an autosomal dominant vascu-
lar disorder that affects 1 in 5000 individuals worldwide. The
majority of HHT individuals will have HHT1 due to mutations
in ENG encoding endoglin (McAllister et al., 1994) or HHT2
due to mutations in ACVRL1 encoding Activin receptor Like-
Kinase 1 (ALK1) (Johnson et al., 1996). Both are receptors for
Transforming Growth Factor-β (TGF-β)/Bone Morphogenetic
Protein (BMP) expressed primarily in endothelial cells. There are
at least two further unidentified genes that can cause HHT, HHT3
on chromosome 5q (Cole et al., 2005; Govani and Shovlin, 2010)
and HHT4 on chromosome 7p (Bayrak-Toydemir et al., 2006a).
Finally, some SMAD4 mutations can cause a syndrome com-
prising both juvenile polyposis and HHT phenotypes (Gallione
et al., 2004) while BMP9 mutations have been linked to vas-
cular malformations that have phenotypic overlap with HHT
(Wooderchak-Donahue et al., 2013). It is currently believed that
in most if not all cases, HHT mutations represent null alleles,
implying that the remaining wild-type allele is unable to con-
tribute sufficient protein for normal vascular functions. Thus, the
predominant mechanism underlying HHT phenotypes seems to
be haploinsufficiency (Abdalla and Letarte, 2006).

Clinically, HHT is characterized by large arteriovenous mal-
formations (AVMs) that are found in major organs including the
lung, liver and brain. They consist of direct connections between
arteries and veins without an intervening capillary bed. They
can cause severe morbidity and mortality if not recognized and
treated. Multiple red spots known as telangiectases are typically
found in the nasal septum, oral mucosa and gastrointestinal tract.

They consist of clusters of abnormally dilated thin-walled vessels
that are prone to bleed with slight trauma. All classical features of
HHT can be seen in both HHT1 and HHT2, but the prevalence of
specific vascular malformations varies according to the genotype.
Pulmonary and cerebral AVMs are more common in HHT1 than
HHT2, 85 vs. 35% (van Gent et al., 2010) and 20 vs. 2% (Letteboer
et al., 2006), respectively. HHT2 individuals have a higher inci-
dence of hepatic AVMs (Bayrak-Toydemir et al., 2006a,b; Bossler
et al., 2006; Lesca et al., 2007). The major quality of life issue for
many individuals with HHT is frequent and severe nose and gas-
trointestinal bleeding from mucosal telangiectases that can cause
severe anemia (Shovlin, 2010). Multiple lesions disseminated over
the entire mucosal surface are common in affected individuals,
making local treatment difficult. Therapeutic manipulation of
coagulation and fibrinolytic pathways is often employed to try
to limit blood loss in HHT. Recent randomized controlled trials
have demonstrated the efficacy of tranexamic acid in the treat-
ment of severe bleeds in individuals with HHT (Gaillard et al.,
2014; Geisthoff et al., 2014). Aminocaproic acid may also be effec-
tive (Saba et al., 1994). Hormonal manipulation in the form of
estrogen-progesterone regimen and tamoxifen has been shown
to be beneficial in treating epistaxis (Van Cutsem et al., 1988,
1990, Yaniv et al., 2009). Surgical replacement of nasal epithelium
by skin, argon laser coagulation or antioxidants is also used and
shows efficacy (Sadick et al., 2003; Lesnik et al., 2007; de Gussem
et al., 2009). However, all these options just offer a hemorrhage-
free interval and have side effects (Shovlin, 2010) and alternatives
are still a significant unmet need.

Accumulating data indicate that excessive angiogenesis is
implicated in the pathogenesis of HHT and may contribute to the
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formation of AVMs (Xu et al., 2004; Park et al., 2009; Lebrin et al.,
2010; Choi et al., 2012; Mahmoud et al., 2010; Choi et al., 2013;
Chen et al., 2013), suggesting that angiogenesis inhibitors might
be promising agents to treat HHT symptoms (Lebrin et al., 2010;
Dupuis-Girod et al., 2012, 2014; Walker et al., 2012; Han et al.,
2014; Riss et al., 2014). Angiogenesis involves the growth of new
blood vessels from pre-existing ones (Carmeliet and Jain, 2011;
Geudens and Gerhardt, 2011; Potente et al., 2011). The forma-
tion of new sprouts is highly dynamic and requires a multitude
of highly orchestrated processes initiated by the selection of a
fraction of endothelial cells that acquire a highly motile pheno-
type that become called endothelial Tip cells (Lobov et al., 2007;
Jakobsson et al., 2010; Benedito et al., 2012). The other endothe-
lial cells termed Stalk cells stay behind the Tip cell, proliferate
and form the new tube to maintain the integrity and perfusion
of the growing vascular bed (Eilken and Adams, 2010; Wacker
and Gerhardt, 2011; Ribatti and Crivellato, 2012). The endothelial
cell specification is highly controlled by a fined-tuned feedback
loop between VEGF signaling and Notch/Dll4 signaling ensur-
ing a “salt and pepper” distribution of endothelial Tip and Stalk
cells within the activated endothelium (Ruhrberg et al., 2002;
Gerhardt et al., 2003; Covassin et al., 2006; Hellström et al., 2007;
Suchting et al., 2007; Tammela et al., 2008; Eilken and Adams,
2010; Jakobsson et al., 2010; Wacker and Gerhardt, 2011; Ribatti
and Crivellato, 2012). New sprouts then extend, form a lumen and
eventually meet and connect in a process called anastomosis cre-
ating a primitive vascular network that is further remodeled by
regression and stabilization to support blood flow, become spe-
cialized as arteries and veins and recruit mural cells. One impor-
tant factor regulating vessel remodeling is oxygen as elevated
oxygen induces vessel pruning, ensuring that the vascular density
is correctly adapted to the tissue demand. The recruitment of the
mural cells, pericytes and vascular smooth muscle cells (VSMCs)
that coat small capillaries and larger vessels respectively, marks
the end of the plasticity time-window in vascular development
during which pruning can occur. The prominent signaling path-
ways that regulate endothelial-mural cell-cell communication are
Platelet Derived Growth Factor-β (PDGF-β)/PDGF Receptor-β,
angiopoietin 1 (Ang1)/Tie2 and TGF-β, which control mural cell
recruitment, endothelial cell viability and mural cell differenti-
ation, respectively (Gaengel et al., 2009; Armulik et al., 2011;
Stapor et al., 2014). Several possible mechanisms have been pro-
posed to explain how mutations in Acvrl1 or Eng gene may lead
to aberrant angiogenesis. These include increased VEGF pro-
duction (Cirulli et al., 2003; Sadick et al., 2005a,b, 2008), and
inappropriate responses of mutated endothelial cells to TGF-β
(Lebrin et al., 2004; Xu et al., 2004; Fernandez-L et al., 2005) or
to BMP9/10 stimulation (Ricard et al., 2010, 2012; Kim et al.,
2012; Young et al., 2012) that cause excessive endothelial cell
proliferation and migration inhibiting vessel maturation. ALK1-
Smad1/5 signaling cascade has also recently been reported to
synergize with activated Notch in Stalk cells to repress Tip cell
formation and endothelial sprouting thus establishing a robust
Tip-Stalk cell selection (Larrivée et al., 2012; Moya et al., 2012).
Consequently, blockage of ALK1 or BMP9 showed a denser more
highly branched vascular plexus in retinas of post-natal P7 mice
(Larrivée et al., 2012; Ricard et al., 2012). In agreement, mutant

embryos lacking Smad1/5 specifically in the endothelium had
excessive number of sprouts in the dorsal aorta at embryonic day
E9.5 and died due to severe defective angiogenesis and lymphan-
giogenesis at E14.5 (Moya et al., 2012). Finally, another important
consequence of impaired TGF-β/BMP signaling in endothelial
cells might be defective endothelial-mural cell-cell communica-
tion due to reduced activation of TGF-β (Carvalho et al., 2004).
It affects mural cell recruitment and vessel stabilization that leads
to fragile blood capillaries. As consequence, they become prone to
respond to angiogenic stimuli and to bleed with slight trauma, the
pathological hallmark of HHT (Carvalho et al., 2004; Lebrin et al.,
2010). The mechanisms underlying TGF-β/BMP mediated vessel
maturation are not fully understood, although it has recently been
demonstrated that thalidomide reduces the frequency and dura-
tion of nosebleeds in individuals with HHT by stimulating vessel
maturation. This provides the first demonstration that strategies
targeting mural cells of blood capillaries named pericytes can
have beneficial effects on bleeding from vascular malformations
(Lebrin et al., 2010). In this present review, we focus on recent
insights into the mechanisms that regulate TGF-β/BMP medi-
ated endothelial cell-pericyte communication, in particular how
pericyte deficiencies may contribute to the pathogenesis of HHT.
Finally, we will discuss the mechanisms of action of thalidomide
and its potential for treating vascular malformations in HHT.

PERICYTES ARE OBLIGATORY CONSTITUENTS OF BLOOD
CAPILLARIES
Recent use of a combination of unique transgenic mice express-
ing fluorescent pericytes and high-resolution confocal imaging
has permitted appreciation of the extent of pericyte heterogene-
ity throughout the microvasculature of all organs. In contrast to
VSMCs that surround arteries and veins in multiple concentric
layers of cells that are perpendicular to the direction of the blood
flow and are separated from the vascular basal membrane (BM)
by a layer of mesenchymal cells and extracellular matrix, pericytes
are flattened, solitary and extend primary cytoplasmic processes
along the abluminal surface of intermediate size to small vessels,
contacting several endothelial cells. In particular, somas are often
found at capillary branch points where pericytes extend primary
processes along each vessel branch conferring a cellular Y-shape
(Figure 1). Moreover, multiple cytoplasmic processes that extend
perpendicularly from the primary processes are also detected and
encircle the blood capillary increasing the area of contact with the
abluminal surface of the endothelium. Importantly, the pericyte
density and the endothelial abluminal surface covered by peri-
cytes vary between different organs and different vascular beds.
These correlate positively with vessel barrier properties. In agree-
ment, the central nervous system (CNS) is the most covered tissue
(Sims, 1986; Mathiisen et al., 2010; Armulik et al., 2011).

Pericytes are embedded within the vascular BM of termi-
nal arterioles, capillaries and post-capillary venules, although
they might be found in large vessels as well (Díaz-Flores et al.,
2009). It is therefore important to remember that the distinc-
tion between pericyte and VSMC morphology and location is
not absolute. A continuum of phenotypes ranging from classi-
cal VSMC to the typical pericyte distributed along the vessels
reflects more the reality. Pericytes belong to the same lineage
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FIGURE 1 | Pericytes are ubiquitously present in blood capillaries.

Confocal images of retinas from adult NG2DsREDBAC-transgenic mice
stained with isloectin-B4 and α-SMA to reveal the vascular plexus (in blue)
and to label the VSMCs (in green), respectively. VSMCs cover the arterioles
and have a flattened, spindle-shaped appearance with few cytoplasmic
processes. Pericytes (in red) appear to be ubiquitously present in blood
capillaries and extend primary processes along the abluminal surface of the
endothelial tube. White arrows indicate pericytes that are found at the
capillary branch points where they extend processes along each vessel
branch conferring a cellular Y-shape.

and category of cells than VSMC and are believed to differenti-
ate into VSMC and vice versa in conjunction with vessel growth
and remodeling (Nehls and Drenckhahn, 1993). Several mark-
ers have been used to identify pericytes and include Neural/glial
antigen 2 (NG2), PDGFR-β, α-Smooth Muscle Actin (α-SMA),
desmin, vimentin, aminopeptidase A or N and Regulator of G
protein 5 (RGS5) (Armulik et al., 2005, 2011; Díaz-Flores et al.,
2009; Krueger and Bechmann, 2010). Although no single exclu-
sive pericyte-marker is known and all markers currently used
are not specific and dynamic in their expression. They may
be up or down regulated in conjunction with developmental
states or pathological situations (Stapor et al., 2014). Indeed, α-
SMA expression is restricted to pre and post capillary regions
and is often absent in quiescent pericytes in normal tissues.
However, its expression strongly increases in pericytes in patho-
logical situations such as tumor angiogenesis, tissue fibrosis and
inflammation (Gerhardt and Betsholtz, 2003). Interestingly, it
has recently been suggested that a subpopulation of pericytes
expressing specific markers such as high levels of NG2 and
class III-β tubulin performs specific functions during sprouting

angiogenesis (Stapor et al., 2014). However, the mapping of spe-
cific functions and downstream mechanisms to specific pericyte
dynamic remains elusive. Does a subtype of pericytes implicated
in sprouting angiogenesis exist in vivo? Or do pericytes change
their morphology like endothelial Tip and Stalk cells in order to
perform specific functions? Further studies are awaited to clarify
these questions.

It is not surprising that for many years, studies of blood
vessels have concentrated mainly on the endothelial compo-
nent, especially with the discovery of VEGF as potential target
in eye and cancer diseases (Potente et al., 2011). By compari-
son research focusing on the perivascular compartment has been
relatively neglected, mainly because of the lack of specific mark-
ers. However, pericytes have recently gained increasing attention
as obligatory constituents of blood microvessels and important
regulators of vascular morphogenesis during development, vas-
cular homeostasis and disease. They maintain the stability of
the vasculature, regulate endothelial cell proliferation and sur-
vival (Gerhardt and Betsholtz, 2003; Gaengel et al., 2009; Armulik
et al., 2011) and control capillary diameter and local blood flow
(Peppiatt et al., 2006; Fernández-Klett et al., 2010; Hamilton et al.,
2010; Hall et al., 2014). Emerging concepts also include the physi-
ological role of pericytes in the regulation of vascular permeability
to solutes, molecules and immune cells (Armulik et al., 2010;
Daneman et al., 2010; Stark et al., 2013). Pericytes are impli-
cated in the development of diabetic retinopathy (Beltramo and
Porta, 2013), Alzheimer’s disease (Sagare et al., 2013; Winkler
et al., 2014) and is an obligatory component of the tumor stroma
(Gaengel et al., 2009; Armulik et al., 2011). More recently, PDGFB
and PDGFRB mutations have been linked to the development
of an autosomal dominant rare disorder named Idiopathic Basal
Ganglia Calcification (IBCG) (Keller et al., 2013; Nicolas et al.,
2013). IBCG individuals display motor, cognitive and psychiatric
symptoms. The mechanisms of the disease are not fully character-
ized, but the occurrence of the calcium deposition may correlate
with the degree of pericyte and blood barrier deficiencies as they
show in mice (Keller et al., 2013).

Due to their roles in health and diseases and their special char-
acteristics, in particular those related to cell plasticity, pericytes
might be potential drug targets for future therapies. However,
we still lack understanding about many aspects of pericyte-
endothelial cell communication and how the density, morphol-
ogy and maturation stages of pericytes affect vessel functions.
It is currently accepted that mature pericytes are cells embed-
ded within the vascular BM that can make direct interactions
with endothelial cells through specific contacts. The number and
size of pericyte-endothelial cell contacts vary between tissues
but up to 1000 contacts have been reported for one endothelial
cell. They include peg-pocket types in which pericyte cytoplas-
mic fingers are inserted into endothelial invaginations, occluding
contacts where two membranes come very close together and
adhesion plaques that contain fibronectin and may be the sites
where N-cadherin-based connections are formed (Gerhardt et al.,
2000; Gerhardt and Betsholtz, 2003) and finally, gap-junction-
like structures (Díaz-Flores et al., 2009; Li et al., 2011; Winkler
et al., 2011). Together, these intimate interactions between peri-
cytes and endothelial cells leave us with the notion that pericytes
are distributed along the vasculature to facilitate, integrate and
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coordinate vessel functions. Interactions will involve paracrine
and contact-dependent signaling. More generally, impairments
of one vessel wall cell type will inevitably affect the other. In the
next section, we will point out advances in the understanding of
how TGF-β/BMP signaling pathways regulate vessel stability and
in particular, how ALK1 or endoglin haploinsufficiency leads to
defective pericyte-endothelial cell interactions.

DEFECTIVE TGF-β/BMP SIGNALING IN ENDOTHELIAL CELLS
AFFECTS VESSEL STABILITY AND PERICYTE ATTACHMENT
Classically, TGF-β and BMP signaling pathways are each initi-
ated by ligand-mediated activation of distinct type I and type
II serine/threonine kinase transmembrane receptors. Within the
ligand-induced heteromeric receptor complex, the constitutively
active type II receptor phosphorylates the type I receptor on
specific serine/threonine residues in the intracellular juxtamem-
brane region named GS-domain leading to the phosphoryla-
tion of TGF-β or BMP-specific-receptor-regulated Smad proteins
(R-Smad). R-Smads then associate with the common mediator
(co)-Smad (Smad4) and translocate to the nucleus to regulate
the transcription of specific target genes in association with other
partner proteins. R-Smads are divided in two groups. The first
group consists of Smad1/5/8 and are preferentially activated by
BMP type I receptors that include ALK1, 2, 3, and 6. The sec-
ond group contains Smad2 and 3 and is activated by TGF-β type I
receptor ALK5 (Feng and Derynck, 2005; Massagué and Gomis,
2006). TGF-β and BMPs can also activate Mitogen Activated
Protein (MAP)-Kinase signaling pathways, Rho-like GTPase and
PI3K/Akt cascades independently of Smad signaling pathways
(Moustakas and Heldin, 2005).

Genetic studies in mice and humans have clearly demon-
strated the importance of TGF-β/BMP signaling pathways in
vascular morphogenesis and angiogenesis. Information gathered
the various loss-of-function mouse models of TGF-β signaling
components have recently been reviewed in detail (Jakobsson
and van Meeteren, 2013). In all cases, targeted deletions of tgfb1
(Dickson et al., 1995), of genes encoding TGF-β receptors, acvrl1
(Oh et al., 2000; Urness et al., 2000), Alk5 (Larsson et al., 2001),
TβrII (Oshima et al., 1996) or Eng (Bourdeau et al., 1999, 2000;
Li et al., 1999; Arthur et al., 2000) as well as the downstream
target Smad5 (Chang et al., 1999; Yang et al., 1999) lead to
embryonic lethality at mid gestation with severe cardiovascular
defects that include impaired angiogenesis and differentiation of
mural cells (Table 1). The primary target cells for TGF-β/BMP
are endothelial cells since mice deficient in endothelial TβRII
(Carvalho et al., 2007), ALK1 (Garrido-Martin et al., 2014; Tual-
Chalot et al., 2014), ALK5 (Carvalho et al., 2007) or endoglin
(Mahmoud et al., 2010; Garrido-Martin et al., 2014) show various
vascular defects ranging from vessel hyper-branching, enlarged
blood vessels to AVM formation. The involvement and activity of
these TGF-β/BMP signaling components are strictly linked to the
development stage (Table 1) (Jakobsson and van Meeteren, 2013).

Interestingly, impaired TGF-β/BMP signaling pathways not
only affect endothelial cells but they are also important
for proper recruitment and differentiation of mural cells
(Table 1). Moreover, mural cell specific deletion of TGF-β/BMP
components are linked to vascular defects but at later stages

of development indicating that TGF-β/BMP signaling pathways
regulate vessel remodeling (Table 1) (Carvalho et al., 2007).
One important issue over the past decade has been to identify
whether the mural cell defects observed in the TGF-β mutants
reflected the primary effects of TGF-β signaling in mural cells
or occurred secondarily to the impairment of endothelial cell
functions (Table 1). TGF-β has been proposed to regulate the
activation state of endothelial cells by differentially activating
two TGF-β type I receptors, ALK5 and ALK1. ALK5 is broadly
expressed in almost all tissues whereas ALK1 is restricted to the
endothelium. Upon TGF-β stimulation, ALK5 phosphorylates
Smad2/3 leading to inhibition of endothelial cell proliferation
and migration, whereas ALK1 phosphorylates Smad1/5 to induce
opposite effects (Goumans et al., 2002). The existence of two
type I receptors activated by one ligand, raises the question of
how their activation is controlled and why these two cascades
coincide. Although not experimentally proven, one explanation
is that ALK1 signaling first may dominate, leading to the acti-
vation phase of angiogenesis triggered by VEGF, whereas ALK5
may induce later vessel stabilization and extracellular matrix pro-
duction. However, ALK5 kinase activity seems to be required
for optimal ALK1 signaling whereas ALK1/Smad1/5 signaling
directly antagonizes ALK5/Smad2/3 signaling cascade (Goumans
et al., 2003; Itoh et al., 2009). The net effect of TGF-β may there-
fore depend on the relative levels of ALK1/ALK5 expression and
also on the different levels of TGF-β (Goumans et al., 2002). The
type III TGF-β co-receptor endoglin is highly expressed on acti-
vated endothelial cells. It is required for efficient ALK1 signaling.
Interestingly, endothelial cells lacking endoglin do not prolif-
erate due to enhanced ALK5 signaling cascade. Endoglin may
therefore regulate fine-tuning between ALK1 and ALK5 activated
cascades (Lebrin et al., 2004; Blanco et al., 2005). Both constitu-
tive and conditional deletion of Acvrl1 or Eng in the endothelial
cells lead to impaired angiogenesis and the development of vascu-
lar malformations indicating that these receptors share functions
in signaling (Allinson et al., 2007; Park et al., 2009; Mahmoud
et al., 2010; Garrido-Martin et al., 2014; Tual-Chalot et al., 2014).
The situation is yet more complex for ALK5 since conflicting
data exist on its expression pattern in the endothelium. Using
an acvrl1 (ALK1)-Cre to delete TβRII and ALK5 specifically in
the endothelium, Park et al. have suggested that the effects of
these receptors on vessel morphogenesis and angiogenesis were
not due to their functions in endothelial cells (Park et al., 2008)
supporting that ALK5 expression preferentially occurs in mural
cells as suggested by Seki et al. (2006). However, floxed TβRII
and floxed Alk5 mice crossed with transgenic mice expressing
the Cre-recombinase under control of the vascular endothelial
specific Tie1 promoter resulted in embryonic lethality at E10.5
because of aberrant angiogenesis as for the conventional TβRII
and Alk5 knockout mice (Carvalho et al., 2007). Another Cre-
driver where EGFP-Cre was knocked into the acvrl1 (active at E9.5
in the endothelium) to delete TβRII and Alk5 also led to severe
blood vessel anomalies and intracranial hemorrhages (Nguyen
et al., 2011). The temporal regulation of the promoters used indi-
cate that ALK5 expression in endothelial cells may be required for
angiogenesis only at certain developmental stages and may be dis-
pensable for the maintenance of the mature vasculature. Whilst,
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Table 1 | Major endothelial-mural cell defects in TGF-β/BMP receptors and Smad deficient mice.

Genotype Tissue specific deletion Lethality Phenotype References

KNOCKOUT MOUSE MODELS

R
ec

ep
to

r
Ty

pe
I

Acvrl1−/− Germline deletion E10.5–E11.5 Excessive fusion of capillary plexes into cavernous
vessels and hyper dilation of large vessels.
Deficient differentiation and recruitment of VSMCs

Oh et al., 2000

Acvrl+/− Germline deletion Viable Multiorgan vascular defects with bleeding, similar
to those seen in HHT individuals. Dilated vessels
with thin walls

Srinivasan et al.,
2003

Acvrl1f/f Ad-Cre, Ad-VEGF Viable Reduction of mural cell coverage after VEGF
stimulation is a potential mechanism for the
impairment of vessel wall integrity in
HHT2-associated brain AVM

Chen et al., 2013

TβRI−/− Germline deletion E10–E11 Defective angiogenensis. Yolk sacs show
malformed vessels with few blood cells. Mutant
ECs exhibit impaired migration and fibronectin
synthesis

Larsson et al., 2001

Some vessels lack VSMCs due to EC defects

TβRILACZ/LACZ Germline deletion E10–E11 Defects in yolk sac and placenta vascular
development

Seki et al., 2006

Defects in the vascular smooth muscle
development

TβRIKI/KI Asp266 in the L45 Loop
remplaced by Ala

E10.5–E11.5 Angiogenic defects similar to TβRI−/−. Mural cells
are unable to contribute to vascular formation
because of the decreased motility

Itoh et al., 2009

R
ec

ep
to

r
Ty

pe
II

Bmpr2 Sh-mediated Knock
Down

Viable BMP receptor signaling regulates vascular
remodeling during angiogenesis by maintaining the
expression of EC guidance molecules that promote
vessel maturation. Incomplete mural cell coverage
on vessel walls

Liu et al., 2007

R
ec

ep
to

r
Ty

pe
III

Eng−/− Germline deletion E10.5–E11.5 Defective yolk sac vasculogenesis, embryonic
angiogenesis; Defective VSMC developement
precedes disruption in endothelial remodeling

Li et al., 1999
Bourdeau et al., 1999
Arthur et al., 2000

Eng+/− Germline deletion Viable Multiorgan vascular defects with bleeding, similar
to those seen in HHT individuals. Dilated vessels
with thin walls

Bourdeau et al.,
2000
Torsney et al., 2003

Eng−/− Germline deletion E10.5 ALK5 signaling from ECs to adjacents mesothelial
cells is defective. Reduced availability of TGFβ1
protein to promote recruitment and differentiation
of mural cells

Carvalho et al., 2004

Eng−/− Germline deletion E10.5 ALK5 signaling from ECs to adjacents mesothelial
cells is defective. Reduced availability of TGFβ1
protein to promote recruitment and differentiation
of mural cells

Carvalho et al., 2004

Eng+/− Germline deletion Viable Irregular VSMC coverage of skin arteries Lebrin et al., 2010

First demontration that strategies targeting mural
cells are beneficial to treat bleeding from HHT
indivituals

TF
s

Smad5−/− Germline deletion E10.5–E11.5 Defective angiogenesis and enlarged blood
vessels. Decreased numbers of VSMCs

Yang et al., 1999

Smad5f/f PGK-Cre, ubiquitous
deletion

E10.5–E11.5 Defective angiogenesis and enlarged blood
vessels. Decreased numbers of VSMCs

Umans et al., 2003

(Continued)
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Table 1 | Continued

Genotype Tissue specific deletion Lethality Phenotype References

ENDOTHELIAL CELL SPECIFIC DELETION MOUSE MODELS

R
ec

ep
to

r
Ty

pe
I

Acvrl1f/f Scl-CreER Viable Deletion of Acvrl1 in ECs results in wound-induced
skin AVMs

Garrido-Martin et al.,
2014

Acvrl1f/f Cdh5-CreERT 2,
Acvrl1-iKOe

10 days post
Acvrl1
deletion

Loss of endothelial Acvrl1 leads to venous
enlargement, vascular hyperbranching and AVMs.
Reduced pericyte coverage in retinal capillaries

Tual-Chalot et al.,
2014

TβRIf/f Tie1-Cre E10.5 Defective angiogenesis. Yolk sacs lack networks of
vessels at all stages. Impaired VSMC
differentiation is a direct consequence of functional
defects in ECs

Carvalho et al., 2007

Bmpr1aflox/flox Flk1+/Cre E10.5–E11.5 ALK3-mediated Id gene activation in ECs is crucial
for vessel remodeling in yolk sac

Park et al., 2006

R
ec

ep
to

r
Ty

pe
II Tgfbr2f/f Cdh5-CreERT 2,

Tgfbr2-iKOe
E10.5 Defective angiogenesis. Yolk sacs lack networks of

vessels at all stages. Impaired VSMC
differentiation is a direct consequence of functional
defects in ECs

Carvalho et al., 2007

Bmpr2f/f Tg(ALK1)-Cre, pulmonary
EC deletion

Viable Right ventricular hypertrophy and an increase in
the number and wall thickness of muscularized
distal pulmonary arteries

Hong et al., 2008

R
ec

ep
to

r
Ty

pe
III Engf/f Scl-Cre ER Viable Deletion of Eng in ECs results in wound-induced

skin AVMs
Garrido-Martin et al.,
2014

Engf/f Cdh5-CreERT 2, Eng-iKOe Viable Retinas exhibit delayed remodeling of the capillary
plexus, increased EC proliferation and localized
AVMs. Increased VSMC coverage following AVM
formation appears to be secondary response to
increased blood flow

Mahmoud et al.,
2010

TF
s Smad5f/f Tie-2-Cre Viable No obvious vascular phenotype Umans et al., 2007

Smad2f/f ;
Smad3f/f

Tie-2-Cre E12.5 Defective angiogenesis in the yolk sac and in the
proper embryo. Inadequate assembly of mural
cells in the vasculature. Reduction of N-Cadherin
expression

Itoh et al., 2012

Smad4f/f SP-A-Cre, Brain vascular
EC deletion

perinatal
lethality

Intracranial hemorrhagies. Defective mural cell
coverage

Li et al., 2011

Smad4 stabilizes cerebrovascular EC-pericyte
interaction by regulating the transcription of
N-cadherin through associating with Notch

VSMC SPECIFIC DELETION MOUSE MODELS

R
ec

ep
to

r
Ty

pe
I

Acvrl1f/f Myh11-CreER Viable Acvrl1 in VSMCs is dispensable for maintaining
normal vasculature and for the formation of a
normal vascular network during wound healing in
adult stages

Garrido-Martin et al.,
2014

TβRIf/f SM22-Cre E12.5 Embryos at E9.5 do not exhibit yolk sac defects
and resemble wild-type embryos. However, at
E12.5 embyos are pale and anemic with obvious
vasculature defects

Carvalho et al., 2007

TβRIf/f GATA5-Cre, epicardium Viable Defective formation of a smooth muscle cell layer
around coronary arteries

Sridurongrit et al.,
2008

Bmpr1aflox/flox SM22α-Cre E11–E11.5 Severe dilatation of the aorta and large vessels
with impaired investment of VSMCs that are also
related to reduced proliferation

El-Bizri et al., 2008

Bmpr1aflox/flox Flk1+/Cre E10.5–E11.5 Vessel integrity is defective. These mutants display
dilated vessels in the brain and abnormal branching
in the trunk and show reduced number of VSMCs

Park et al., 2006

(Continued)
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Table 1 | Continued

Genotype Tissue specific deletion Lethality Phenotype References

VSMC SPECIFIC DELETION MOUSE MODELS

R
ec

ep
to

r
Ty

pe
II Tgfbr2f/f SM22-Cre, Tgfbr2-iKOe E12.5 E12.5 embyos are pale and anemic with obvious

vasculature defects
Carvalho et al., 2007

R
ec

ep
to

r
Ty

pe
III

Engf/f Myh11-CreER Viable Eng in VSMCs is dispensable for maintaining
normal vasculature and for the formation of a
normal vascular network during wound healing in
adult stages

Garrido-Martin et al.,
2014

TF
s Smad5f/f SM22-Cre Viable No obvious vascular phenotype Umans et al., 2007

Msx1f/f ;
Msx2f/f

SM22-Cre perinatal
lethality

Defects in head vascularization, aneurysms and
hemorrhages are observed

Lopes et al., 2011

BMP signaling is affected, VSMC coverage is
reduced and endothelium maturation is impaired

this hypothesis awaits further experiments for support, ALK1 is
known to trigger Smad1/5 pathway upon BMP9 or BMP10 stim-
ulation to induce blood vessel quiescence (David et al., 2007,
2008; Scharpfenecker et al., 2007; Ricard et al., 2012). Bmp9−/−
and BMP10−/− mice do not display lethal defects in yolk sac
development (Chen et al., 2004; Ricard et al., 2012), but they seem
to be important in postnatal remodeling of the retina (Ricard
et al., 2012).

The primary cause of HHT may thus be considered as dys-
functions of TGF-β and BMP in endothelial cells. However,
how defects in the delicate balance between TGF-β/ALK1-
endoglin/ALK5 and BMP/ALK1-endoglin signaling lead to dis-
ease pathology remains to be clarified. Eng+/− or Acvrl1+/−
mutant mice are useful models that develop age-dependent vas-
cular lesions similar to those seen in HHT individuals (Bourdeau
et al., 2001; Srinivasan et al., 2003; Torsney et al., 2003).
Several different studies have characterized these models for
their responses to TGF-β. They found that both TGF-β/ALK1
and TGF-β/ALK5 signaling cascades were impaired and ALK5
expression levels were reduced (Lebrin et al., 2004; Xu et al.,
2004). These results were further confirmed in blood outgrowth
endothelial cells isolated from HHT individuals (Fernandez-
L et al., 2005). The mechanisms leading to decrease ALK5
expression remain to be clarified although it is suspected to
be a consequence of a transcriptional modulation by ALK1
signaling (Fernandez-L et al., 2005). ALK5 promotes vessel mat-
uration favoring cell growth arrest, differentiation and extracel-
lular matrix production suggesting that reduced expression of
endoglin or ALK1 may result in the inability of blood vessels
to mature properly. Although not experimentally proven, it is
likely that similar mechanisms might be operative in the con-
text of BMP9. Indeed, some Smad4 mutations, the common
mediator of all R-Smad-dependent TGF-β/BMP family signal-
ing can cause a syndrome that includes both juvenile polyposis
and HHT (Gallione et al., 2004, 2006). Li et al. have recently
reported that endothelial-specific deletion of Smad4 resulted in
blood brain barrier breakdown with severe hemorrhages. These
mutants exhibited vascular dilation and reduced pericyte cov-
erage (Li et al., 2011). Interestingly, they found that Smad4

and Notch signaling act in concert to regulate the expression of
N-Cadherin, a cell-adhesion molecule that mediates heterotopic
cell contacts between endothelial cells and pericytes (Gerhardt
et al., 2000; Gerhardt and Betsholtz, 2003). Deletion of Smad2
and Smad3 specifically in the endothelial cells led to embryonic
lethality at E12.5 due to inadequate assembly of mural cells to the
vasculature. This phenotype was also linked to reduced expres-
sion of N-Cadherin as well as Sphingosine-1-Phosphate Receptor
1 (S1PR1) (Itoh et al., 2012). In summary, HHT may result from a
general defect in TGF-β/BMP in endothelial cells affecting mural
cell attachment and vessel stabilization. The endothelium will be
more prone to respond to angiogenic stimulus leading to exces-
sive sprouting of vessels with attendant formation of AVMs (Park
et al., 2009; Lebrin et al., 2010; Mahmoud et al., 2010; Chen et al.,
2013; Choi et al., 2013).

IMPAIRED TGF-β ACTIVATION AFFECTS PERICYTE
DIFFERENTIATION
TGF-β isoforms (TGF-β1, TGF-β2, and TGF-β3) are secreted
in latent forms that need to be activated before they can bind
to their receptors. Both pericytes and endothelial cells express
TGF-β, although its activation requires a close physical associ-
ation with the endothelium through gap junctions (Sato and
Rifkin, 1989). Gap junctions are aggregates of intercellular chan-
nels that allow the diffusion of second messengers and metabolites
to the cytoplasm of adjoining cells. Genetic studies in mice have
revealed critical roles for Connexin (Cx) Cx43 and Cx45 in the
regulation of endothelial-mural cell differentiation by promot-
ing TGF-β activation (Krüger et al., 2000; Hirschi et al., 2003;
Fang et al., 2013). Other gene deletions/mutations may also
result in vascular phenotypes because of interactions with TGF-
β activation. They include Tissue factor, a pro-coagulant receptor
(Carmeliet et al., 1996) and integrins such as αvβ8(Bader et al.,
1998; Zhu et al., 2002; Cambier et al., 2005). It is not yet clear
how integrins regulate TGF-β activation but it might require
Matrix Metalloproteinases (MMPs) (Mu et al., 2002; Cambier
et al., 2005) and/or cell constriction mediated tensile force across
latent-TGF-β (Shi et al., 2011). More recently, it has been sug-
gested that αvβ8 may induce a gradient of activated TGF-β in the
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CNS, which in turn suppresses sprouting angiogenesis thereby
stabilizing blood vessels (Arnold et al., 2014).

Importantly, the absence of endoglin in endothelial cells results
in reduced phosphorylation of Smad2 in the adjacent mural cell
layer as a consequence of defective TGF-β activation (Carvalho
et al., 2004) whereas reduced endothelial secretion and plasma
levels of TGF-β have been reported in HHT1 individuals (Letarte
et al., 2005). Local activation of TGF-β may thus be compromised
in HHT individuals due to defective interaction between pericytes
and endothelial cells affecting mural cell differentiation and vessel
stabilization that are typical clinical symptoms of HHT (Torsney
et al., 2003; Lebrin et al., 2010; Chen et al., 2013; Tual-Chalot et al.,
2014).

Pericytes only express ALK5 (Van Geest et al., 2010). Upon
activation by TGF-β, ALK5 leads to the phosphorylation of
Smad2/3 that induces production of contractile proteins, cell qui-
escence and differentiation (Owens, 1998; Van Geest et al., 2010).
TGF-β through Smad3 and p38MAPK increases the expression of
α-SMA and smooth muscle myosin (Seay et al., 2005). Specific
deletion of TβrII and Alk5 in mural cells leads to embryonic
lethality between E12.5 and E16.5, which is slightly later than
conventional knockout mice (Carvalho et al., 2007). Together,
these data suggest that TGF-β is required during the later phase
of angiogenesis to induce pericyte differentiation and vessel mat-
uration following recruitment of the mural cells by PDGF-B.

BMPs also play a role in VSMC differentiation and functions
at least through the regulation of Msx genes (Yu et al., 2005, 2008;
Lopes et al., 2011). Alk3 conditional knockout mice where the
receptor is deleted in flk1 precursors displayed multiple abnor-
malities in vascular development including vessel remodeling and
maturation (Park et al., 2006). Mutations in BMPR2 result in
pulmonary Hypertension (PAH), a vascular disorder character-
ized by uncontrolled remodeling of the pulmonary arteries due
to increased proliferation of VSMCs (Beppu et al., 2004). The
link between deregulated BMP signaling, pericyte-endothelial cell
communication and HHT disease progression remains to be
determined but an important clue may come from the fact that
HHT individuals who have ACVRL1 mutations are predisposed
to the development of PAH (Girerd et al., 2010; Gore et al., 2014).

In the light of these results, the unique HHT genetic mod-
els recently generated may potentially facilitate future studies to
better understand the molecular mechanisms regulating pericyte
endothelial cell communication and importantly, how defective
communication between these two cell types is involved in HHT
pathogenesis (Table 1).

TARGETING PERICYTES TO STIMULATE VESSEL
MATURATION IN HHT
Could the signaling pathways involved in endothelial-mural sig-
naling crosstalk provide new drug targets in HHT? Recently,
we have revealed a novel mechanism of action of thalidomide,
namely stimulation of vessel maturation and have reported that
oral administration of thalidomide reduced both the frequency
and duration of nosebleeds with significant decreases of blood
transfusion requirement and improvement of quality of life
(Lebrin et al., 2010). Few other cases have been reported so far,
but the published literature is concordant regarding the potential

benefit of thalidomide in HHT individuals (Table 2). All sub-
jects treated with thalidomide had severe and recurrent epistaxis
and they were refractory individuals to standard medical and
local surgical treatments. Overall, thalidomide was administrated
orally and the doses given were comparable to that prescribed
in the 1960s to treat nausea in pregnancy, ranging from 50 to
300 mg of thalidomide daily. In most cases, only minor side
effects have been reported and include mild constipation, loss
of libido, drowsiness and lethargy. However, three individuals
stopped treatment due to peripheral neuropathies in two individ-
uals and deep vein thrombosis in one subject (Table 2). Therefore,
thalidomide appears to be a potential candidate for the treat-
ment of severe bleeding in HHT individuals unresponsive to
conventional therapies. However, these studies have not yet been
supported by data from randomized controlled trials and future
research should be directed toward identifying the minimum dose
of thalidomide effective to prevent bleeding from HHT vascular
anomalies without inducing side effects.

Thalidomide was first introduced as a sedative used to pre-
vent nausea during pregnancy in the late 1950s. In 1961, it was
withdrawn from the market due to teratogenicity and neuropa-
thy (Speirs, 1962). The use of thalidomide resulted in one of
the biggest tragedy in the history of drug development. As a
result of using thalidomide, it caused an estimated 10,000 chil-
dren in 46 countries to be born with birth defects, marked by
limb malformations and congenital defects affecting ears, eyes,
heart and kidney. These defects occurred when drug exposure
took place within a short, time-sensitive window between day 20
and day 36 of gestation. Just one 100-mg tablet of thalidomide was
enough to cause limb defects (D’Amato et al., 1994; Therapontos
et al., 2009). This drug was abandoned but has recently under-
gone a renaissance. Emerging insight into thalidomide’s anti-
inflammatory, immunomodulatory and anti-angiogenic activity
led to clinical trials in AIDS-related aphthous ulceration, Behcet’s
syndrome, Crohn’s disease cutaneous lupus and various malig-
nancies (Shortt et al., 2013). In 1999, effectiveness against multi-
ple myeloma (MM) was reported (Singhal et al., 1999). In respect
to Erythema Nodosum Leprosum (ENL) and MM, the US FDA
approved thalidomide for use under strict guidelines and care-
fully controlled inclusion criteria in 1998 and 2006, respectively.
Decade of investigation have identified a multitude of biological
effects that are regulated by thalidomide. In addition to suppres-
sion of Tumor Necrosis Factor-α (TNF-α), thalidomide affects
the generation and elaboration of a cascade of pro-inflammatory
cytokines that activate cytotoxic T-cells even in absence of co-
stimulatory signals. Furthermore, VEGF and basic Fibroblast
Growth Factor (bFGF) secretion and cellular response are sup-
pressed by thalidomide, thus antagonizing angiogenesis and alter-
ing the bone marrow stromal microenvironment in hematologic
malignancies (Melchert and List, 2007; Shortt et al., 2013). More
recently, preclinical studies have identified E3 ligase protein cere-
blon (CRBN) as a direct molecular target for the teratogenicity
of thalidomide (Ito et al., 2010). CRBN is also required for the
anti-myeloma activity of thalidomide (Zhu et al., 2013).

Interestingly, we have reported that the anti-hemorrhagic
property of thalidomide is not the result of direct inhibition of
endothelial cell proliferation and migration but is rather due to
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FIGURE 2 | Schematic illustration of how thalidomide prevents

excessive angiogenesis in HHT. (A,B, left panels) Impaired TGF-β/BMP
in endothelial cells affects mural cell attachment and vessel stabilization.
Blood capillaries show endothelial hyperplasia and irregular capillary
diameter. (A,B, right panels) As consequence, blood vessels from HHT
are more sensitive to angiogenic stimulus i.e., inflammation or VEGF and

develop a broad spectrum of vascular abnormalities ranging from
excessive angiogenesis, chaotic vascular organization and the formation of
AVMs. (C) Thalidomide increases mural cell coverage to sustain the
quiescence of the vasculature. As consequence, the blood vessels are
less sensitive to angiogenic stimulus preventing excessive angiogenesis
and the formation of vessel anomalies.
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increased mural cell coverage of the vasculature. Thalidomide
increased the number of pericytes and their recruitment to blood
vessels, enhancing the apposition between the inner endothelial
and supportive pericyte layers and resulting in vessel stabilization
in Eng+/− mutant mice, a well-characterized model of HHT.
Moreover, high doses of thalidomide (150 mg/Kg body weight)
stimulated the number of pericytes that expressed α-SMA, an
established marker of the pericyte contractile phenotype. At the
molecular level, thalidomide-treated mouse retinas unexpectedly
showed only marginally reduced VEGF mRNA levels compared
to untreated controls. However, we observed a marked and rapid
increase of PDGF-β mRNA levels in endothelial cells in response
to thalidomide. PDGF-B is a key molecule in pericyte chemo-
taxis that promotes endothelial-pericyte cell-cell contact. The
observation that the anti-angiogenic effects of thalidomide were
prevented by concurrent administration of imatinib, a kinase
inhibitor that blocks PDGFR-β but not VEGF signaling sug-
gests a functional role for PDGF-B in this thalidomide-stimulated
reduction in angiogenesis. Moreover, we took advantage of the
Pdgfret/ret mouse model in which PDGF-B is secreted but is
not retained by the extracellular matrix and so does not form
the gradient required to stimulate tight adhesion of pericytes to
the abluminal surface of microvessels and showed that thalido-
mide did not rescue the pericyte recruitment defect in post-natal
Pdgfret/ret mice. Finally, we revealed that thalidomide might target
mural cells directly to stimulate their proliferation and ability to
form protrusions independently of effects on PDGF-B signaling.
The exact mechanisms underlying this effect need further investi-
gation. Our data provide to our knowledge, the first evidence that
a therapy targeting pericytes to stimulate vessel maturation can
have beneficial effects on bleeding from vascular malformations
(Lebrin et al., 2010).

PERSPECTIVES
Our understanding of why the disease gene mutations lead to the
vascular pathology is finally advancing and suggests that HHT
mutations may be deleterious predominantly in endothelial cells
with specific effects on the communication between pericytes and
endothelial cells leading to vessel instability. Whilst mural cells
will be recruited to the vessels, impaired TGF-β/BMP signaling
in endothelial cells will result in poor attachment of the mural
cells to the endothelium leading to defective TGF-β activation
and subsequently poor mural cell differentiation. These vascu-
lar abnormalities will coincide with abnormally variable capillary
diameters and vessels that are more prone to respond to angio-
genic stimuli. This model implies that activation of the quiescent
endothelium, for example by inflammation and/or angiogene-
sis i.e., wounding or VEGF stimulus, will induce excessive vessel
sprouting and the development of a broad spectrum of vascular
abnormalities such as AVMs the pathological hallmark of HHT
(Figure 2; Park et al., 2009; Lebrin et al., 2010; Mahmoud et al.,
2010; Chen et al., 2013; Choi et al., 2013). In such context, defec-
tive endothelial cell-pericyte communication may promote AVM
formation by different mechanisms: abnormal vascular remod-
eling and dilation following inflammation or trauma may fail to
resolve; increased number of regressing vessels would remove the
capillary bed that separates arteries and veins; or gradual dilation
of an anastomosis may occur as a result of loss of mural cells

and/or loss of vessel tone leading to capillary regression due to
the lack of blood flow.

These exciting insights into the complex molecular signal-
ing cascades governing endothelial-pericyte interactions in the
context of HHT have raised several important questions. For
instance, what are the exact mechanisms underlying TGF-β acti-
vation or on the other hand, are known mediators of TGF-β
activation deregulated in HHT models? If differential regula-
tion of multiple signaling pathways such as Notch signaling does
occur, how these signaling pathways are affected in HHT? Are
they defective only in specific vascular beds? What are the con-
tributions of the altered BM protein composition to the HHT
phenotype? It is also likely that defective mural cell attachment
and maturation in HHT will have consequences not only dur-
ing angiogenesis and vessel remodeling but also on the ability
of the capillaries to regulate blood flow and vessel permeability
to solutes and cells, important functions that require pericytes
(Winkler et al., 2011). However, data to support this hypothesis
are still lacking.

Our findings indicate that strategies targeting pericyte-
endothelial cell communication to stimulate vessel maturation
can have beneficial effects on bleeding by normalizing the ves-
sel anomalies (Figure 2; Lebrin et al., 2010). Thalidomide reduces
nosebleeds in HHT individuals in part by enhancing PDGF-B
expression that leads to the recruitment of mural cells and in part
through unknown mechanisms. Both inflammation (Mahmoud
et al., 2010) and mononuclear cells (van Laake et al., 2006)
have been ascribed to account for the development of vascular
malformations in HHT. It would therefore be important to deter-
mine whether the anti-inflammatory and immunomodulatory
properties of thalidomide may also contribute to the benefi-
cial effects of this drug. Thalidomide treatment is not without
risk since it has poor specificity, affecting a range of physiolog-
ical processes and has side effects (Shortt et al., 2013). It might
therefore not ultimately be the drug of choice for the treatment
of HHT. However, due to the encouraging activity of thalido-
mide in MM, many analogs have been developed to be more
potent and specific than thalidomide. A class of agents, termed
the immunomodulatory drugs (IMiDs) represents promising
compounds for the treatment of cancers. Some are under clin-
ical investigation and CC-5013 (lenalinomide) and CC-4047
(Pomalinomide, Actimid) have obtained FDA-approvals for 5q-
myelodysplasia and for MM (Shortt et al., 2013). Understanding
the mechanisms of action by which thalidomide stimulates ves-
sel maturation will help to design new drugs targeting pericytes
that have fewer side effects, leading to new therapeutic options
for HHT individuals. More generally, strategies targeting peri-
cytes to stimulate vessel maturation may open new avenues to
treat pericyte-associated diseases such as diabetes, cancers and
neurodegenerative disorders.
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