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The representation, integration, and interpretation of omic data is a complex task,
in particular considering the huge amount of information that is daily produced in
molecular biology laboratories all around the world. The reason is that sequencing data
regarding expression profiles, methylation patterns, and chromatin domains is difficult
to harmonize in a systems biology view, since genome browsers only allow coordinate-
based representations, discarding functional clusters created by the spatial conformation
of the DNA in the nucleus. In this context, recent progresses in high throughput molecular
biology techniques and bioinformatics have provided insights into chromatin interactions
on a larger scale and offer a formidable support for the interpretation of multi-omic data. In
particular, a novel sequencing technique called Chromosome Conformation Capture allows
the analysis of the chromosome organization in the cell’s natural state. While performed
genome wide, this technique is usually called Hi–C. Inspired by service applications such as
Google Maps, we developed NuChart, an R package that integrates Hi–C data to describe
the chromosomal neighborhood starting from the information about gene positions, with
the possibility of mapping on the achieved graphs genomic features such as methylation
patterns and histone modifications, along with expression profiles. In this paper we show
the importance of the NuChart application for the integration of multi-omic data in a systems
biology fashion, with particular interest in cytogenetic applications of these techniques.
Moreover, we demonstrate how the integration of multi-omic data can provide useful
information in understanding why genes are in certain specific positions inside the nucleus
and how epigenetic patterns correlate with their expression.
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INTRODUCTION
What is the best way to integrate and represent omic data? This
inquiry results critical in an era that is witnessing an explosion
of the available molecular biology information. In particular,
the integration and the interpretation of omic data in a systems
biology view is complex, because actual representations rely on
genomic coordinates, discarding at first gene spatial cooperation
and renouncing to exploit the real conformation of the DNA
in the nucleus. Moreover, approaches that are commonly used
to annotate and analyze molecular biology experiments, such as
ontology mapping and enrichment analysis, assume as prereq-
uisite an independent sampling of features, which is clearly not
satisfied while looking at long-range chromatin interactions (de
Wit and de Laat, 2012), since they associate regions that are known
to be functionally correlated.

Considering the number of experiments that highlight the
importance of co-localization and co-expression of genes (Di Ste-
fano et al., 2013), the possibility of mapping multi-omic features
on a map capable of representing the effective disposition of genes
in the nucleus can be of great utility. Moreover, the possibility
of introducing network concepts to represent the behavior of

genomic actors seems a suitable solution for the interpretation
of this kind of data, since they allow to map a lot of informa-
tion in complex, dynamical structures that organize items in an
integrated way.

Recent advances in high throughput molecular biology tech-
niques and bioinformatics have provided insights into chromatin
interactions on a larger scale (Lieberman-Aiden et al., 2009).
A novel technique called Chromosome Conformation Capture
(3C) allows the analysis of chromosome organization in the
cell’s natural state (Duan et al., 2012). The combination of
high-throughput sequencing with this technique, generally called
Hi–C, allows the characterization of long-range chromosomal
interactions genome-wide (Lin et al., 2012). Hi–C gives infor-
mation about coupled DNA fragments that are cross-linked
together due to spatial proximity, providing data of the chro-
mosomal arrangement in the 3D space of the nucleus. If used
in combination with chromatin immunoprecipitation, 3C can
be employed for the analyses of interactions between DNA and
particular proteins, in a technique called ChIA-pet (Fullwood
et al., 2009; Dixon et al., 2012; Li et al., 2012; Papantonis et al.,
2012).
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These techniques allow the description of the nucleus orga-
nization at unprecedented resolution, offering the possibility to
study the structural properties and spatial organization of chro-
mosomes. This is of critical importance for understanding and
evaluating the regulation of gene expression, DNA replication,
repair, and recombination (Chepelev et al., 2012). Moreover,
using the Hi–C approach, the possibility of comparing the
three-dimensional organization of the DNA in physiological and
pathological conditions is achievable. The capability of describing
how diseases reorganize the chromatin conformation to origi-
nate novel co-localized gene clusters of co-expression would be
of primary importance.

To fully exploit the potential of this technique, many issues
have to be faced. First of all the huge amount of data that should
be produced for describing the conformation of the DNA in the
nucleus. Considering that there are more than 200 different cell
types with different profiles, which also change depending on
the cell’s actual state, the sequencing effort required to describe
the three-dimensional configuration of genes in the nucleus is
huge. Moreover, the integration of epigenetic information that
is strictly correlated to the DNA conformation in the cell in a
mutual cross-regulation (since the expression of proteins that
organize the chromatin in the nucleus is correlated to the con-
formation of the chromatin itself), making the data problem
explosive.

In this paper we describe a initial attempt to analyze Hi–C data
and related multi-omic features using a network approach to rep-
resent gene co-localization and co-regulation. In particular, we
describe how the R package NuChart, with its algorithmic features
that have been previously presented (Merelli et al., 2013), can be
used to interpret 3C data for creating a map that represents multi-
omic information. Here, we present the possibilities that can be
opened by using systems biology concepts for the analysis of 3C
data, in particular highlighting how this procedure has the poten-
tial to enter into clinical practice, because it provides information
that can be interpreted in a cytogenetic view, with incomparable
resolution and richness of details.

MATERIALS AND METHODS
Inspired by web applications such as Google Maps, we developed
NuChart (Merelli et al., 2013), an R package that elaborates Hi–C
information to provide a systems biology oriented, gene-centric
view of the three-dimensional organization of the DNA in the
nucleus (the software, the manual, and all the supporting materials
are freely available at ftp://fileserver.itb.cnr.it/nuchart). NuChart
can be used to describe the DNA conformation in the neighbor-
hood of selected genes by mapping on the achieved graph genomic
features that are important for controlling gene expression at
epigenetic level.

Although NuChart is the first R package allowing both visu-
alization and analysis of Hi–C data in a gene-centric fashion
[other software are CytoHi–C (Shavit and Lio’, 2013) and Homer
(Heinz et al., 2010), which both rely on Cytoscape], a similar
approach was initially presented by Wang et al. (2013), for the
analysis of chromatin conformation data in experiments concern-
ing acute lymphoblastic leukemia (ALL) and Lymphoma cells.
This work pioneered the idea of analyzing the social behavior of

genes by using a graph-based approach. A similar method has been
exploited in NuChart, which in addition allows a statistical inter-
pretation of both expression and epigenetic data in comparison to
the topology of the graph, thus allows a deep integration of this
kind of information.

For example, it is possible to map on the neighborhood graph
Linking Gene Regulatory Elements [in particular, the predicted
binding sites for the CTCF or Cohesin proteins (Botta et al., 2011)],
isochores [that describe the variations in the GC content and are
important for the genome organization (Varriale and Bernardi,
2009)], potential cryptic Recombination Signal Sequences [cRSSs,
which are important for generating the antigen receptor diver-
sity (Marculescu et al., 2006)], and other user desired genomic
features (using the bed file format), such as methylation profiles
and histone modifications, to infer how epigenetic features and
the three-dimensional nuclear organization of DNA cooperate in
controlling gene expression. This can be very useful while study-
ing the differentiation of stem cells or for identifying chromosomal
reorganizations in cancer cells.

The package is built upon the functionality of Bioconductor
packages such as biomaRt, Biostrings, ArrayExpress, GEOquery,
KEGGREST, limma, samr, igraph, and ergm, providing a novel
method to exploit Hi–C data in a systems biology context.
NuChart, used in combination with the Hicup software, processes
Hi–C data in FASTQ format, performs some preliminary normal-
izations relying on the fragment distances from the enzymatic cut
sites. The output is a detailed table concerning the chromosomal
spatial neighborhood of the input genes, providing a related graph
on which it is possible to map multi-omic features.

The idea behind this package is to provide a complete suite
of tools for the analysis of Hi–C data using a gene-centric point
of view to provide a map on which other omic data can be
mapped (see Figure 1). Contact matrices, or better their prob-
abilistic models, allow to create representations that only involve
two chromosomes, while we are able to describe the interactions
of all the chromosomes together using a graph-based approach.
This representation gives more importance to the physical prox-
imity of genes in the nucleus in comparison to coordinate-based
representations. This is the same problem that impairs represen-
tations based on Circos, which are able to characterize the whole
genome in one shot, but fail to describe the physical proximity of
genes.

A typical analysis performed with NuChart starts with the
pre-processing of the FASTQ file using Hicup, which provides as
output a SAM file (see the Hicup documentation for more details).
Then, data can be loaded into the R environment and normalized
using a generalized linear model relying on a Poisson distribu-
tion (taking into account Hi–C fragment length, mappability
and GC-content). Considering that this normalization approach
is well-established (Hu et al., 2012), the algorithm returns the
same results of other approaches relying on the computation of
the contact matrices (Servant et al., 2012; Seitan et al., 2013; Ay
et al., 2014), providing a probability score at each edge of the
neighborhood graph.

This method allows to estimate, at the same way of the contact
maps, the probability that different genomic regions are proxi-
mal one to the other, with the advantage of allowing an iterative
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FIGURE 1 | Multi-omic integration of data using Hi–C maps. The
possibility of employing a map describing the chromatin organization in
the nucleus to represent multi-omic data can be very useful for the
interpretation of this kind of information. This approach recall the use
of Google maps to display, on a cartographic representation of a city,

features such as shops and places of interest. By using the same
idea, we can map on the neighborhood graph of the genes
inside the nucleus omic data such as methylation patterns,
immunoprecipitation information, open-chromatin conformations, and
expression profiles.

analysis of the space: it is therefore possible to calculate the prob-
ability that two genes are distant a specific number of contacts.
Moreover, the graph-based description of gene positions in the
nucleus is extremely useful for mapping other multi-omic fea-
tures, since analyzing data through this spatial description of
the DNA conformation allows the identification of long-range
interactions, cooperative genes and common epigenetic patterns,
which are more difficult to identify relying on chromosomal
coordinates.

The core procedure starts from one or more input genes from
which a graph of adjacent genes is constructed. The identification
of neighbor genes begins searching chromosome fragments that
belong to the input genes. These fragments are then compared
with other chromosome fragments located in a different genomic
region, as reported by coupled reads. When a match is found and
a new fragment is identified within a specific gene region, an edge
between the starting gene and the novel detected one is created. A
very important feature of the algorithm is the possibility to specify
the number of iterations to accomplish for creating the neighbor-
hood graph, which means to specify the maximum span that the
graph can reach starting from the input genes (correlated to the
diameter of the graph or, using the graph theory terminology, to
the “longest shortest path”).

By default this value is set to one, which means that, considering
the list of genes given as input and taking into account the desired
normalization, only genes that are directly in contact are mapped
on the graph. If this parameter is set to two the procedure is iterated
twice, meaning that all the genes identified in the neighborhood of

the input genes at the first iteration of the algorithm are searched
again for Hi–C interactions with other genes. And so on. This is
of critical importance because it allows to overcome the limit of
the contact matrix representation, which is limited by definition
at representing only the interactions just one step away from the
considered gene, while here we can identify paths also between
distant genes.

The added value of this package is to provide the possibil-
ity of analyzing Hi–C data in a multi-omic context, by enabling
the capability of mapping on the graph vertices expression data,
according to a particular transcriptomic experiment, and on the
edges genomic features that are known to be involved in chro-
mosomal recombination, looping, and stability. If the user is
interested in mapping on the neighborhood graph also gene
expression data, there are functions for downloading microarray
experiment results from ArrayExpress and GEO. Moreover, using
NuChart it is possible to map on the neighborhood graph many
genomic features such as data concerning cryptic RSSs, isochores,
and CTCF binding sites, which are embedded in the package,
but also any other omic information using the common bed file
format.

NuChart also provides three functions to describe, compare,
and statistically analyze neighborhood graphs once they have
been created, which can be useful to highlight local and global
characteristics of the fragment distribution in the context of the
three-dimensional DNA topology inside the nucleus. In particular,
there is the possibility to create general statistics about the graphs,
which can be useful to describe physiological and pathological
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conditions of the cells, verifying the differences in the spatial dis-
tribution of genes. Then, neighborhood graphs can be compared
by applying a conversion in adjacency matrices and then employ-
ing the Pearson correlation to check their similarity (for example
to see intra and inter experiments variability).

The last set of functions available in NuChart enables the user
to analyze, from a statistical point of view, the neighborhood
graphs in relation to the mapped multi-omic features. In partic-
ular, these functions rely on the R package Exponential-family
Random Graph Models (ERGMs) that provides an integrated
set of tools for creating an estimator of the network through a
stochastic modeling approach. In particular, the ERGM functions
are able to extrapolate the salient characteristics of a network by
implementing a maximum likelihood estimator.

Operatively, the software generates a huge number of net-
works, selects the ones having characteristics similar to the graph
under analysis (i.e., degree distribution, connected components,
topological conformation), and tries iteratively to optimize the
generation parameters until all the created graphs have charac-
teristics similar to those processed. This estimator is extremely
useful, since it allows to create a probability distribution by which
some peculiarities of the graph can be extrapolated, concerning
both its intrinsic topology and specific attributes of the nodes
(Admiraal and Handcock, 2007). In particular, the package allows
to compute simple statistics about the topology of the graph,
such as the significance of the vertex clustering attitude (trian-
gle), or the significance of the network tendency to create multiple
paths between two vertices (twopath). On the other hand, by
choosing more complex modeling functions and exploiting the
mapped multi-omic features, NuChart allows to test, for example,
the probabilities that edges are a function of a specific genomic
feature (nodecov) or the significance of having edges in relation
to the absolute difference of a vertices’ property (absdiff). The
possibility of analyzing data to infer structural-activity relation-
ships in a network is of critical importance (Reagans and McEvily,
2003).

RESULTS AND DISCUSSION
In this section we present some applications of the NuChart pack-
age. In particular, we show some interesting results relying on
the possibility of creating metrics for defining how far two genes
are one from the other, with possible applications to cytogenetic
profiling, to the analysis of the DNA conformation in the prox-
imity of the nucleolus, and for describing the social behavior of
genes.

APPLICATION TO CYTOGENETIC
Applications of 3C techniques to cytogenetics are becoming very
appealing, because the relative position of genes can be identified
using high-throughput experiments. An example can be found
in the work of Naumova et al. (2013), which concerns the analy-
sis of the mitotic chromosome organization, while other studies
showed how it is possible to identify translocations in Hi–C data
(Rusk, 2014). Here we show how Hi–C can be used for dis-
eased versus normal cells comparisons, with particular interest
in leukemias, since it reproduces results achieved by Fluorescence
in situ hybridization (FISH) experiments.

Although Hi–C is intended to estimate the contact frequencies
between different genomic regions, there is a clear correlation with
chromosomal translocations, since recombinations are largely
influenced by the distance between fragments in which DNA
breaks, necessary for translocations, occur. There are already many
evidences in this sense (Meaburn et al., 2007; Engreitz et al., 2012;
Shugay et al., 2012; Zhang et al., 2012; Kenter et al., 2013), which
demonstrate how the physical distance plays a leading role for
recombinations, in particular when the frequency of DNA breaks
are physiological (while in cellular models where a high number
of translocation are artificially induced the frequency becomes
the dominant factor). Considering the association between con-
tact frequencies and translocations, we think that a graph-based
approach may be useful for data analysis from a recombination
point of view. NuChart is capable of providing an immediate rep-
resentation of genomic segments that are more likely to translocate
with a specific gene, taking into account that the recombination
probability is proportional to the weight of the connecting edges,
according to the employed normalization.

The first example we present concerns the Philadelphia translo-
cation, which is a specific chromosomal abnormality associated
with chronic myelogenous leukemia (CML). The presence of this
translocation is a highly sensitive test for CML, since 95% of peo-
ple with CML have this abnormality, although occasionally it may
occur in acute myelogenous leukemia (AML). The result of this
translocation is that a fusion gene created from the juxtaposi-
tion of the ABL1 gene on chromosome 9 (region q34) to part of
the BCR (“breakpoint cluster region”) gene on chromosome 22
(region q11). This is a reciprocal translocation, creating an elon-
gated chromosome 9 (called der 9), and a truncated chromosome
22 (called the Philadelphia chromosome).

Using NuChart we compared the distance of some couples of
genes that are known to create translocation in CML/AML. In
particular, our analysis relies on data from the experiments of
Lieberman-Aiden et al. (2009), which consist in four lines of kary-
otypically normal human lymphoblastoid cell line (GM06990)
sequenced with Illumina Genome Analyzer, compared with two
lines of K562 cells, an erythroleukemia cell line with an aberrant
karyotype. Starting from well-established data related to the cyto-
genetic experiments (Dewald, 2002), we tried to understand if the
Hi–C technology, in combination with NuChart, can successfully
be applied in this context, by verifying if translocations normally
identified by using FISH can also be studied using 3C data. There-
fore, we identified five couples of genes that are know to be involved
in translocations and we compared their Hi–C interactions in
physiological and diseased cells.

The very interesting result is that ABL1 and BCR, consid-
ered a normalization equivalent to the one achieved with Hic-
Norm, are likely to be distant 1 or 2 contacts (p < 0.05) in
sequencing runs concerning GM06990 with HindIII as digestion
enzyme (SRA:SRR027956, SRA:SRR027957, SRA:SRR027958,
SRA:SRR027959), while they are directly in contact (p < 0.05)
in sequencing runs related to K562 with digestion enzyme HindIII
(SRA:SRR027962 and SRA:SRR027963). Therefore, there is a per-
fect agreement between the positive and the negative presence of
Hi–C interactions and FISH data (see Figure 2). At the same way,
AML1 and ETO are in close proximity (p < 0.05) in leukemia cells
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FIGURE 2 | Hi–C for Cytogenetic application. Comparison of FISH data and
Hi–C information for the cytogenetic analysis of translocation in leukemia. In
panel (A) the neighborhood graph of the genes ABL1 and BCR generated
from the GM06990 cell line (Lieberman-Aiden experiment SRA:SRR027956)
is presented. The graph shows that in normal cells the genes are not directly

in contact since other genes are placed between them. In panel (B) the
neighborhood graph of the genes ABL1 and BCR from the K562 cell line
(Lieberman-Aiden experiment SRA:SRR027962) is presented. The graph
shows that in cancer cells the genes are closer one to the other, which is a
preliminary evidence of a possible translocation.

(SRA:SRR027962 and SRA:SRR027963), while they are likely to be
far 2 or 3 contacts (p < 0.05) in normal cells (SRA:SRR027956,
SRA:SRR027957, SRA:SRR027958, SRA:SRR027959). Consid-
ering the translocation CBFβ-MYH11, these genes are distant
2 or 3 contacts (p < 0.05) in GM06990 (SRA:SRR027956,
SRA:SRR027957, SRA:SRR027958, SRA:SRR027959), while they
are proximal with high probability (p < 0.05) in K562
(SRA:SRR027962, but not in SRA:SRR027963). We had no sig-
nificant results for NUP214-DEK and PML-RARα translocations,
which, however, are more rare in this kind of disease.

A second example of Hi–C cytogenetic application concerns
the experiments of Wang et al. (2013) about B-cell ALL. Also in
this disease there are well-characterized translocations, the most
important of which is the TEL-AML1 fusion gene (Stams et al.,
2005) that is present in about 25% of patients. This translocation
of chromosome 12 (region q34) and chromosome 21 (region q22)
results in the expression of chimeric transcription factors, which
block both differentiation and apoptosis by interfering with the
function of their wild-type counterparts.

As before, we employed NuChart to characterize the distance
between some couples of genes in the cells’ physiological and
pathological state. In detail, we used the results of the 4 kary-
otypically normal human lymphoblastoid cell line (GM06990)
from the experiments of Lieberman-Aiden as control data (as
in the Wang’s paper), while pathological profiles are directly
taken from the experiments performed by Wang et al. (2013)
(private communication). This dataset consists of 2 highly over-
lapping Hi–C experiments, the first concerning a case of primary
human B-Cell ALL (B-ALL) and the second regarding the MHH-
CALL-4 B-Cell ALL cell line (CALL4). Also in this case, starting
from some well-established translocations, we tested the capa-
bility of the Hi–C technique, in combination with NuChart, to
capture some genomic rearrangements usually identified using
FISH.

The first result is that TEL and AML1, considered a normaliza-
tion equivalent to the one achieved with HicNorm, are always
distant 2 contacts (p < 0.05) in sequencing runs concerning
GM06990 with HindIII as digestion enzyme (SRA:SRR027956,
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SRA:SRR027957, SRA:SRR027958, SRA:SRR027959), while they
are directly in contact (p < 0.05) in sequencing runs related
to B-ALL and CALL4. Other tests were performed on the E2A-
PBX translocation: these genes are in close proximity (p < 0.05)
in cancer cells (B-ALL and CALL4), while they are likely to
be far 2 or 3 contacts (p < 0.05) in three out four control
cell lines (SRA:SRR027956, SRA:SRR027958, SRA:SRR027959).
Following the results discussed in the work of Taylor et al.
(2013) we also tested the proximity of genes IGH and miR125b1
(related to a microRNA), which are distant 2 or 3 contacts
(p < 0.05) in GM06990 (SRA:SRR027956, SRA:SRR027958,
SRA:SRR027959), while they are proximal with high probabil-
ity (p < 0.05) in leukemias cells (CALL4, but not in B-ALL,
which presents a lower reads density). Considering the translo-
cation BCR–ABL1, genes are distant 2 or 3 contacts (p < 0.05) in
GM06990 (SRA:SRR027956, SRA:SRR027957, SRA:SRR027958,
SRA:SRR027959), while they are proximal with high probability
(p < 0.05) in leukemias cells (CALL4, but not in B-ALL, which
presents a lower reads density). We had no results for the MLL and
AF4 translocation.

These results are of significant importance, because with the
decreasing of sequencing costs the Hi–C technique can be an
effective diagnostic option for cytogenetic analysis, with the
possibility of improving the knowledge regarding the correla-
tion between the genome architecture and translocations. For
example, Hi–C can be used to infer non trivial risk markers
related to aberrant chromosomal conformation, like the Msc5a
loci for breast cancer, which is known to play a critical role
in the re-organization of a portion of chromosome 9 by CTCF
proteins.

RNA POLYMERASES
In the following example, we discuss an interesting analysis regard-
ing the internal organization of the DNA in the nucleus, working
on the data produced in the Dixon et al. (2012) experiments.
The intention is to show the different chromosomal organiza-
tions that occur in the nucleolus, while gene expression is heavily
characterizing the differentiation of stem cells, since this part of
the nucleus is involved in the transcription of ribosomal RNA
(rRNA) subunits and in their combination with proteins to form
complete ribosomes. Therefore, at the border of the nucleolus
are exposed transcriptional units ready to express genes, and it
would be very useful to understand the organization of these
structures in relation to genomic regions that are going to be
transcribed.

For this reason, we performed an Hi–C analysis of some specific
subunits of the RNA Polymerase I (that only transcribes rRNA),
RNA Polymerase II (directly involved in microRNA and gene
expression), and RNA Polymerase III (mainly required to express
tRNA) to shed light in their different configurations in different
cell types. While most of the subunits are shared, some are pecu-
liar of a particular RNA Polymerase and we choose to use these
subunits to verify if there is correlation between their position in
the nucleus and their activities. Respectively, the neighborhood
graphs have been produced according to two different sequencing
runs performed on human embryonic stem cells (SRA:SRR400260
and SRA:SRR400261), and from human lung embryonic fibroblast

(SRA:SRR400266 and SRA:SRR400267) of Dixon et al. (2012)
experiments.

In Figure 3 a detailed representation of the different RNA Poly-
merase II neighborhood graphs is shown. In particular, these
graphs show the neighborhood of the POLR2A gene that encodes
for RPB1 (Strachan and Read, 1999), the largest subunit of the
RNA polymerase II, which catalyzes the transcription of DNA
to synthesize precursors of mRNA, most snRNA and microRNA,
in the different cell lines. The representation shows that there
are a wide range of genes involved in cell differentiation, with
an enrichment of genes related to the cell cycle process (such
as CDC45 and CCNE1, CCNB1) and many transcription factors
(such as EBF1, TFEC, TFAP2A, TFB1M). Concerning POLR1A,
that encodes for the A190 protein of the RNA Polymerase I, in the
different experiments, as expected, it has in its neighborhood genes
that are correlated to the rRNA subunits, such as RPL31, MPRS5,
MRPS9, MRPS24, MRPS27, and MRPL35. Regarding POLR3B,
which encodes for the subunit C128 of the RNA Polymerase
III, we found in its neighborhood a couple of genes related to
tRNA, in particular TRNAD1 (transfer RNA aspartic acid 1 – anti-
codon GUC) and TRNAS26 (transfer RNA serine 26 – anticodon
AGA).

Considering the variability in the neighborhood of these genes,
computed as correlation between lists of adjacent genes, there is
a wide changeability looking at the RNA Polymerase II, while the
differences considering RNA Polymerase I and III are considerably
smaller. In particular, the similarity between two different runs of
sequencing performed on the same cell type is relatively high for
DNA Polymerase II (respectively, 60 and 67%), while there are
very important differences between the two cell lines (correlation
below 30%), which witnesses the importance (and the variability)
that chromosomal re-organizations have at the nucleus/nucleolus
level for co-expression. Considering DNA Polymerase I and III,
there is a high reproducibility for runs performed on the same
samples (respectively, 85 and 87% for POLR1A and 80 and 83%
for POLR3B) and a relative increase in the analyses performed
in different cell lines (correlation around the 40%). This kind
of analysis is very important for understanding, in a particu-
lar moment, what the cells are going to express by reorganizing
their chromosomal structure in the three-dimensional space of
the nucleus.

NETWORK MODELING
The power of NuChart relies on the capability of capturing and
describing the co-localization and co-activation of single entities
in a gene network, exploiting a systems biology approach. More-
over, the interaction of the actor genes with the environment is of
critical importance for understanding the entire system. This can
be performed using the modeling functions of the package, which
allow to statistically characterize the distribution of the edges in
relation to the characteristics of the nodes that are the mapped
multi-omic features. In order to show the possibilities of NuChart
in terms of statistical inference on the graph, we performed the
analysis of the clusters of genes Kruppel-associated box (KRAB;
Figure 4) and human leukocyte antigen (HLA; Figure 5) in the
context of four Dixon et al. (2012) experiments to verify the corre-
lation of the edge distribution in relation to some genomic features
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FIGURE 3 | Analysis of the nucleolus. Neighborhood graphs of the gene
POLR2A in four different runs from the Hi–C experiments of Dixon et al.
(2012) to show inter and intra run modifications of the chromatin
conformation. Panels (A,B) concern sequencing runs from hESC

(SRA:SRR400260, SRA:SRR400261), while data in panels (C,D) are from
IMR90 (SRA: SRR400266, SRA:SRR400267). In these graphs, seed genes
are the genes given as input to the algorithm, while output genes are
differentially represented according to their importance (in terms of degree).

(hypersensitive sites, CTCF binding sites, isochores, RSSs), whose
data are embedded in the NuChart package.

The first analyzed locus is located in cytoband chr19.q13.12
and concerns the clusters of Kruppel-type zinc finger genes,
related to the KRAB, that are distinctive for their tandem orga-
nization (Huntley et al., 2006). Zinc finger proteins are a family
of transcription factors that regulate the gene expression, and
most of these proteins are members of the KZNF family. There
are seven human-specific novel KZNFs and 10 KZNFs that have
undergone pseudo-gene transformation specifically in the human
lineage. 30 additional KZNFs have experienced human-specific

sequence changes that are presumed to be of functional signif-
icance. Members of the KZNF family are often in regions of
segmental duplications, and multiple KZNFs have undergone
human-specific duplications and inversions.

The second analyzed gene cluster concerns the HLA system,
which is the name of the locus containing the genes that encode
for major histocompatibility complex (MHC) in humans. The
proteins encoded by these genes are also known as antigens,
as a result of their historic discovery as factors in organ trans-
plants. The HLA belongs to a super-locus that contains a large
number of genes related to the immune system function in
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FIGURE 4 | Gene clustering analysis. Neighborhood graphs of the
Kruppel-type zinc finger cluster of genes (cytoband chr19.q13.12), related to
the Kruppel-associated box (KRAB), in four different runs from the Hi–C
experiments of Dixon et al. (2012) to show inter and intra run modifications
of the chromatin conformation. Panels (A,B) concern sequencing runs from

hESC (SRA:SRR400260, SRA:SRR400261), while data in panels (C,D) are
from IMR90 (SRA: SRR400266, SRA:SRR400267). In these graphs, seed
genes are the genes given as input to the algorithm, while output genes
are differentially represented according to their importance (in terms of
degree).

humans. In particular, this group of genes resides on cytoband
chr6.p31.21 and encodes for cell-surface antigen-presenting pro-
teins, which have many different functions. Primarily, the HLA
complex helps the immune system distinguish the body’s own
proteins from proteins made by foreign invaders such as viruses
and bacteria.

These statistical results are quite intriguing to analyze (Table 1).
From one side, the correlation between the presence of CTCF

binding sites and edges was predictable since Linking Gene Reg-
ulatory Elements are demanded to keep different regions of the
genome close to each other, but is very interesting to quantify this
association. On the other hand, regions with isochores seem less
involved in long-range interactions, which can be quite surpris-
ing considering that these portions of the genome are considered
gene-rich. The correlation between cryptic RSS sites and edges is
more pronounced in the HLA cluster in comparison to the KRAB
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FIGURE 5 | Gene clustering analysis. Neighborhood graphs of the
human leukocyte antigen (HLA) cluster of genes (cytoband chr6.p31.21)
in four different runs from the Hi–C experiments of Dixon et al. (2012)
to show inter and intra run modifications of the chromatin conformation.
Panels (A,B) concern sequencing runs from hESC (SRA:SRR400260,

SRA:SRR400261), while data in (C,D) are from IMR90 (SRA:
SRR400266, SRA:SRR400267). In these graphs, seed genes are
the genes given as input to the algorithm, while output genes are
differentially represented according to their importance (in terms of
degree).

cluster, probably due to a more consistent presence of this kind of
sequences in genes related to the immune system. Finally, the cor-
relation between hypersensitive sites (super sensitivity to cleavage
by DNase) and edges, although positive, is poor, probably because
the accessibility of these regions are impaired by a large number
of long-range interactions.

CONCLUSION
The integration and visualization of omic data is a critical issue
and they really represent challenges for scientists that work on
Big Data paradigms in the 21st century. Tools to integrate a cas-
cade of multi-omic data with the information about the structure
of the nucleus require a cartographic approach such as Google
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Table 1 | Analyses of CTCF binding sites, isochores, cryptic RSSs, and

hypersensitive sites (super sensitivity to cleavage by DNase) impact

on the edge distribution of the KRAB cluster of genes and of the HLA

cluster of genes.

KRAB HLA

Estimate SE Estimate SE

SRA:SRR400260

Edges + nodecov(“dnase”) 0.2867 0.08451 0.1751 0.07961

Edges + nodecov(“ctcf”) 0.6531 0.01157 0.5845 0.01253

Edges + nodecov(“rss”) 0.5804 0.06176 0.6304 0.08196

Edges + nodecov(“iso”) −1.0470 0.09269 −0.9406 0.09156

SRA:SRR400261

Edges + nodecov(“dnase”) 0.2042 0.06782 0.1706 0.08022

Edges + nodecov(“ctcf”) 0.6629 0.04158 0.6287 0.03225

Edges + nodecov(“rss”) 0.5378 0.03566 0.6419 0.03776

Edges + nodecov(“iso”) −1.0151 0.09566 −0.9335 0.08969

SRA:SRR400266

Edges + nodecov(“dnase”) 0.3042 0.05962 0.1818 0.07822

Edges + nodecov(“ctcf”) 0.6738 0.03744 0.5678 0.02113

Edges + nodecov(“rss”) 0.5569 0.02996 0.6617 0.03776

Edges + nodecov(“iso”) −1.1000 0.09655 −0.8305 0.08969

SRA:SRR400267

Edges + nodecov(“dnase”) 0.3272 0.07932 0.1901 0.05925

Edges + nodecov(“ctcf”) 0.6645 0.04158 0.4677 0.02005

Edges + nodecov(“rss”) 0.5378 0.02755 0.6520 0.03883

Edges + nodecov(“iso”) −0.9501 0.09076 −0.8707 0.09050

SE, Standard Error.
It’s very interesting to highlight the high similarities between the four sequenc-
ing runs. In particular, data demonstrates that CTCF binding sites and cryptic
RSSs have a positive influence on the presence of edges. At the same way
DNase hypersensitive sites are positively correlated with edges although with
less impact, while isochores are negatively correlated with the edge distribution.

maps, because genome browsers only work at the coordinate level,
discarding long-range interactions and associations.

Changing the point of view into a more systems biology fashion,
we think that the information about the chromatin organization
may also be the key to interpret this multi-omic cascade of data,
since they are capable of providing genetic maps to make clearer
the collective behavior of genes. The cooperation among genes can
probably be better interpreted using tools that are typical of the
social network era and the possibility to use tools like NuChart sup-
ports this concept. In particular, the possibility of having suitable
descriptions of how genes are localized in the nucleus, enriched by
genomic features that can characterize the way they are capable of
interacting, and combined with statistical analysis and semantic
tools may result extremely useful in the years to come.

The interpretation of epigenetic features, genomic patterns,
DNA binding sites, co-expression patterns could take an incredible
advantage from the availability of distance matrices between genes,
which can provide a measure of their correlation. Vice versa, due to
the close connection between the three-dimensional organization

of the DNA in the nucleus and the multi-omic features that regu-
late the cellular machinery, distance information can provide new
hints about clusters of genes that cooperate under the control of
the same transcription factors for specific biological processes.
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