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The DNA damage response (DDR) has two main goals, to repair the damaged DNA and to
communicate the presence of damaged DNA. This communication allows the adaptation
of cellular behavior to minimize the risk associated with DNA damage. In particular, cell
cycle progression must be adapted after a DNA-damaging insult, and cells either pause
or terminally exit the cell cycle during a DDR. As cells can accumulate mutations after
a DDR due to error-prone DNA repair, terminal cell cycle exit may prevent malignant
transformation. The tumor suppressor p53 plays a key role in promoting terminal cell
cycle exit. Interestingly, p53 has been implicated in communication of a stress response to
surrounding cells, known as the bystander response. Recently, surrounding cells have also
been shown to affect the damaged cell, suggesting the presence of intercellular feedback
loops. How such feedback may affect terminal cell cycle exit remains unclear, but its
presence calls for caution in evaluating cellular outcome without controlling the cellular
surrounding. In addition, such feedback may contribute to how the cellular environment
affects malignant transformation after DNA damage.
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INTRODUCTION
Changes in the genome can be a potential threat to the cell
and to organism survival. However, the genome is continuously
exposed to a variety of genotoxic stresses. These are endogenous
insults such as the production of reactive oxygen species (ROS)
or various metabolite byproducts, or exogenous insults such as
UV radiation, heavy metals, air pollutants, bacterial toxins, and
inflammatory responses. All of these agents cause structural dam-
age and can hinder or abolish cellular processes as transcription
or DNA replication. Of the various DNA lesions, DNA double
strand breaks (DSBs) are considered most deleterious, because
if unrepaired they can lead to chromosomal aberrations such as
deletions, translocations, and amplifications. These chromosomal
aberrations may result in deregulation of gene expression and
altered cellular function, which may eventually cause cell death
or tumor initiation and progression (Lord and Ashworth, 2012).

To minimize the risk to genome integrity, cells have evolved
the DNA damage response (DDR)—a highly regulated signaling
network that responds to the presence of DNA lesions (Bartek
and Lukas, 2007; Jackson and Bartek, 2009). A prime function
of the DDR is to ensure that lesions in DNA are recognized
and repaired. Simultaneously, the repair needs to be coordinated
with other cellular processes, in particular cell cycle progression.
Therefore, the DDR can be divided into two major pathways,
one that assembles and repairs the lesions and one that ampli-
fies and conveys the signal away from the break site to modify
cellular behavior. In all eukaryotes these two processes are initi-
ated by sensor proteins such as the Mre11-Rad50-Nbs1 (MRN)
complex or the Ku70/Ku80 dimer, that detect the presence of

DSBs. The binding of sensor proteins to damaged DNA recruits
the phosphoinositide 3-kinase related kinases ATM, ATR, or
DNA-PK leading to activation of these kinases (Falck et al.,
2005). Once activated these kinases initiate cascades that enforce
local and global rearrangement of chromatin, involving recruit-
ment of multiple proteins and posttranslational modifications as
phosphorylation, ubiquitylation, sumoylation, and methylation
(Lukas et al., 2011). For example, phosphorylation of histone 2A
variant (H2AX) at C-termini near a break site by ATM serves
as a platform for the protein MDC1, who in turn can function
as a recruitment platform for the ubiquitin ligase RNF8. RNF8-
mediated ubiquitylation recruits RNF168, whose ubiquitylation
of chromatin proteins attract BRCA1 and 53BP1, proteins that
affect how the DNA break will be repaired (Kolas et al., 2007;
Bekker-Jensen and Mailand, 2011).

DSB REPAIR IS NOT ALWAYS PERFECT
A majority of DSBs are repaired by three pathways—homologous
recombination (HR), non-homologous end joining (NHEJ), and
microhomology-mediated end joining (MMEJ). NHEJ is a fast
repair process using template independent ligation of two ends
of DNA and is functional throughout the cell cycle; in contrast
HR is a slow repair process that depends upon the use of a sister
chromatid as template and is functional only in late S- and G2
phase of the cell cycle (Chapman et al., 2012). Whereas NHEJ
only requires minor modifications of the DNA to allow for lig-
ation, HR requires resection to create stretches of single-stranded
DNA that can be used for base-pairing with the sister chromatid
(Hartlerode and Scully, 2009). The amount of resection at a
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DSB is influenced by proteins as BRCA1 and 53BP1, and is
considered as a determinant for which repair mechanism will
be utilized (Chapman et al., 2012). Importantly, during NHEJ
the DNA ends are frequently modified to allow efficient ligation,
resulting in a change in the genetic information (Lieber, 2010).
Similarly, MMEJ, an alternative version of end-joining contains
even larger modifications of DNA ends, giving rise to deletions
(Decottignies, 2013). In contrast, due to the use of a template
for sequence information, HR is largely considered as an error-
free repair process, although its accuracy is debated. Two different
processes are described to support that HR may be an error-
prone process—first the unequal sister chromatid exchange (SCE)
which has been observed in highly repetitive sequences, and
second the involvement of translesion synthesis polymerases in
synthesizing the DNA (Guirouilh-Barbat et al., 2014). Thus, cells
that have repaired DSBs are likely to contain changes in the genetic
information.

CHECKPOINT MAINTENANCE IS NOT ALWAYS PERFECT
The repair of damaged DNA needs to be coordinated with vari-
ous other cellular processes, in particular cell cycle progression.
Therefore, in addition to stimulating repair, the DDR enforces
a cell-cycle arrest, referred to as a DNA damage checkpoint. At
the heart of the checkpoint are the ATM and ATR kinases, which
initiate a signaling cascade by phosphorylating the effector kinases
Chk2 and Chk1. Chk1/Chk2 in return phosphorylate cell cycle
regulators as Cdc25 phosphatases. Phosphorylation of Cdc25s
leads to their functional inactivation and subsequent inhibition
of Cdk activity, causing rapid inhibition of cell cycle progression
(Peng et al., 1997; Mailand et al., 2000; Karlsson-Rosenthal and
Millar, 2006). In addition, inhibition of indirect regulators of Cdk
activity as Plk1 and Aurora A support a rapid cell cycle arrest
(Smits et al., 2000; Krystyniak et al., 2006). Checkpoint signaling
also maintains the arrest by stabilizing p53 that transcriptionally
regulates a large number of genes involved in DDR and other
stress pathways (Allen et al., 2014). In addition, p38-dependent
pathways contribute to regulate protein expression to maintain a
checkpoint over time (Reinhardt et al., 2010). However, although
the DDR is a very tightly regulated process, evidence of H2AX
phosphorylation, chromosomal rearrangements and breakage
during the transition from G2 to mitosis suggest that checkpoint
signaling is not always stringent (Syljuasen et al., 2006; Deckbar
et al., 2007; Lobrich and Jeggo, 2007). Thus, cells that have
initiated a DDR and a checkpoint arrest may resume proliferation
before all damaged DNA is repaired.

CELL CYCLE EXIT
As an alternative to a temporal cell cycle arrest, cells may perma-
nently leave the cell cycle and become senescent. The duration
from infliction of DNA damage to cell cycle exit depends directly
on the cell cycle state. Whereas an untransformed G2 cell exits
the cell cycle if damage is not repaired within a couple of hours,
an S-phase cell first finishes DNA replication and only leaves the
cell cycle in G2 (Baus et al., 2003; Krenning et al., 2014; Müllers
et al., 2014). Cell cycle exit in G2 phase depends on activation of
the ubiquitin ligase APC/C-Cdh1, which efficiently targets a large
amount of cell cycle regulators for proteasome-mediated degra-

dation (Wiebusch and Hagemeier, 2010). How APC/C-Cdh1 is
activated after DNA damage remains unclear, but the process
depends on expression of p53 and its transcriptional target p21,
and at least in the case of Cyclin B1, nuclear translocation of the
protein to be degraded (Wiebusch and Hagemeier, 2010; Johmura
et al., 2014; Krenning et al., 2014; Müllers et al., 2014). Thus, the
regulation of p53 is a key determinant for whether cell cycle exit
or resumed proliferation occurs after initiation of a DDR.

p53 AND CELL FATE
The level and activity of p53 is upregulated in response to various
stresses and has been shown to play a role in different path-
ways including DDR, hypoxia, apoptosis, metabolism and senes-
cence (Gonfloni et al., 2014; Pflaum et al., 2014). Functioning
as a complex signaling node, the p53 protein contains a large
amount of post-translational modifications, which together with
differential affinity for transcriptional elements and expression of
regulatory proteins impact on cell fate decisions (Kruse and Gu,
2009; Carvajal and Manfredi, 2013). Interestingly, although p53
levels are similarly induced, different stimuli can elicit different
responses on p53-transcription targets such as p21 (Espinosa
et al., 2003; Donner et al., 2007), highlighting that p53 function
may be modulated by the integration of a wide variety of signaling
pathways (Sullivan et al., 2012). One factor that can affect p53
function is its temporal dynamics in cells. Rather than accumulat-
ing at a certain level, cellular p53 can oscillate after induction of
DSBs (Lahav et al., 2004). In contrast to sustained p53 induction
that stimulates cell cycle exit, the oscillatory pulses of p53 favor
eventual resumption of proliferation after damage (Purvis et al.,
2012). However, exactly how integration of signals determines
p53 behavior remains unclear, in particular in the context of a
population of cells.

THE BYSTANDER RESPONSE
During the past few decades the DDR pathway has been stud-
ied extensively in cells that have experienced damage directly.
However, cells experiencing a DDR can communicate this to
surrounding cells (Klammer et al., 2013). The first evidence of
propagation of the DDR came from experiments performed in
Chinese hamster ovary cell lines, in which 1% of nuclei hit by
α-particles resulted in more than 30% of the cell population
showing increased incidence of SCE (Nagasawa and Little, 1992).
Supported by other observations, this phenomenon was later
termed the radiation-induced bystander effect (RIBE), which is
defined as physiological changes in unirradiated cells manifested
by cells exposed to radiation (Sokolov et al., 2005, 2007; Klam-
mer et al., 2013). Apart from SCE, various biological conse-
quences of RIBE have been observed in different studies such
as genomic instability, micronuclei formation, apoptosis, micro
RNA (miRNA) regulation, and differentiation (Lorimore et al.,
1998; Belyakov et al., 2002; Kovalchuk et al., 2010; Vinnikov
et al., 2012). A common feature of RIBE seems to be induction
of DNA damage. Indeed, Ku70, Ku80, or DNA-PKcs knockout
bystander cells that are repair deficient are sensitive to the induc-
tion of mutations and chromosomal aberrations (Little et al.,
2003; Nagasawa et al., 2003). However, the number of DSBs
generated in directly irradiated and bystander cells differ, and
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point mutations are predominant in bystander cells as compared
to partial or total gene deletion in directly irradiated cells (Little
et al., 1997; Huo et al., 2001; Sedelnikova et al., 2007). Mechanis-
tically, deregulation of redox homeostasis may be a major cause
of DNA damage in bystander cells (Azzam et al., 2002; Sokolov
et al., 2007). Indeed, addition of Vitamin C or E to cell culture
reduces the frequency of micronuclei formation, suggesting that
ROS contributes to DNA damage formation (Narayanan et al.,
1997; Konopacka and Rzeszowska-Wolny, 2006). The occurrence
of DSBs in bystander cells is more frequent during DNA repli-
cation or active transcription, indicating that energy-dependent
processes may underlie some of the damage (Burdak-Rothkamm
et al., 2007; Dickey et al., 2012). In addition, these processes
involve opening up double-stranded DNA, suggesting a mecha-
nism for how ROS-induced single-stranded breaks can be trans-
formed to DSBs, and indicating that the bystander effect may be
particularly efficient during late cell cycle stages where replication
and transcription is high.

The bystander effects appear to be cell and genotype specific
and also depend upon the type of radiation (Baskar, 2010). Most
of the RIBE studies have been performed in cell and tissue culture
models where non-irradiated cells were co-cultured with either
irradiated cells or with the conditioned medium from irradiated
cells. Using mice models, Koturbash et al. (2008) showed that
the bystander effect occurs in vivo as cranial irradiation led to
DNA damage in protected spleen tissues. The RIBE also led to
a profound epigenetic change in different bystander parts of the
animal and, interestingly, the bystander response could differ
between male and female (Besplug et al., 2005; Koturbash et al.,
2006, 2007).

The above observations suggest that paracrine or endocrine
signaling molecules from irradiated cells are responsible for the
bystander effect. However, in addition to secretion of extracellular
factors, transmission through gap junctions has also been impli-
cated in RIBE, suggesting that multiple factors may propagate
a bystander effect (Azzam et al., 2001; Hubackova et al., 2012;
Klammer et al., 2013; He et al., 2014). Some of the factors impli-
cated in transmitting the bystander response are interleukins,
transforming growth factor beta (TGFβ), and nitric oxide (NO)
(Iyer et al., 2000; Shao et al., 2002; Dieriks et al., 2010). As
a consequence of RIBE, a DNA damage-response pathway is
initiated in bystander cells. Apart from the p53 pathway, the
DDR also initiates stress signaling through JNK and p38 MAPK
signaling cascades including NF-kB, a major regulator of cell
survival, inflammation, autophagy, and differentiation (Azzam
et al., 1998; Piret et al., 1999). Activation of such a signaling
network reprograms a cell to react to external danger and may
coordinate a response in a complex tissue environment.

RECIPROCAL BYSTANDER EFFECT
Proper tissue homeostasis is dependent on bidirectional rather
than unidirectional communication between cells. It is therefore
reasonable to expect that an exchange of signaling molecules
between non-irradiated and irradiated cells occurs (Goldberg and
Lehnert, 2002; Chen et al., 2011; Widel et al., 2012; He et al.,
2014). Indeed, the first observation of bidirectional communi-
cation between cells was seen by Mackonis et al. (2007), who

reported an increased rate of survival of cells receiving a high
radiation dose when their nearby cells received a low radiation
dose. This interesting observation was termed a type III effect.
Later on Chen et al. (2011) showed that there is a decrease in
micronuclei formation and apoptosis in irradiated cells when co-
cultured with non-irradiated cells. However, although the mech-
anisms of a reciprocal bystander effect are not yet clear, recently
He et al. (2014) used co-culture of irradiated macrophages and
non-irradiated hepatocytes to postulate that cAMP released from
bystander hepatocytes could lead to a decreased micronuclei
formation in irradiated macrophages. These studies suggest that
reciprocal communication is important to react to external dam-
age in an efficient and flexible manner. Interestingly, incorpo-
ration of both bystander and reciprocal bystander responses
suggests the presence of intercellular feedback loops that may
augment responses in both damaged and non-damaged cells.

p53 IN THE BYSTANDER RESPONSE
One of the promising candidates that can function as a connecting
link between intrinsic and extrinsic signals is the p53 protein.
Apart from cell autonomous responses, such as activation in
response to DSBs in bystander cells, p53 also plays a role in
transmission of the bystander response (Lorimore et al., 2013).
In particular, cytochrome C release from damaged cells has been
shown to be involved in RIBE in a p53-dependent manner,
suggesting that p53 can both transmit and respond to RIBE
(He et al., 2011). The oscillatory behavior of p53 over time has
attracted the attention of modeling efforts to predict the potential
outcome on cell fate (Lev Bar-Or et al., 2000; Geva-Zatorsky
et al., 2006; Wee et al., 2009). A recent study based on mathe-
matical modeling proposed that cytochrome C could couple the
p53 oscillatory behavior in damaged and non-damaged cells to
enhance the robustness and sustainability of p53 pulses (Kim and
Jackson, 2013). Although this model needs further validation in
an experimental setup, a reciprocal bystander effect imposed by
cytochrome C on p53 pulses may impact on cell fate decisions, as
p53 oscillations favor resumed proliferation rather than cell cycle
exit (Purvis et al., 2012).

CONCLUSION
As both DNA repair and cell cycle checkpoint maintenance is not
perfect, the occurrence of DNA damage to a cell constitutes a
risk for establishment and propagation of genomic changes. By
forcing a cell to permanently withdraw from the cell cycle, the risk
associated with such changes can be reduced. Indeed, a permanent
cell cycle exit is suggested to function as a tumor barrier after
oncogene-induced DNA damage in S phase (Bartkova et al.,
2006; Di Micco et al., 2006), a phase that may be particularly
susceptible for RIBE (Burdak-Rothkamm et al., 2007). However,
the determinants for when cells exit the cell cycle are not clear.
Interestingly, p53, the key regulator of cell cycle exit may both
modulate and respond to bystander communication. This opens
up for the possibility that feedback within a population impacts
on whether cell cycle exit occurs (Figure 1).

The original definition of a checkpoint is a mechanism that is
checking to see that the prerequisites (for a process as cell cycle
progression) have been properly satisfied (Hartwell and Weinert,
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FIGURE 1 | In the presence of DNA damage, cells either pause or
terminally exit the cell cycle. As DNA repair and cell cycle checkpoint
maintenance are not always accurate, resumption of proliferation after a cell
cycle pause may lead to propagation of mutations. Bystander
communication forms an intercellular feedback that may contribute to
whether resumption of proliferation may occur.

1989). A growing body of evidence suggests that upon damage a
cell changes its microenvironment and spreads a signal to neigh-
boring cells to communicate that damage is inflicted. Whether
the spread of a signal from a damaged cell is a call for help or a
warning is still not clear. The spread is likely to contribute to an
effective population response and to assist to eliminate severely
damaged cells. However, how cell intrinsic and cell extrinsic
pathways interact to determine the fate of a damaged cell remains
unclear. Nonetheless, the existence of cell–cell communication
affecting DDR pathways calls for caution in evaluating experi-
ments without controlling the local environment, as factors as cell
confluence may impact on experimental outcome.

OUTLOOK
The bystander response, as a cause of genome instability, is
implicated in induction of mutations leading to secondary cancers
(Coates et al., 2008; Lorimore et al., 2008; Mancuso et al., 2008).
In contrast to partial or total gene deletion in directly irradiated
cells, bystander cells show primarily point mutations (Huo et al.,
2001). Thus, surrounding cells may receive a more subtle genomic
change that may promote survival. Early tumor development is
accompanied by DNA damage also in the absence of treatment,
where activation of a DDR can precede p53 mutations and defects
in DNA damage signaling (Bartkova et al., 2005; Gorgoulis et al.,
2005). Whether a bystander effect may contribute to increase
malignant transformation during tumorigenesis remains to be
studied. However, it is possible that a group of early tumor cells
may not only collectively enhance the amount of DNA damage
per cell, but may also impact on whether proliferation will be
resumed. Due to the non-perfect DNA repair and checkpoint
maintenance, such resumed proliferation may increase the risk for
malignant transformation.

p53 and its associated pathways are altered in more than half
of all human cancers, likely reflecting the importance of p53 for
cellular fate. It is tempting to speculate that alteration in the
p53 pathway can give flexibility to a cell to respond to different
extrinsic signals and to better adapt to the environment. Under-
standing how the bystander effect couples to cell fate decision may
impact on risk assessment and indicate novel targets to increase
the efficiency of chemo- and radiation therapy.
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