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Circadian coordination of metabolism, physiology, and neural functions contributes to
healthy aging and disease prevention. Clock genes govern the daily rhythmic expression
of target genes whose activities underlie such broad physiological parameters as
maintenance of redox homeostasis. Previously, we reported that glutathione (GSH)
biosynthesis is controlled by the circadian system via effects of the clock genes
on expression of the catalytic (Gclc) and modulatory (Gelm) subunits comprising
the glutamate cysteine ligase (GCL) holoenzyme. The objective of this study was to
determine whether and how aging, which leads to weakened circadian oscillations,
affects the daily profiles of redox-active biomolecules. We found that fly aging is
associated with altered profiles of Gclc and Gclm expression at both the mRNA
and protein levels. Analysis of free aminothiols and GCL activity revealed that aging
abolishes daily oscillations in GSH levels and alters the activity of glutathione biosynthetic
pathways. Unlike GSH, its precursors and products of catabolism, methionine, cysteine
and cysteinyl-glycine, were not rhythmic in young or old flies, while rhythms of the
glutathione oxidation product, GSSG, were detectable. We conclude that the temporal
regulation of GSH biosynthesis is altered in the aging organism and that age-related loss
of circadian modulation of pathways involved in glutathione production is likely to impair
temporal redox homeostasis.

Keywords: aging, circadian clocks, redox, glutathione, Drosophila

Introduction

A growing body of evidence suggests that circadian coordination of metabolism, physiology, and
neural functions contributes to healthy aging and disease prevention (Reddy and O’Neill, 2010).
Indeed, genetic or environmental disruption of circadian rhythms has been shown to lead to pre-
mature aging and age-related pathologies (Kondratova and Kondratov, 2012). From a molecular
perspective, the clock genes encode a set of transcriptional regulators whose daily fluctuations dic-
tate the rhythmic expression of their target clock-controlled genes (CCGs). Several genome-wide
studies performed around the clock suggest that a substantial fraction of genes are expressed rhyth-
mically in different tissues of flies and mice (Hughes et al., 2012; Koike et al., 2012; Rodriguez et al.,
2013). CCGs often constitute a rate-limiting step in pathways involved in metabolism, energy
balance, DNA-damage repair, and xenobiotic detoxification in both mammals (Claudel etal.,
2007; Green et al., 2008; Kang et al., 2009) and Drosophila (Hooven et al., 2009; Beaver et al., 2010;
Xu et al., 2011). Moreover, clock gene mutations have been shown to have negative consequences
in various biological processes and to shorten life span (Kolker et al., 2004; Khapre et al., 2010;
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Robertson and Keene, 2013). For example, mice lacking the clock
protein BMAL1 (homolog of fly CYC protein) display several
symptoms of aging (Kondratov et al., 2006) and show increased
neurodegeneration (Musiek et al., 2013). In flies, a null muta-
tion in the clock gene period (per) leads to shortened life span,
accelerated functional decline and increased neuronal degenera-
tion during aging, accompanied by faster and more pronounced
accumulation of oxidative damage (Krishnan et al., 2009, 2012).
While the connection between the circadian system and aging is
relatively well-established, efforts to discern the molecular mech-
anisms underlying these connections have only recently been
initiated.

One of the emerging roles of circadian clocks concerns the
regulation of antioxidant defenses and cellular redox (Patel et al.,
2014). Studies in Drosophila have shown that the levels of reac-
tive oxygen species (ROS) and oxidatively damaged (carbony-
lated) proteins fluctuate in a daily rhythm in heads of wild type
flies and that susceptibility to oxidative challenge is gated by
the circadian clock (Krishnan etal., 2008). Recently, a clock-
gated response to oxidative injury and regulation of the antiox-
idant genes was also reported in mice (Pekovic-Vaughan et al.,
2014). Circadian regulation was also implicated in oxidative
metabolism through rhythmic control of NAD™ biosynthesis
(Peek et al., 2013). Additionally, daily transcriptional rhythms
in genes regulating redox and response to oxidative stress
have been demonstrated in brain, liver, lungs, and other
murine tissues (Wang et al., 2012; Patel et al., 2014). In particu-
lar, daily changes in glutathione (GSH) levels, a central player
in the antioxidant defense network and redox-sensitive signal-
ing, along with daily changes in the levels of GSH-biosynthetic
gene products, were observed in different mammalian organs
(Hardeland et al., 2003; Pekovic-Vaughan etal.,, 2014). These
changes were ascribed to clock-gene regulation of GSH syn-
thesis and homeostasis, mediated via the NRF2 signaling path-
way (NRF2 signaling; Pekovic-Vaughan et al., 2014) or via the
microRNA-controlled rhythms in GSH levels (Kinoshita et al.,
2014). We recently reported that the diurnal fluctuations of
GSH levels in Drosophila were dependent on the rhythmic
expression of genes encoding the catalytic (Gcle) and mod-
ulatory (Gclm) subunits of glutamate cysteine ligase (GCL),
the rate-limiting enzyme in GSH biosynthesis (Beaver et al.,
2012). Furthermore, we reported that the expression of GstD1,
which utilizes GSH in cellular detoxification, is also controlled
by the clock, based on the observation that these rhythms
were abrogated in arrhythmic clock gene mutants (Beaver et al.,
2012).

It is notable that multiple hypotheses of aging postu-
late an important role for redox state dynamics, and this
involvement is buttressed by several lines of evidence. Thus,
over-expression of genes, such as GCL, Glucose 6 Phosphate
Dehydrogenase, and Peroxiredoxin 5, foster a pro-reducing
cellular environment, enhance GSH production and con-
fer strong positive effects on longevity (Orretal, 2005;
Legan et al., 2008; Radyuk et al., 2009). GSH-dependent detoxi-
fication responses mediated by glutathione S-transferase (GST)
activity have also been shown to promote beneficial longevity
effects (Sykiotis and Bohmann, 2008). Despite growing evidence

that circadian and antioxidant/redox systems both modu-
late longevity, the possible connections between these sys-
tems remain to be fully understood. In order to gain insights
into potential links between the clock, redox and aging,
we investigated the fate of redox-related rhythms in aging
Drosophila.

We determined recently that functional clocks are necessary
for rhythmic transcription of Gcle and Gelm and for rhyth-
micity in GSH levels in young male flies, as the rhythms of
these molecules were abolished in the clock mutants cyc’! and
perm (Beaver et al.,, 2012). It was also established that clock
gene oscillations become significantly reduced in heads of old
males (Luo etal,, 2012; Rakshit et al., 2012); however, profiles
of CCGs have not been studied during aging. To address this
question, we investigated how age-related weakening of the
clock gene oscillations affects daily profiles of factors involved
in glutathione synthesis and metabolism. We report that the
rhythms in cellular redox observed in young flies are significantly
altered in the heads of old flies, leading to compromised GSH
homeostasis.

Materials and Methods

Fly Rearing and Strains

Flies were raised on standard cornmeal-yeast-molasses diet at
25°C under a 12 h light/12 h dark (LD) regimen (where Zeitgeber
time (ZT) 0 is time of lights on and ZT12 is time of lights
off). Light intensity was kept at ~1500 lux. Mated males were
separated 1-2 days after emergence. Aging males were kept
in inverted 8 oz round bottom polypropylene bottles (Genesee
Scientific, San Diego, CA, USA) on 35 mm petri dishes (BD
Falcon, San Jose, CA, USA) containing 15 ml of diet. Fresh diet
was provided three times a week. All experiments were completed
using the w!!18 strain.

Quantitative Real-Time PCR

Fly heads were separated using metal sieves frozen with
liquid nitrogen. RNA was extracted from 50 heads, which
were homogenized using a Kontes handheld motor in Trizol
(Life Technologies, Grand Island, NY, USA) followed by
ethanol precipitation. Samples were treated with DNAse
(Takara, Mountain View, CA, USA). DNAse was deactivated
by phenol/chloroform extraction, and samples were purified
with sodium acetate. Synthesis of cDNA was achieved with
iScript ¢cDNA synthesis kit (Bio-Rad, Hercules, CA, USA)
according to the manufacturer’s protocol. Quantitative real-
time PCR was performed with Power SYBR Green Master
Mix (Life Technologies) on an Applied Biosystems Step-
One Plus real-time machine. Primers were obtained from
IDT Technology (Coralville, IA, USA). All primers used
in this study had efficiencies >96%, and their sequences
have been published (Beaveretal., 2012). Data were normal-
ized to rp49 (Lingand Salvaterra, 2011) as indicated in the
results and analyzed using the standard 27 24€T method.
Statistics were calculated using GraphPad Prism 6 (San Diego,
CA, USA).
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Immunoblot Analysis

Samples were collected at 4 h intervals from at least 10 heads
obtained from w!!!8 flies separated using sieves frozen with liq-
uid nitrogen, and processed as described Beaveretal. (2012).
Briefly, samples in the amount of ~5 pg of total protein
were resolved by PAGE and the immunoblots were devel-
oped with antibodies generated against recombinant GCLc and
GCLm proteins (Orr et al., 2005) and anti-actin antibodies (MP
Biomedicals, Santa Ana, CA, USA) to control for loading.
The intensity of signals was analyzed by densitometric scan-
ning, using the digital imaging analysis system with AlphaEase
Stand Alone Software (Alpha Innotech Corp., San Leandro, CA,
USA).

GCL Enzyme Activity and Free Aminothiols
Levels

Glutamate cysteine ligase enzyme activity was measured essen-
tially as described Toroser and Sohal (2005) and Beaver et al.
(2012). Linearity of time, protein and substrate concentrations
were determined in pilot experiments. GCL activity reaction
was performed in duplicate immediately after protein prepa-
ration, as suggested (Toroser and Sohal, 2005). The reaction
was terminated by adding an equal volume of freshly prepared
10% (w/v) meta-phosphoric acid (MPA). The GCL inhibitor L-
buthionine-§,R-sulfoximine was used to determine specificity of
the assay. After GCL reaction, samples were immediately ana-
lyzed by HPLC or stored at -80°C for no longer than 24 h before
analysis.

Free aminothiol content in fly heads was quantified by HPLC
as described Melnyk et al. (1999). Briefly, 50 heads were homog-
enized in 200 pl of freshly prepared ice-cold 5% MPA, incubated
for 30 min on ice and centrifuged at 16000 g for 20 min at
4°C. Supernatants were filtered through 0.22 pm PTFE mem-
brane syringe filter and immediately analyzed by HPLC or
stored at -80°C. The amount of protein in the precipitate was
determined using the DC protein assay (Bio-Rad Laboratories,
Hercules, CA, USA) according to manufacturer’s recommenda-
tions (Bulletin 1770 US/EG Rev A, Bio-Rad).

Preparations from GCL assays and free aminothiol extrac-
tions were resolved by HPLC under isocratic elution using a
reverse-phase C18 Gemini-NX (3 pm, 4.6 x 150 mm) col-
umn (Phenomenex, Torrance, CA, USA) with the flow rate
of 0.75 ml/min. The mobile phase contains 2% (v/v) ace-
tonitrile, 25 mM monobasic sodium phosphate, 1.5 mM 1-
octane sulfonic acid as ion-pairing agent, pH 2.7, adjusted
with ortho-phosphoric acid. Aminothiols were detected using
the 5600 CoulArray electrochemical detector equipped with
four-channel analytical cell (ESA Inc., Chelmsford, MA, USA).
Increasing potentials of 4100, 4200, +750, +850 mV in
channels 1-4, respectively, were used for measuring y-Glu-
Cys in GCL activity assay samples. y-Glu-Cys was detected
in channel 3 at 4750 mV. Potentials of +550, 4600, 4750,
and 4875 mV were used for detection of aminothiols in
extracts. Each sample was injected twice. Calibration stan-
dards were prepared in 5% (w/v) MPA and injected at regular
intervals.

Results

Age-Related Changes in GCLc and GCLm
Profiles

To determine how aging affects clock-controlled Gelc and Gelm
transcription, we compared around the clock profiles of these
genes in heads of young and old white-eyed flies (w, strain w!!!8).
In prior studies involving young Canton S flies we detected
strong diurnal patterns in both Gclc and Gelm mRNA levels
and less pronounced, albeit significant rhythmic fluctuations
in proteins levels (Beaver etal., 2012). In this study, we con-
firm that a similar pattern of daily changes in the expression
of timeless (tim), Gclc, and Gclm was observed in young w!!!8
flies (Figure 1, Beaver et al., 2012). Comparison of young and
old ages showed that old flies had a significantly lower peak
expression of the clock gene tim compared to their young coun-
terparts (Figure 1A); this dampening of the amplitude is a typical
signature of the aging of the clock mechanism (Rakshit etal.,
2012). The young flies had a unimodal rhythm of Gclc expres-
sion with a distinct peak at ZT20, similar as previously reported
in Canton S flies (Beaveretal.,, 2012). Surprisingly, levels of
Gcle mRNA were significantly higher in old flies at ZT4, ZT8,
and ZT12, thus abolishing the trough that was observed in
young flies (Figure 1B). The expression of Gclm was signifi-
cantly rhythmic in young flies with elevated expression at ZT
8-16 (Figure 1C) similar to that previously reported in Canton S
flies (Beaver et al., 2012). In contrast to Gclc, expression of Gelm
did not increase with age, but even slightly decreased reaching
significance at ZT16, and the expression remained significantly
rhythmic in old flies (Figure 1C). Changes in GCLc and GCLm
protein expression as well as the GCLc/GCLm ratio in w flies par-
alleled those reported in Canton S flies (Figures 2A,B and 3A,
Beaver et al., 2012). Thus, a significant reduction of GCLc was
observed at ZT16 in young flies, but old flies showed signifi-
cantly elevated protein level at this time as well as most other
time points (Figures 2A,C). In young flies, the levels of GCLm
protein were elevated from ZT4 to ZT16, with a significant
peak at ZT16, whereas in 50 Da old flies, there was no signif-
icant rhythm (Figures 2B,D). The relatively weak albeit statis-
tically significant 24-h rhythmic expression patterns of GCLc
and GCLm observed in young flies were also reflected in the
rhythmic variation in their ratio; likewise absent in old flies
(Figure 3A).

We next measured the activity of GCL holoenzyme in
homogenates of young and old w flies collected around the
clock. In agreement with GCLc expression patterns (Figure 2A)
and variations in the GCLc/GCLm ratio (Figure 3A), a signif-
icant oscillation of GCL enzyme activity was found in young
w flies (Figure 3B) although with a lesser amplitude com-
pared to Canton S flies (Beaveretal, 2012). In old w flies,
GCL enzyme activity displayed a very different daily pat-
tern than in young flies (Figure 3B), and the average enzyme
activity was significantly higher (Figure3D). This is con-
sistent with the observation that both GCLc protein lev-
els and the GCLc/GCLm protein ratio exhibited significantly
higher levels in the old flies relative to the young ones
(Figures 2A,C and 3A,C).
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in overall GSSG levels in the heads of aging flies (Figures 4B,D,

Circadian Characteristics of Free

Aminothiols Determined in Heads of Young

and Old Flies

Previously, we reported that mitochondrial H,O, production
and GSH concentrations fluctuate in a clock-dependent manner
showing opposite profiles; thus at ZT20, the levels of H,O; in fly
heads reached their lowest point and those of GSH were at their
highest, defining a pro-reducing peak, while at ZT8 H,0; lev-
els were at their highest and GSH at their lowest (Krishnan et al.,

Beaver et al., 2012).

Given that the rhythmicity of GSH levels in young flies
was absent in old flies, we also investigated the daily profiles
of aminothiols, that are involved in glutathione synthesis and
metabolism. Changes in methionine, cysteine, and cysteinyl-
glycine (Cys-Gly) levels were measured in heads of w flies
collected around the clock. Unlike GSH, the glutathione pre-
cursors, cysteine and methionine, as well as Cys-Gly, which
is a break-down product of GSH, did not display rhyth-
mic fluctuations in either young or old flies (Figure5). On
the other hand, there were statistically significant age-related
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differences in these compounds. Levels of free methion-
ine were significantly lower around the clock in old flies
(Figures 5A,D) while levels of cysteine remained unchanged
(Figures 5B,E). In contrast to methionine, the levels of Cys-
Gly, were significantly higher in the heads of old flies (~64%,
Figures 5C,F).

Discussion

In this study we investigated a role for the circadian sys-
tem in regulating redox in the context of organismal aging.
We have determined that the temporal regulation of the
redox-active biomolecules, which is modulated by the circa-
dian clocks in young flies, is significantly altered in old flies
with dampened clocks. Our results demonstrate that the cir-
cadian clocks regulate redox homeostasis via their effects on
glutathione biosynthetic pathways, specifically via transcrip-
tional control of the genes involved in de novo GSH syn-
thesis, and that age-related reduction of the circadian clock
oscillations in old flies is associated with compromised redox
rhythms.

Cellular redox homeostasis largely relies on the redox-active
compound, glutathione, which is present at concentrations many

fold higher compared to concentrations of other redox-active
molecules (Rebrin et al., 2004). We had previously shown that
the circadian clocks modulate the de novo synthesis of GSH
via transcriptional control of GCLc and GCLm, the subunits
that comprise the GCL holoenzyme (Beaver et al., 2012). In this
study we broadened the investigation of the relationship between
clock and redox to determine the levels of other redox-active
molecules, involved in glutathione synthesis and metabolism.
Synthesis of the tri-peptide glutathione, composed of glutamate,
cysteine and glycine residues, depends not only on the activity of
biosynthetic enzymes, but also on the availability of substrates,
where cysteine is a limiting factor. The synthesis of cysteine
is mediated by the trans-sulfuration pathway, using methion-
ine as the source (Vitvitsky etal., 2003), and this pathway is
also active in flies (Kabil et al., 2011). Consequently, we investi-
gated around the clock expression profiles of both cysteine and
its precursor methionine. As neither cysteine nor methionine
exhibited evidence for diurnal rhythms in either young or old
flies, it appears that the contribution of the trans-sulfuration
pathway to glutathione homeostasis is not regulated by circa-
dian clocks. Consistent with our findings, methionine was found
to be arrhythmic in the study of the human metabolome of
blood plasma and saliva (Dallmann etal., 2012) although the
analyses were performed with healthy but older (57-61 years)
males, where age-dependent effects might have influenced
the oscillations. In contrast, mouse hepatic metabolome and
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transcriptome studies revealed rhythmicity in metabolic sub-
pathways, where oscillations in glutathione were ascertained by
oscillations in its precursors, cysteine and methionine, albeit with
alower amplitude for the latter (Eckel-Mahan et al., 2012). In the
same study, hepatic rhythmicity was also observed in the concen-
trations of Cys-Gly, which peaked at 9 h together with cysteine
and methionine. In contrast, analysis of the Drosophila heads
revealed no cycling in the concentrations of Cys-Gly (Figure 5C),
consistent with the arrhythmic behavior of cysteine and methion-
ine (Figures 5A,B). Given that Cys-Gly also serves as a signature
of glutathione degradation, interpretation of these results are
somewhat tentative. Nevertheless, our results revealed no rhyth-
micity in cysteine, methionine and Cys-Gly, and suggest that, at
least in flies, the pathways responsible for the supply of sulfur-
containing precursors for glutathione synthesis are not regulated
by the circadian clocks (Figure 6). It should be noted that the
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(50 Da) w778 males. Results are average values + SEM obtained from three
independent bio-replicates (total N = 6). Data were analyzed by a 2-way
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FIGURE 6 | Synthesis and metabolism of glutathione and its regulation
by the circadian system. GSH synthesis occurs via two sequential
reactions: (i) ligation of L-glutamate and L-cysteine is catalyzed by the activity
of GCL, and (ji) the addition of glycine to y-glutamylcysteine by the activity of
glutathione synthetase. GCL is a heterodimer composed of a catalytic subunit
(GCLc) and a modulatory subunit (GCLm). Degradation of GSH involves
cleavage by trans-peptidase, followed by the cleavage of cysteinyl-glycine by
a dipeptidase, forming Cys-Gly and cysteine respectively. Cysteine is supplied
via trans-sulfuration pathway and as a product of GSH degradation. GSH is
oxidized by HyO» to its disulphide, GSSG. Methionine is the precursor for
cysteine synthesis, in which homocysteine is an intermediate. GSH is also
used for detoxification in reactions catalyzed by GSTs, which expression is
also rhythmic (Beaver et al., 2012). A clock image denotes genes regulated by
the circadian clocks. Cycling components of the glutathione synthesis and
utilization systems are shown in gray.

mammalian liver is a homogenous tissue with a strong food-
entrained clock mechanism, while fly heads are enriched in ner-
vous tissues with clocks entrained by light-dark cycles. Moreover
recent analysis of the circadian transcriptome shows that liver
possesses the highest number of rhythmic genes, while brain has
the lowest (Zhang et al., 2014).

Another important finding of our study is that the diurnal
fluctuations in GSH levels were not followed by similar changes
in the products of its degradation (Cys-Gly) and oxidation
(GSSG). While Cys-Gly was completely arrhythmic (Figure 5C),
changes in GSSG profile did not mirror those observed for GSH
(Figures 4A,B). Even though both shared the same slow drop-oft
from ZT0 to ZT8 as well as the ZT8 trough, their peaks were quite
distinct (ZT12 for GSSG and ZT20 for GSH). Also in old flies, a
certain degree of rhythmicity is maintained for GSSG in contrast
to the absence of any diurnal GSH patterns.

As mentioned above, circadian oscillations of GSH and GSSG
in the mouse liver were recently reported and displayed an
opposing pattern at ZT9 where GSH exhibited a trough and
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GSSG exhibited a peak (Eckel-Mahan et al., 2012); the decrease
in GSH levels was assumed to come largely at the expense of
GSSG formation. Our results suggest that this is not the case
in Drosophila heads, although the observed differences may be
related to the specificity of phase of rhythms in different tis-
sues of different species. This differential oscillation of GSH and
GSSG also raises some doubt about the functional relevance
of the GSH:GSSG ratio and the redox potential in mediating
redox-dependent responses, which was recently critically dis-
cussed (Flohe, 2013). Indeed, the ratio of GSSG and GSH may
reflect little else than the steady state levels of these molecules,
which are maintained by independent enzymatic processes of
GSH metabolism and synthesis. In this light, concentrations of
GSH account for more than 97% of the total non-protein glu-
tathione pool, while GSSG constitutes only ~3% (Figure 4).
Consequently, the observed circadian changes in GSSG levels
would constitute a trivial change in GSH levels, suggesting that,
rather than mediating redox signaling, GSH is predominantly
used by antioxidant and detoxification enzymes, e.g., GSTs and
peroxidases, as well as in reactions of protein modification (glu-
tathionylation; Manevich et al., 2004; Tew and Townsend, 2012;
Zhang and Forman, 2012; Janssen-Heininger et al., 2013).

Another important finding of this study is that the rhythms
in glutathione levels observed in young flies were lost in old flies
(Figure 4), presumably due to the loss of diurnal fluctuations of
GCLc, GCLm as well as GCL activity, in response to the weak-
ening of the circadian clocks (Figures 1-3). In contrast, GSSG
rhythms were largely preserved in older flies, suggesting that the
daily changes in glutathione disulfide levels are supported by
enzymatic reactions that are not under clock control.

Despite loss of circadian regulation, average daily levels of
GSH remained unchanged during aging (Figure 4C), while the
levels of GSSG were slightly higher, mainly due to lesser drop
in the early morning (Figures 4B,D). In Drosophila, it has been
established that whole body GSH levels were either relatively con-
stant (Rebrin et al., 2004) or slightly decreased during aging while
GSSG rose 2-3 fold (Rebrin and Sohal, 2006). Similar age-related
changes were documented in different mammalian tissues with
the most significant reduction in GSH and accumulation of GSSG
in the brain, indicative of a more pro-oxidative cellular envi-
ronment (Suh et al., 2004b; Zhu et al., 2006; Rebrin and Sohal,
2008). As such changes in GSH and GSSG were frequently
associated with increases in enzyme activities related to GSH
usage, the relatively steady glutathione concentrations observed
in the heads of old flies could point to less efficient GSH
utilization.

The rather unexpected finding of our study is that the expres-
sion of Gclc at both mRNA and protein levels significantly
increased in the heads of old flies, and this increase was associ-
ated with about 25% higher average daily GCL activity. Despite
this increase, the average daily levels of GSH remained unchanged
suggesting a loss in GCL catalytic efficiency or an age-related
increase in GSH utilization. One possible scenario is that the effi-
ciency of GSH synthesis can be induced by oxidative stress, in part
through the well-documented increase in H,O, signaling that
accompanies aging (Sohal and Dubey, 1994; Chen et al., 2005;
Franklin et al., 2009). For instance, post-translational control

of y-glutamylcysteine (y-Glu-Cys) synthesis is influenced by
oxidative stress, which can dramatically affect formation of
GCL holoenzyme and its stabilization (Franklin etal., 2009;
Krejsa et al., 2010). Consistent with induction of GCL by stress,
we previously reported that per-null mutants with disrupted
clock displayed arrhythmic as well as elevated GCL activity
(Beaver et al., 2012), which was also reflected in arrhythmic and
elevated ROS levels relative to the control (Krishnan et al., 2008).
It should be noted that previous studies comparing GCL activ-
ity and GSH levels in young and old rats showed a decrease of
both parameters in liver (Suh et al., 2004b), while in aging brain
and heart GSH decreased but GCL activity remained unchanged
(Suh etal., 2004a), pointing again to catalytic deficiency of the
enzyme.

Other aminothiols that did not show cycling in young flies also
remained arrhythmic in old flies, but displayed changes in their
steady state levels. Consistent with previous reports, the amounts
of Cys-Gly were ~50% higher in older flies (Rebrin et al., 2004;
Rebrin and Sohal, 2006, 2008). Cys-Gly, derived from the break-
down of glutathione, is required for GSH synthesis as a precursor
of cysteine, but at the same time it is also a prooxidant gener-
ated during the catabolism of glutathione. The requirement of
Cys-Gly for GSH synthesis justifies its increase with age, as the
tissues require an increased supply of precursors for GSH biosyn-
thesis in older flies. However, we did not observe an increase
in cysteine levels during aging. A more plausible explanation is
that the increase in Cys-Gly is indicative of an increase in oxida-
tive stress and GSH degradation. In agreement with this view,
the average daily levels of methionine were about 35% lower in
old flies suggesting the likelihood of an increase in oxidation
of methionine to methionine sulfoxide by ROS rather than an
increase in methionine consumption for cysteine biosynthesis.
Together, these changes indicate a shift in redox homeostasis
in the heads of older flies, consistent with the earlier reports
in whole flies (Rebrin et al., 2004). Similar alterations in the
redox components were also indicative of heightened oxidative
stress in pathologies like systemic lupus erythematosus (Wu et al.,
2012).

To conclude, this study revealed that the age-related dampen-
ing of circadian rhythms in clock genes underlie the age-related
loss of rhythmicity of cellular redox.
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