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The Illumina Infinium HumanMethylation450 BeadChip is frequently used in epigenetic

research. Besides quantile normalization there is currently no standard method to

normalize the data between arrays. We describe some properties of the data generated

by this platform and present a normalization method based on local regression. We

compare the performance of this method with other commonly used approaches in three

benchmarks (correlation between 21 pairs of technical replicates, detection of differential

methylation and correlation of methylation levels for smoking-associated CpG sites with

smoking behavior of 655 participants of an epidemiological study). Results indicate that

the proposed method improves reproducibility, whereas some commonly used methods

can have adverse effects.
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1. Introduction

DNA methylation (DNAm) is the modification of cytosine in CpG dinucleotides to
5-methylcytosine. DNAm is involved in cell differentiation, regulation of gene expression and
development of cancer (Dawson and Kouzarides, 2012; Hackett and Surani, 2013). Methylation
levels of specific CpG sites in blood samples have been found to reflect lifestyle factors (Lim and
Song, 2012; Zhang et al., 2014) and have the potential to be used as biomarkers for early detection
of cancer (Mikeska and Craig, 2014). In search of biomarkers, one is typically looking for differ-
ential methylation between two groups defined by a certain outcome. When measuring DNAm in
blood samples, the sought-after changes can be small in magnitude. Therefore, obtaining precise
measurements is of particular importance.

If DNAm is measured with high-density microarrays, there is often systematic bias between
arrays due to a variety of variable experimental conditions such as concentrations of reagents or
temperature, especially when the experiments are carried out in several batches (Lazar et al., 2013).
Relevant biological signals may be masked by technical differences, also called batch effects and
there are two fundamental ways to deal with them. One possibility is to consider batch effects in the
statistical analysis, for instance by introducing a dummy variable for the batch in a linear model.
However, batch effects may alter the data in complicated ways for which the statistical model in
mind may not be adequate. It might therefore be preferable to remove these technical differences
in a preprocessing step.

We have measured whole blood samples from participants of an epidemiological study with
the Infinium HumanMethylation450 BeadChip (450K). In the following we describe a nor-
malization method based on local regression, which we use to remove technical differences
and to improve detection of relevant signals. We compare the performance of this method
with other commonly used methods, which were previously reported to perform best (Mara-
bita et al., 2013; Fortin et al., 2014; Wu et al., 2014), in three benchmarks using these data.
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2. Methods

2.1. The Chip
The 450K chip covers approximately 485,000 CpG sites out of
the 28 million CpG sites in the human genome (Stirzaker et al.,
2014). The design of this chip has been described in detail else-
where (Bibikova et al., 2011). In the following we would like to
point out some important properties of the data generated by this
platform and introduce some notation.

• The chip uses single-base-extension of matched probe/target
duplexes with dye-linked nucleotides and resultant fluores-
cence to measure abundance of unmethylated and methylated
DNA molecules.

• The chip uses two different probe types, Infinium I and
Infinium II (from now on abbreviated with P1 and P2). P1 is
used for CpG dense regions like CpG islands, which are mostly
unmethylated, P2 is used for CpG sparse regions, which are
mostly methylated, so there are biological differences between
the genomic loci covered by P1 and P2 (Eckhardt et al., 2006;
Dedeurwaerder et al., 2011).

• For P1 the abundance of methylated and unmethylated DNA
molecules of the same locus is measured in the same color
channel, but with different beads/probes. By contrast, for P2
these molecules bind to the same beads, but are linked with
different dyes: the unmethylated abundance is measured in
the red color channel (Cy5) whereas the methylated abun-
dance is measured in the green channel (Cy3). In the fol-
lowing, the intensity for methylated molecules from genome
locus i and sample z is referred to by Miz , Uiz denotes the
intensity for unmethylated molecules. P1 consists of the sub-
sets P1g and P1r , the probes which are measured in the
green or red color channel, respectively. Each can be fur-
ther divided in the set of methylated or unmethylated signals
(PM1g, P

U
1g, P

M
1r , P

U
1r, P

M
2 , PU2 ).

• One cannot compare Miz and Mi′z for i /= i′, due to the dif-
ferent binding affinities of the target molecules to the accord-
ing probes. Additionally, one cannot compare Miz and Miz′

for z /= z′, because the concentrations of DNA and dyes vary
from sample to sample. Both statements equally apply for the
U-signals.

• Instead of comparing absolute signal intensities within and
between samples onemay calculatem-valuesmiz = ln Miz

Uiz
. For

any given ratio of methylated to unmethylated molecules, miz

should not change with binding affinity or DNA concentra-
tion. Alternatively, one can compute β-values βiz =

Miz
Miz+Uiz

,
these fall in the range [0,1]. m- and β-values can be mutually

transformed (βiz =
emiz

emiz+1 ;miz = ln βiz
1−βiz

).

• Nevertheless, miz may still not be comparable between probes
and between samples. Besides measurement errors, theM and
U signals contain noise resulting from binding of off-target
DNA molecules. In the pool of millions of species of DNA
molecules, a lot of them share some non-negligible sequence
similarity leading to cross-hybridization and changed equilib-
ria (Horne et al., 2006). Approximately 6% of the probes have
cross-reactive targets and these produce many false associa-
tions (Chen et al., 2013). If the noise for probe i is identically

distributed between samples z and z′, thenmiz andmiz′ are still
comparable.

• For most probes there are replicates (multiple beads of the
same type) on the chip. The software from the manufacturer
reports summarized intensities.

• After amplification the abundance of target molecules exceeds
the number of probe sequences on the chip.

2.2. Normalization
There are methods which focus on normalizing the m-values of
P1 and P2 to each other within the arrays (Maksimovic et al.,
2012; Teschendorff et al., 2013). This should be done carefully,
as there are biological differences between the sites covered by the
different probe designs. This step might not be necessary if subse-
quent analysis is done at the individual probe level. For instance,
when computing p-values for single sites with the Wilcoxon-
Mann-Whitney test for two groups of samples, precise but not
accurate values are important. Also the t-test is invariant to scal-
ing and shifting of the input values. For the detection of differen-
tial methylation at locus i, bias does not matter if it is the same
for all samples. It is important to make m-values comparable
across samples/arrays by removing the systematic biases between
samples caused by batch effects.

A simple yet effective method is the quantile normaliza-
tion (QN) (Bolstad et al., 2003; Marabita et al., 2013). How-
ever, it is not clear if this method is adequate for this kind
of data. In the case of gene expression analysis the use of
QN is justified by the assumption that only a tiny fraction of
all genes is differentially expressed, therefore making the dis-
tribution of expression levels nearly equal, whereas the global
methylation level may vary. In the following we present an
approach which outperforms QN and is not based on such strong
assumptions.

The normalization method we describe is based on the two
plots shown in Figure 1. The left panel shows the raw Cy3 inten-
sities of all probes in P1g in a pair of technical replicates, the
right panel shows the same for P2. Probes are colored according
to their m-value in the first replicate. P1 exhibit an intensity-
dependent bias between the two replicates, for P2 the bias also
depends on the methylation of the targets. This violates one
assumption of QN if applied to intensities, i.e., the assumption
that the order of equally methylated targets does not change
between samples.

First we try to correct the intensity-dependent bias by per-
forming local regression on the intensity values. Second, we try
to correct the methylation-dependent bias for P2 by performing
a local regression on the m-values. Both times we use a set
of “housekeeping CpG sites” and a virtual array made up of
the medians over all samples as reference. The first step of the
procedure was described previously (Wang et al., 2012), with the
difference that we normalize both color channels separately and
use only a subset of the probes to learn the loess curve. The exact
steps are:

1. Adjust Cy3 intensities:

• Take a set E of CpG sites which should be equally methy-
lated in all samples z ∈ Z.
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FIGURE 1 | Systematic bias between a pair of technical replicates.

Raw Cy3 intensities from a pair of technical replicates from dataset A (see

section Benchmarks) for all probes in P1g (left panel) or P2 (right panel).

Probes with a m-value less than zero in the first replicate are plotted in black,

otherwise in red. Probes in P1 show an intensity-dependent bias between

the technical replicates, whereas for probes in P2 bias also depends on the

methylation of the targets: unmethylated probes are mostly above the gray

line, methylated probes below.

• Compute for each probe i ∈ E ∩ P1g a reference value
Si∗ = median(ln Siz), z ∈ Z. Siz can be an M or U signal.
These values make up a virtual reference array which we
use as baseline.

• For each sample z ∈ Z perform a local regression with
ln Siz as explanatory variable and ln Siz−ln Si∗ as dependent
variable to learn the loess curve fg .

• Compute the normalized intensities S′iz = Siz · e−fg (ln Siz).
Normalize the Cy3 intensities of P2 using fg as well. Esti-
mating a loess curve for P2 separately gives inferior perfor-
mance, maybe because the two sources of bias (intensity-
dependent, methylation-dependent) are entangled.

2. Adjust Cy5 intensities:

• Repeat above steps for P1r and the Cy5 intensities of P2.

3. Calculatem-valuesm′
iz based on normalized intensities.

4. Adjustm-values of P2:

• Take a set E of CpG sites which should be equally methy-
lated in all samples z ∈ Z.

• Compute for each probe i ∈ E ∩ P2 a reference value
mi∗ = median(m′

iz), z ∈ Z.
• For each sample z ∈ Z perform a local regression with m′

iz
as explanatory variable andm′

iz−mi∗ as dependent variable
to learn the loess curve f2.

• Compute the normalizedm-valuesm′′
iz = m′

iz − f2(m
′
iz).

Carrying out the above steps we get normalized m-values for
all probes. For the set E CpG sites covering the exons of a list of
housekeeping genes were used (Eisenberg and Levanon, 2013).
This set is likely to contain some variable CpG sites, but local
regression is robust against outliers. In total 843 probes for P1g ,
1879 for P1r and 5284 for P2 were used. A list of these probes
is provided in the supplement. In contrast to the situation for
cDNA microarrays, using housekeeping CpG sites for DNAm

arrays does not suffer from the fact that the expression levels
of these genes do not span the entire intensity range. There are
some extreme values not contained in the interval of raw signal
intensities or m-values of the reference array, but the numbers
are low. For dataset A (see below) only 12,245 measurements
(0.6h) are affected.

2.3. Benchmarks
To assess the performance of different normalizationmethods we
used 450K data from whole blood samples from participants of
the ESTHER study (Breitling et al., 2011). In the ESTHER study
patients aged between 50 and 74, who had a health check-up by
their general practitioner, were recruited. Questionnaires for doc-
tors and patients were used. These samples were combined to two
datasets. Dataset A consists of 21 pairs of technical replicates dis-
tributed over 12 96-well plates, while no pair was allocated on
the same plate. Dataset B consists of 655 samples (no replicates)
together with age and self-reported smoking behavior (only data
from current or never smokers were used) of the participants.
The ESTHER study was approved by the ethics committee of the
Medical Faculty of the University of Heidelberg and informed
consent was obtained from all patients.

The performance of different normalization methods was
evaluated in three benchmarks. The first benchmark tested if nor-
malization increases the correlation between technical replicates
of dataset A. As bothmeasures of methylation are heteroscedastic
(see Du et al., 2010 and Figure 2), we computed the correlation
for m- and β-values. The former highlight the performance for
mostly (un)methylated sites, the latter highlight the performance
for sites with intermediate methylation. Non-CpG probes and
probes located on the X and Y chromosome were excluded.

The second benchmark assessed which normalization method
worked best for detecting differential methylation. Dataset A was
splitted in half by splitting each pair of technical replicates up.
For both halves samples were grouped by sex and probes ranked
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FIGURE 2 | Heteroscedasticity of m-values. For a single 450K sample

from the ESTHER study with unsummarized intensities the standard deviation

and mean of single-bead m-values for probes in P2 with at least 20 beads on

the chip were computed.

according to their p-values from a two-sample t-test (using m-
values). We plotted the concordance between the two rankings
from both halves by calculating the overlap percentage of the top
k hits as done in Fortin et al. (2014). Again non-CpG probes and
probes located on the X and Y chromosome were excluded in
order to include QN in the benchmark. It does not matter for this
benchmark if probes show differential methylation only due to
cross-hybridization.

The third benchmark looked at known biomarkers for age
and smoking. Spearman correlations of the methylation lev-
els of three age-related CpG sites (Garagnani et al., 2012) with
chronological age of the participants in dataset B were computed.
Methylation of CpG site cg03636183 is strongly associated with
current and long-term smoking exposure (Zhang et al., 2014).
Spearman correlation of this biomarker with self-reported smok-
ing behavior in dataset B was computed. Smoking exposure was
assessed by three variables: smoking status with the categories
never smoker (n= 469) or current smoker (n= 186), cumulative
exposure (packyears) for current smokers, and the average num-
ber of cigarettes smoked per day (numcig) for current smokers.
A detailed description of the variable definitions and the study
population can be found in Zhang et al. (2014). For another 31
smoking-related sites [see Table 2 in Zeilinger et al. (2013)] Spear-
man correlations of methylation levels with smoking status were
computed. Normalization should increase absolute values of the
Spearman correlations.

We used .idat files for our analyses. All computations and sta-
tistical analyses were performed using R (RCore Team, 2014) and
Bioconductor (Gentleman et al., 2004). R code for the first two
benchmarks is provided online. As we normalized P1 and P2 dif-
ferently, we also report the results for the first two benchmarks
separately.

3. Results

We compared the normalization approach described above
(LOESS) with the following: the standard method from the chip
manufacturer without background correction (ILLU), the SWAN
method (Maksimovic et al., 2012) and the FUNctional nor-
malization (Fortin et al., 2014) as implemented in the minfi R
package (Aryee et al., 2014). The BMIQ method (Teschendorff

et al., 2013) with the R script version 1.3 downloaded from
code.google.com/p/bmiq/We. QN applied to intensities
of P1g, P1r, P

M
2 and PU2 separately (QN1); this way each combina-

tion of color channels and probe types is normalized separately.
QN applied to rawm-values of P1g, P1r and P2 separately (QN2).
For QN1 and QN2 only autosomal probes were normalized, as
dataset A includes samples from both sexes.

Figure 3 shows the results of the first benchmark for the four
combinations of probe type (P1, P2) and methylation measure
(m, β). Two numbers on top of each boxplot and normaliza-
tion method indicate how often the method achieved the highest
correlation for a pair of technical replicates and how often the
correlation declined compared to the raw values. As expected
for ILLU and (P1,m),(P1, β),(P2,m) the correlations are virtu-
ally unchanged, as this method mainly scales intensities. Only
for (P2, β) it increased correlations. SWAN increased correla-
tions for (P1,m) and (P2, β), but had adverse effects for (P1, β)
and (P2,m). As expected for BMIQ correlations for (P1,m) and
(P1, β) were virtually unchanged, but it reduced the correla-
tions for (P2,m) for all 21 pairs of technical replicates. QN1
performed well for (P1,m) and (P1, β), but produced mixed
results for (P2,m),(P2, β). QN2 was only favorable for (P1, β).
FUN performed well for (P1, β), but produced mixed results
for (P1,m),(P2, β) and had adverse effects for (P2,m). LOESS
achieved the highest correlation for all 21 pairs of technical repli-
cates for (P1,m),(P2,m) and had a clear lead for (P1, β),(P2, β).
It was the only method that improved correlation in every
single case.

Figure 4 shows the results of the second benchmark. For the
sake of clarity only the lines for NONE and the three best per-
forming methods, LOESS, QN1 and QN2, are highlighted, and k
is limited to [1, 400], as for higher values the order of the lines
did not change. QN1 and LOESS were on par for P1, followed by
QN2. QN2 performed best for P2, followed by LOESS and QN1.
Some methods had again adverse effects.

Table 1 shows the results of the third benchmark for the age-
related biomarkers and cg03636183. In all cases LOESS improved
the Spearman correlation (for cg06639320 and age about 0.16)
and it achieved the highest absolute value of all normalization
methods in 4 out of 6 cases. The results for the other 31 smoking-
related sites are provided in the supplement. In summary, for 26
out of 31 CpG sites LOESS improved the correlation (ILLU 26,
SWAN 25, BMIQ 25, QN1 24, QN2 25, FUN 27) and it achieved
the highest absolute value for 12 CpG sites (NONE 1, ILLU 2,
SWAN 3, BMIQ 1, QN1 3, QN2 9, FUN 0). 28 of the 31 sites are
in P2.

4. Discussion

We show that the normalization method described here reduces

the differences between technical replicates more effectively than
QN and improves detection of differential methylation. For

known biomarkers the associations of methylation levels with
the respective traits become more evident. At the same time
our method does not rely on such strong assumptions like QN,
and probes located on the sex chromosomes can be normalized
as well. Only a small set of sites (∼1.6% of all probes) equally
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FIGURE 3 | Correlation of m-values and β-values between

technical replicates after various normalization methods for P1
(top row) and P2 (bottom row). Methods used include raw values

(NONE), the standard method in the GenomeStudio software from the

chip manufacturer (ILLU), the SWAN method (Maksimovic et al., 2012),

the BMIQ method (Teschendorff et al., 2013), quantile normalization

applied to intensities (QN1) and to m-values (QN2), FUNctional

normalization (Fortin et al., 2014) and the method described in this

paper (LOESS). Two numbers on top of each boxplot and normalization

method indicate how often the method achieved the highest correlation

for a pair of technical replicates and how often the correlation declined

compared to the raw values.

methylated across all samples is required. This makes LOESS
especially useful when QN cannot be applied, for example in case
of global methylation changes between samples.

For the detection of differential methylation one should be
careful when using within-array normalization, as in our anal-
ysis these methods had often adverse effects. Most importantly
we argue that, although different probes are not comparable even
if they are of the same probe type, this does not affect detec-
tion of differential methylation in a univariate screening. If there
is need for accurate quantification of methylation levels, other
experimental methods should be considered. We also show that

even when the assumption of equal distribution of methylation
levels between samples is valid, absolute intensity values of P2
are still not comparable. The following argument might justify
the use of QN1, at least for P1. Suppose there are two samples
with an identical epigenome. If one changes an arbitrary number
of completely unmethylated CpG sites (of type P1) to completely
methylated or vice versa, the distribution of intensity values stays
the same (high U signal and low M signal → low U and high M
signal in th same color channel with the same affinity).

Most of the time the separation between low and high m-
values is not that clear as in Figure 1. We do not know the cause
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FIGURE 4 | Concordance between rankings for differential

methylation. Technical replicates from dataset A were splitted to

discovery and validation set and subsequently grouped by sex.

Probes were ranked according to p-values from a two-sample

t-test. The plots show overlap percentage between the two

rankings for the top k hits for P1 and P2 separately. For clarity,

only the best performing methods are highlighted, the rest are

plotted in gray.

TABLE 1 | Results of the third benchmark.

Trait Biomarker NONE ILLU SWAN BMIQ QN1 QN2 FUN LOESS

Smoking status cg03636183 −0.665 −0.674 −0.678 −0.672 −0.674 −0.676 −0.671 −0.679

Packyears cg03636183 −0.324 −0.355 −0.353 −0.335 −0.351 −0.328 −0.338 −0.346

Numcig cg03636183 −0.281 −0.320 −0.328 −0.305 −0.331 −0.328 −0.303 −0.345

Age cg16867657 0.648 0.648 0.605 0.648 0.672 0.648 0.654 0.682

Age cg06639320 0.383 0.461 0.462 0.441 0.484 0.457 0.446 0.490

Age cg16419235 0.441 0.441 0.431 0.441 0.468 0.441 0.441 0.458

Spearman correlations of age or smoking behavior with methylation levels of known biomarkers.

of this pattern. It may be due to a combination of competitive
effects (remember that DNA is in excess) and different binding
affinities for unmethylated and methylated targets (but probes in
Figure 1 do not cluster according to the number of underlying
CpG sites).

Of course not all batch effects can be removed by our method.
In particular we consider bias connected to signal intensities and
methylation levels. However, there might be other sources of bias,
like bias connected to the sequence of a probe. A good study
design is still crucial.

Our results for SWAN are not in conflict with the evidence
presented by Maksimovic et al. (2012), as they only looked at
distributions of methylation levels, which have no significance
for the conclusions they have drawn, also noted by Pidsley
et al. (2013). An extensive evaluation of existing normalization
methods can be found in Marabita et al. (2013) and Wu et al.
(2014). The authors also tested SWAN and show that this method
can reduce the correlation between technical replicates. The
results for the methods ILLU and QN1 are not comparable with
these papers, since we performed ILLU without background cor-
rection, because it was unfavorable, and normalized P1g, P1r, P

U
2

and PM2 separately for QN1. Marabita et al. recommend a combi-
nation of QN and BMIQ.

One strength of our work is the high number of samples used
in the benchmarks, 21 pairs of technical replicates and 655 blood
samples from a well-described study population, collected and
handled in a consistent way. There are however some limita-
tions of this work. We used correlation as a measure of simi-
larity of replicates in the first benchmark. A distance measure,
which accounts for the heteroscedasticity of the data, would be
more adequate. Another issue is the set of housekeeping CpG
sites. We used probes covering exons of genes showing constant
expression levels across a wide range of tissues (Eisenberg and
Levanon, 2013). Identifying probes with constant methylation
directly would be a better approach, but this would require a
dataset of samples from different tissues measured on the same
450K plate, in order to minimize batch effects. Although the
selected CpG sites should work for a wide range of tissues, we
did not test this. Certainly this set needs to be refined as it
will contain many sites which are not invariant. In the current
implementation, measurements outside the range of values in the
reference set are discarded, extrapolating would reduce the num-
ber of missing values.We also did not test how this normalization
method operates with different parameter settings for the LOESS
function in order to avoid overfitting. There is need for further
investigations of these issues.
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