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To cope with DNA damage, cells possess a complex signaling network called the
‘DNA damage response’, which coordinates cell cycle control with DNA repair. The
importance of this network is underscored by the cancer predisposition that frequently
goes along with hereditary mutations in DNA repair genes. One especially important
DNA repair pathway in this respect is homologous recombination (HR) repair. Defects
in HR repair are observed in various cancers, including hereditary breast, and ovarian
cancer. Intriguingly, tumor cells with defective HR repair show increased sensitivity to
chemotherapeutic reagents, including platinum-containing agents. These observations
suggest that HR-proficient tumor cells might be sensitized to chemotherapeutics if
HR repair could be therapeutically inactivated. HR repair is an extensively regulated
process, which depends strongly on the activity of various other pathways, including
cell cycle pathways, protein-control pathways, and growth factor-activated receptor
signaling pathways. In this review, we discuss how the mechanistic wiring of
HR is controlled by cell-intrinsic or extracellular pathways. Furthermore, we have
performed a meta-analysis on available genome-wide RNA interference studies to
identify additional pathways that control HR repair. Finally, we discuss how these
HR-regulatory pathways may provide therapeutic targets in the context of radio/
chemosensitization.

Keywords: recombination, Cell Cycle, genomic instability, DNA Repair, PARP inhibitors

Introduction

The DNA in each single cell is constantly exposed to a variety of endogenous and exogenous
factors that cause DNA lesions, such as UV light and genotoxic chemicals. In addition, normal
physiological processes also significantly contribute to generating DNA damage, including
cellular metabolism, which produces reactive oxygen species (ROS) as side-products, and
DNA replication, which is not an error-free process. To cope with this constant assault on
genomic integrity, cells have evolved a complex signaling network called the ‘DNA damage
response’ (DDR). The DDR detects DNA lesions, initiates checkpoints that arrest the ongoing
cell cycle and in parallel activates dedicated DNA repair pathways (Jackson and Bartek,
2009). Additionally, when the amount of DNA damage exceeds the repair capacity, DDR
signaling will clear damaged cells from the proliferative population through senescence or
apoptosis.
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Defects in DNA repair are frequently observed in cancer
and influence the responsiveness of such cancer cells to
therapeutic regimens. Particularly, defects in homologous
recombination (HR)-mediated repair of DNA breaks caused by
hereditary BRCA1 and BRCA2 mutations result in increased
sensitivity to DNA damaging agents, particularly platinum-
based chemotherapeutics (Tan etal.,, 2008; Alsop etal., 2012).
These observations suggest that modulation of HR repair in
HR-proficient tumor cells might constitute an effective manner
to sensitize cancers for chemotherapy.

Important in this context is the emerging recognition that
DNA break repair is under control of many signaling pathways.
Also various HR repair-regulatory pathways have been described
and a better understanding of how these pathways control
HR may provide insight into how HR repair can be inhibited
therapeutically to induce chemosensitization. Therefore, we here
present an overview of cell-intrinsic or extracellular pathways
that control HR repair. Additionally, we performed a meta-
analysis on genome-wide siRNA studies to uncover novel HR
regulators. Finally, we will elaborate on the potential therapeutic
targets within these pathways.

Repair of DNA Breaks

Among the various types of DNA lesions, single strand breaks
(SSBs) are very prevalent. SSBs can be efficiently repaired through
base replacement via base excision repair (BER) or alternatively
through removing whole nucleotides via nucleotide excision
repair (NER; Caldecott, 2008). Unrepaired SSBs or SSBs that
occur during replication can be converted into DNA double
strand breaks (DSBs), which are far more toxic. If left unrepaired,
only a very limited amount of DNA DSBs is required to cause
cell death. Proper repair of these DSBs is therefore crucial for
cellular survival. Cells are equipped with two fundamentally
different pathways to repair DSBs; non-homologous end-joining
(NHEJ]) and HR (Figure 1A). Non-homologous end-joining
can be performed throughout the cell cycle and directly ligates
DNA-ends in a non-conservative fashion. Since broken DNA-
ends may need cleaning up prior to ligation, NHE] repair can
be mutagenic (a detailed review of NHE] can be found in Lieber,
2010).

In stark contrast, HR repair utilizes a DNA template for repair
with significant sequence homology, and this type of repair
is conservative in nature and non-mutagenic (Wyman etal,
2004). Most frequently, sister chromatids are employed for
HR, which restricts this type of repair to late S phase and G,
phases of the cell cycle, after DNA replication has occurred
(Johnson and Jasin, 2000; Krejci et al., 2012). During the highly
regulated process of HR, three main phases can be distinguished.
Firstly, 3'-single-stranded DNA (ssDNA) ends are generated
by nucleolytic degradation of the 5'-strands. This first step
is catalyzed by endonucleases, including the MRN complex
(consisting of Mrell, Rad50, and Nbsl). In a second step,
the ssDNA-ends are coated by replication protein A (RPA)
filaments. In a third step, RPA is replaced by Rad51 in a
BRCA1- and BRCA2-dependent process, to ultimately perform

the recombinase reaction using a homologous DNA template
(Figure 1B). More detailed descriptions of HR repair can be
found elsewhere (Liand Heyer, 2008; San Filippo et al., 2008).
Importantly, HR is not only employed to repair DNA lesions
induced by DNA damaging agents, but is also essential for
proper chromosome segregation during meiosis. The relevance
of HR in these physiological processes is illustrated by its
strict requirement during development. Mice lacking key
HR genes, such as Brcal, Brca2, or Rad51, display extensive
genetic alterations which lead to early embryonic lethality
(Gowen etal., 1996; Hakem etal.,, 1996; Lim and Hasty, 1996;
Ludwig etal,, 1997; Sharanetal., 1997; Suzukietal, 1997).
Whereas homozygous inactivation of HR genes is usually
embryonic lethal, heterozygous inactivation of for instance
BRCAI and BRCA2 does not interfere with cellular viability
and rather predisposes to cancer, including breast and ovarian
cancer (Futreal etal., 1994; Mikietal, 1994; Wooster et al.,
1994; Lancaster etal, 1996). The tumors that develop in
individuals with heterozygous BRCAI/2 mutations invariably
lose their second BRCAI/2 allele, indicating that in certain
cancers, the absence of BRCA1/2 is compatible with cellular
proliferation. How exactly such tumors cope with their HR
defect is currently not fully understood (Elledge and Amon,
2002). What is clear, however, is that these HR-deficient cancers
are hypersensitive to various DNA damaging agents, including
specific chemotherapeutics (Tan et al., 2008; Alsop et al., 2012).
Recent studies have indicated that HR-defective tumors are
also exquisitely sensitive to novel agents, such as inhibitors
of poly-(ADP-ribose) polymerase (PARP; Bryantetal., 2005;
Farmer etal., 2005; Tuttetal, 2010). These insights have
prompted the search for cancer-associated mutations in HR
genes, to be used for patient stratification for PARP1 inhibitors
or other drugs that differentially affect HR-deficient cancers.
Additionally, novel components and regulators of the DNA
repair machinery are being searched for, to uncover the
mechanistic wiring of DNA repair and to uncover potential
therapeutic targets for treating cancer.

Control of HR by the DNA Damage
Response

A predominant pathway that controls HR activity is the DDR,
which consists of multiple kinase and ubiquitin ligases working in
parallel signaling axes to coordinate a cell cycle arrest with DNA
repair and induction of apoptosis (Ciccia and Elledge, 2010).
Components of the DDR can be functionally classified as (1)
sensors of DNA damage, (2) signal transducers, and (3) effectors.
Various ‘DNA damage sensor’ complexes exist in order to detect
different types of DNA lesions. In the context of DNA breaks, the
Mrel1/Rad50/Nbsl (MRN) complex acts as a sensor for DNA
DSBs. The MRN complex recruits and activates the upstream
DDR kinase ataxia telangiectasia mutated (ATM) (Lee and Paull,
2007). Subsequently, ATM recruits and phosphorylates all
MRN members (Gatei et al., 2000; Lim et al., 2000; Zhao et al.,
2000; Yuan et al., 2002; Trenz et al., 2006; Linding et al., 2007;
Matsuoka et al., 2007). ATM-mediated phosphorylation of these
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B \NHEJ B HR

FIGURE 1| DNA double strand break (DSBs) repair. (A) DNA DSBs
repair pathways in the context of cell cycle regulation. Non-homologous
end joining (NHEJ) can be performed throughout the cell cycle and is
indicated with the red line. Homologous recombination (HR) can only be
employed in S/G2 phases of the cell cycle and is indicated in green. (B)
The key steps in HR repair pathway are indicated. After DSB recognition,
5-8" end resection is initiated by the MRN (Mre11, Rad50, Nbs1) complex
and CtIP. Subsequently, further resection by the Exo1, DNA2, and Sgs1

DNADSB

§

proteins is conducted to ensure ‘maintained’ resection. Then, resected
DNA-ends are bound by replication protein A (RPA). The actual
recombination step within HR repair, termed strand exchange, is executed
by the recombinase Rad51. Rad51 replaces RPA to eventually assemble
helical nucleoprotein filaments called ‘presynaptic filaments.” This process is
facilitated by other HR components, including BRCA1 and BRCA2. Final
step of junction resolution is executed by helicases including Bloom
syndrome, RecQ helicase-like (BLM) helicase.

HR components is relevant, as mutational inactivation of these
ATM phosphorylation sites prevents the formation of the MRN
complex at the sites of damage induced by ionizing radiation
(Lim et al., 2000; Zhao et al., 2000), and precludes subsequent cell
cycle checkpoint activation and DNA repair (Gatei et al., 2011).
MRN/ATM activation consequently leads to the recruitment of
additional MRN complexes to the DSB site (Kozlov et al., 2011)
and goes along with phosphorylation of other, HR components
by ATM, including Brcal (Cortez et al., 1999; Li et al., 2000) and
CtIP (Wang et al., 2013).

Although ATM phosphorylates multiple HR components,
it remains unclear to what extent ATM is required for HR.

Genetic inactivation of ATM in chicken DT40 cells disrupted the
formation of irradiation-induced Rad51 and Rad54 foci pointing
at impaired HR repair (Morrison et al., 2000; Kocher et al., 2012).
However, complete loss of the Atm gene in mice did not affect
HR capacity in mouse somatic cells in another study (Kass et al.,
2013). In contrast, chemical inhibition consistently abrogates
HR repair, and points at dominant-negative effects of chemically
inhibited ATM (Choi et al., 2010; Kass et al., 2013).

Besides ATM, also ataxia telangiectasia and Rad3 related
(ATR) was shown to play a role during HR. In paralle]l to
ATM activation upon DSB formation. The ATR kinase is
activated in response to ssDNA, which predominantly occurs
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at stalled replication forks (Zou and Elledge, 2003). However,
ssDNA is also an intermediate product during HR as a result
of DSB processing, and leads to ATR activation in response
to DSBs (Jazayeri et al,, 2006). Later studies showed that ATR
activation not merely is a side-product of DNA-end processing,
but is actively involved in the process of HR. Specifically,
ATR-dependent hyperphosphorylation of CtIP in response
to DSBs is required for CtIP accumulation on the chromatin
and extension of DNA-end-resection (Peterson etal.,, 2013).
Combined, it appears that ATM is required for an early
resection, whereas ATR is responsible for extensive resection
and full checkpoint activation. Although the exact roles of
ATM and ATR in the regulation of DNA-end-resection during
HR are not yet fully understood, the observation that ATR
inhibitors block HR repair warrants further investigation
of DDR kinases as therapeutic targets to block DNA repair
(Prevo et al., 2012).

Besides regulating the recruitment of HR factors to sites
of DNA DSBs, also the actual recombination phase of
HR repair is regulated by DDR members. ATM, together
with c-Abl, regulates the post-translational modification
and assembly of Rad51 filaments (Chenetal., 1999).
Furthermore, the downstream checkpoint kinase Chkl was
shown to play a role during recombination. Specifically,
Chkl phosphorylates Rad51 at Thr-309 (Sorensen etal.,
2005), which consequently facilitates the assembly of Rad51
nucleofilaments by promoting the displacement of RPA
with Rad51 and Rad52 (Sleethetal, 2007). Importantly,
Chkl-depletion resulted in abrogation of Rad51 nuclear foci
formation in cells exposed to hydroxyurea, illustrating the
functional importance of this interaction (Serensen etal.,
2005). In addition, also Chk2 is involved in regulating HR
repair, and Chk2-mediated phosphorylation of Brcal at Ser-988
was shown to be essential for proper recombination repair
(Zhang et al., 2004).

Also negative regulators of DNA-end resection, including
53BP1 and Rifl, are phosphorylated by ATM and are
recruited to sites of DNA damage in an ATM-dependent
fashion (Escribano-Diaz etal., 2013). Specifically, 53BP1 is
phosphorylated by ATM at multiple residues and removal of
these sites prevents efficient recruitment of 53BP1 to sites of
DNA breaks. In turn, Rifl, which is also phosphorylated by
ATM, binds 53BP1 in a phospho-dependent manner and is
required to block HR to promote NHE] repair.(Callen et al.,
2013; Escribano-Diaz et al., 2013). How exactly DDR signaling
can simultaneously promote pro-HR and anti-HR factors is
unclear. Very likely, integration of other signaling pathways,
including cell cycle kinases, may be important in fine-tuning this
response.

Although DDR kinases are clearly important for HR repair,
it remains difficult to separate the DNA repair functions from
the checkpoint functions of these DDR kinases. For instance,
mutation of the multiple ATM phosphorylation sites on Brcal
not only blocks HR repair, but also results in defective intra-S and
G,/M checkpoint function (Cortez et al., 1999; Xu et al., 1999).
Concluding, HR repair appears to be tightly controlled by DDR
signaling. However, intense crosstalk and the plethora of proteins

that function both in DDR checkpoint signaling as well as in DNA
repair, makes it difficult to pinpoint the exact HR regulatory steps
in these pathways.

Cell Cycle Regulation

Homologous recombination repair is tightly coordinated with
cell cycle progression, which is in large part governed by
cyclin-dependent kinases (CDKs). Yeast studies provided the
first notion that HR repair is limited to S and G, phases of the
cell cycle and that it is sensitive to chemical CDK inhibition
(Aylon etal., 2004). Subsequently, many HR components
were shown to be under control of CDKs and that cell cycle
kinases, including non-CDXKs, control several steps within HR
(Aylon et al., 2004; Branzei and Foiani, 2008).

DNA-end resection constitutes the critical decision point to
utilize HR or NHE] for repair of DSBs, and this switch is under
prominent control of CDKs. Importantly, if DNA-end resection
at sites of DNA breaks has been initiated there is no point of
return, because ssDNA cannot be used as a substrate for NHE]
DNA repair (Symington and Gautier, 2011). Clear evidence
that break-induced DNA-end resection requires CDKI1 was
provided in budding yeast (Ira et al., 2004). An important CDK
substrate in this process appeared to be Sae2 (in humans called
CtIP, encoded by the RBBP8 gene), which is phosphorylated
on Ser-267 in a CDK-dependent fashion (Huertas et al., 2008;
Huertas and Jackson, 2009). CDK-mediated phosphorylation of
CtIP appeared essential for MRN-mediated DNA-end resection
(Limbo et al., 2007; Sartori et al., 2007). In addition to CtIP,
also Nbsl is a CDK target, phosphorylation of which stimulates
MRN-dependent end-resection, further underscoring the control
of end resection by CDKs (Falck et al., 2012).

Whereas lower eukaryotes have limited numbers of CDKs,
mammalian cells have multiple CDKs that can partner with
several cyclins (Morgan, 1997), which complicates the analysis
of DDR-cell cycle interactions. Nevertheless, initial studies
showed that Cdk2 phosphorylation of CtIP stimulates the
multimeric interaction between CtIP, Brcal, and the MRN
complex (Yuand Chen, 2004; Chen etal.,, 2008). Specifically,
Mrell is thought to bring Cdk2 and CtIP in close proximity
to subsequently promote Cdk2-mediated CtIP phosphorylation
(Buis et al., 2012). This interaction has been shown functional,
since loss or inhibition of Cdk2 diminishes HR capacity and
also results in increased sensitivity to DNA damaging agents
(Buis et al., 2012). However, more recent data show that also
Cdkl inactivation decreases HR repair activity (Johnson et al.,
2011). These findings may illustrate that different cell types
have different CDK activity profiles, and corresponding CDK
requirements. Indeed, studies in murine CDK knockout strains
illustrated that not one individual CDK but the overall CDKs
level highly influences DDR activation in mammalian cells
(Murga et al., 2011).

Cyclin-dependent kinases requirements in HR are not
restricted to the initiation of DNA-end resection. Even after
DNA break resection has been initiated, CDK activity seems to
influence HR. Specifically, the stabilization of ssDNA tails is cell
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cycle-dependent through CDK-mediated phosphorylation of
RPA (Anantha etal., 2007). Phosphorylation of the RPA subunit
RPA2 at Ser-13 by Cdkl-cyclin B was observed in response
to treatment with the chemotherapeutic drug camptothecin.
Mutation of these CDK sites in RPA resulted in increased
numbers and longer retention of gamma-H2AX and altered cell
cycle distribution, and reduced recruitment of other DNA repair
factor to sites of DNA damage (Anantha et al., 2007).

Interestingly, recent studies have revealed that not only CDKs
but also their bindings partners can influence HR. Two germ-
line specific Cdk2 cyclins (A1 and A2) where shown to potentiate
HR repair (Miiller-Tidow et al., 2004). Although activity of both
cyclin Al and A2 was reported to be required for HR, only cyclin
Al expression was induced by y-irradiation in a p53-dependent
fashion. Additionally, cyclin D1 emerged as a regulator of HR
repair (Jirawatnotai et al., 2011). Upon irradiation, Brca2 recruits
cyclin D1 to sites of DNA damage, where it directly interacts with
Rad51. Moreover, cyclin D1 appears to be essential for Rad51
function, because decreased levels of cyclin D1 severely affected
Rad51 recruitment, and consequently resulted in impaired HR.
This requirement appeared independent of the canonical cyclin
D-binding partners Cdk4 or Cdké (Jirawatnotai et al., 2011).

Cyclin-dependent kinases have also been implicated in the
regulation of late-stage processes of HR. After recombination has
occurred, sister-chromatids can be connected through so-called
Holiday junctions, which are resolved by, among others, the
Bloom syndrome, RecQ helicase-like (BLM) helicase. Resolution
of Holiday junctions, surprisingly, appears to be negatively
regulated by CDKs. Notably, Cdkl-dependent phosphorylation
of the BLM helicase during mitosis results in dissociation of
BLM from the nuclear matrix (Dutertre et al., 2002). However,
the functional consequences of this regulation for HR fidelity
still remain unclear. Also Brca2 was shown to be negatively
regulated by CDKs. Phosphorylation of Brca2 at Ser-3291 within
its C-terminal domain prevents the Brca2-Rad51 interaction and
thus impairs Rad51-mediated foci formation (Esashi et al., 2005).
The phosphorylation of Brca2 at Ser-3291 appears to depend
on Cdkl, since chemical inhibition of Cdkl activity diminishes
Brca2-Ser-3291 phosphorylation (Krajewska et al., 2013). In line
with Cdkl activity being most prevalent during mitosis, this
mechanism may functionally restrict HR to those phases of the
cell cycle when sister chromatids are available for HR repair.
Notably, mitotic inactivation of HR can be exploited using Weel
inhibitors that can aberrantly activate Cdkl. This results in a
block in HR repair, underscoring that CDKs not only activate
HR during S-phase, but also block HR during mitosis.

Beyond the CDK-mediated regulation of HR, also other cell
cycle kinases were shown to influence HR fidelity. Polo-like
kinase 1 (Plkl), for instance, which is required for mitotic
entry and mitotic progression (van Vugtand Medema, 2005)
was shown to regulate HR. In concert with the cell cycle
kinase Casein kinase-2 (CK2), Pkl phosphorylates Rad51 at
Ser-14, which is required for the Rad51 filament formation
(Yata etal., 2012). Subsequently, CK2 phosphorylates Rad51
at Thr-13 to enhance the interaction between Rad51 and
Nbsl and to facilitate Rad51 recruitment to sites of DNA
damage (Yata etal., 2012). In addition to a direct regulation

of Rad51, Pkl binds, and phosphorylates Brca2 (Lin etal,
2003). This interaction appears to be abrogated after DNA
damage induction, suggesting that Plkl may also negatively
influence HR repair. Additionally, Plk3 was implicated in
the regulation of DNA break repair through modification of
CtIP (Barton etal., 2014). In addition, cells lacking P1k3 were
shown to be sensitive to PARP inhibitors, which suggests a
role for Plk3 in the HR repair (Turner etal., 2008). However,
the exact role for Plk3 within the HR machinery needs to
be elucidated. Combined, these data imply that cell cycle
kinases other than CDKs are required to properly activate
HR repair as well as control its silencing when appropriate
(Figure 2).

Protein Stability Control

As for all cellular pathways, correct protein folding is essential
for proper execution of DNA repair. Protein folding is mediated
by so-called ‘protein-stability control’ pathways, controlled by
heat-shock protein (HSP) family members (Lindquist and Craig,
1988) Among their many client proteins, several cell cycle
control, and DNA repair components appear to be under
control of these molecular chaperons. Specifically, Hsp90
appears to control the stabilization, folding, and activation of
key HR repair signaling proteins. Most prominently, inhibition
of Hsp90 using 17-AAG resulted in Brca2 destabilization
(Noguchi etal., 2006; Dungey etal., 2009; Figure2). In line
with blocking Brca2 function, Hsp90 inhibition delayed Rad51
filament formation (Noguchietal, 2006) and resulted in
radiosensitization, which was enhanced by the addition of PARP
inhibitors (Dungey et al., 2009). Later studies using the more
potent Hsp90 inhibitor NVP-AUY922 confirmed these HR
defects and described potent radiosensitiziting effects in vivo
(Zaidi et al., 2012).

The observations that Brca2 depends heavily on protein-
stability chaperons have initiated investigations to see whether
Brca2 could be destabilized by mild hyperthermia. Indeed,
Brca2 is efficiently but transiently destabilized by a short-term
cellular hyperthermia (41-42,5°C; Krawczyk etal,, 2011). As a
consequence, hyperthermia blocked the recruitment of Rad51 to
sites of DNA damage and led to impaired HR (Krawczyk et al.,
2011). These HR defects coincided with radiosensitization and
increased sensitivity for PARP inhibitors in vitro and in vivo
(Krawczyk et al., 2011). Clearly, these findings offer clinical
opportunities, since it allows local induction of HR deficiency,
which could be used to sensitize tumors for concomitant
radiotherapy and PARP inhibitor treatment (Eppink etal,
2012). In addition, the observed Brca2 destabilization offers
an appealing explanation for the earlier observed radio- and
chemosensitizing effects of hyperthermia, both pre-clinically
and clinically (Overgaardetal,, 1995; Vernonetal, 1996;
Sneed et al., 1998; van der Zee et al., 2000). However, it should
be noted that defective HR through Brca2 inactivation does not
explain the entire radiosensitizing effect of hyperthermia. Using
isogenic cell lines with defects in various repair pathways, HR
only partially contributed (Kampinga et al., 2004). In addition,
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FIGURE 2 | Regulators of HR repair as potential therapeutic targets.

Based on literature and the GSEA performed in this report, an overview is
provided on the various cellular pathways that regulate HR repair. For each

pathway, the responsible component is highlighted along with its substrate
within HR. Green arrows indicate stimulatory interactions, red bars indicate
inhibitory interactions, and black arrows indicate interactions with unclear effect.

effects of hyperthermia were observed in all cycle phases, which
does not support the cell cycle-restricted action of HR repair,
suggesting additional targets for hyperthermia in DNA repair
(Dewey etal,, 1978; Kimetal, 1978). Summarizing, current
data support the protein-stability machinery as a feasible
therapeutic target to decrease HR capacity, either using Hsp90
inhibitors or through mild hyperthermia. Further, these results
warrant clinical studies to combine these approaches with
genotoxic therapies that are especially effective in HR-deficient
cancers, including PARP inhibitors and platinum-containing
chemotherapeutics.

In addition to control of HR DNA repair by HSPs,
multiple other enzymes have been to control the stability
of DNA repair components. Classically, modification of
proteins with ubiquitin has been linked to protein-stability
control  (Hershko and Ciechanover, 1998).  Within the
DDR, however, ubiquitilation (as well as SUMOylation)
have been shown primarily with activation and protein
complex formation (Jackson and Durocher, 2013). However,

recently the key HR component CtIP was shown to be
ubiquitilated by the APC/C-Cdhl in a cell cycle and DNA
damage-dependent fashion (Lafranchietal., 2014). Whether
the APC/C-Cdhl controls other DDR proteins upon DNA
damage, and whether this affects DNA repair needs further
investigation.

Regulation of HR Repair by Growth
Factor Receptor Signaling

Growth hormone receptor pathways encompass multiple
signaling cascades, controlling many cellular processes including
proliferation, cellular survival, and migration. These pathways,
including the epidermal growth factor receptor (EGFR) pathway,
are frequently hyperactivated in cancers through mutation
or amplification and constitute so-called ‘oncogenic drivers’
(Sharma et al., 2007). However, part of their oncogenic potential
may also be explained by promoting DNA repair. Indeed,
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growth hormone receptor signaling contributes to increased
resistance to radio- or chemotherapy, which likely is related
to modulation of DNA repair (Mukherjee et al., 2009). With
growth factor receptors being oncogenic drivers, multiple
therapeutics have been clinically developed to target growth
factor receptors (including antibodies and small molecule
inhibitors targeting the EGFR, HER2, and IGFIR). When tested
in combination with chemo-radiotherapy, these agents appear
to improve responses to radio- and chemotherapy in several
cancer types (Huangand Harari, 2000; Bonner etal., 2006).
Furthermore, small molecule tyrosine inhibitors that ablate
kinase activity of oncogenic variants of these receptors (including
erlotinib and gefitinib) have clinical benefit in combination with
chemotherapeutics in multiple pre-clinical and clinical studies
(Moyer et al., 1997; Knight et al., 2004; Mellinghoff et al., 2005;
Quatrale et al., 2011).

Since growth factor receptors control various downstream
pathways related to growth and survival, it has remained
difficult to pinpoint the influence of growth factor receptor
signaling on DNA repair. In addition, it is not completely
clear through which mechanism(s) growth factor receptor
signaling influences DNA repair, and which DNA repair subtypes
are actually modulated by such pathways. In the context of
DNA DSB repair, both NHE] as well as HR were shown to be
under control of growth hormone receptor-mediated signaling.
Treatment of cells with EGF was shown to increase levels
of NHEJ as well as HR (Golding et al., 2009; Myllynen et al.,
2011). In the context of promoting NHE], the EGFR was
reported to associate with the catalytic subunit of DNA-PK, an
essential NHE] component (Liccardi et al., 2011). Additionally,
nuclear localization of the EGFR required for DNA repair
stimulation, occurs through its interaction with DNA-PK
(Liccardi et al., 2011). Additionally, stimulation of the EGFR or
the insulin-like growth factor receptor 1 (IGFIR) also elevates
levels of HR repair (Golding et al., 2009; Myllynen et al., 2011).
Concerning the role of the EGFR in HR repair, it was shown
that EGFR activity is required for Brcal localization to the
nucleus (Li et al., 2008). Consequently, blocking the EGFR using
erlotinib prevents nuclear Brcal localization, interferes with
Rad51 recruitment to sites of DNA damage and attenuates
HR repair (Li etal., 2008). Surprisingly, the role of the IGFIR
in HR repair appeared to be mechanistically distinct. IGF1R
signaling promotes cellular trafficking of Rad51 through a direct
interaction between the insulin receptor substrate-1 (IRS-1),
which is recruited to sites of DNA lesions in response to DNA
damage (Trojanek etal., 2003). In line with this observation,
blocking IGFIR function through deletion of the Igflr gene
in mice, or IGFIR depletion ablates IRS-1 phosphorylation,
precludes Rad51 translocation to the nucleus and eventually
impairs HR repair (Trojaneketal., 2003). Also estrogen-
mediated phosphorylation of IRS-1 by the estrogen receptor beta
(ERB) affects HR repair (Urbanska et al., 2009). In contrast to
insulin receptor signaling and EGFR signaling, surprisingly, ER
signaling negatively impacts the Rad51 function, and inhibition
of ERP-mediated IRS-1 translocation to the nucleus significantly
improved DNA repair fidelity and prevented genomic instability
(Urbanska et al.,, 2009). Collectively, multiple growth factor

or hormone receptors impact on DNA repair through direct
or indirect interactions with DNA repair proteins, albeit that
different receptors may have opposite effects in regulating DNA
repair.

Since part of the synergistic effects of combined radio/
chemotherapy with targeting growth-factor-activated receptors
may be explained by interfering with DNA repair, a synthetic
lethal context with agents such as PARP inhibitors may
be created. Early preclinical evidence indeed underscores
this notion, since EGFR inhibition with lapatinib sensitized
breast cancer cells to the PARP inhibitor ABT-888 in vitro
(Nowsheen et al., 2012). In addition, therapeutic targeting of
the PI3 kinase, which operates downstream of the EGFR and
IGF1R efficiency blocked HR repair through down regulation of
both Brcal and Brca2 and sensitized cells for PARP inhibition
(Ibrahim et al., 2012). Concluding, HR DNA repair is not just
a cell-intrinsic repair mechanism. Many pathways, including
growth factor-activated pathways, were shown to regulate HR,
providing a rationale for combined inhibition of growth factor
activated pathways with DNA damaging agents.

Novel Regulators of Homologous
Recombination

The development of fluorescence-based reporter systems to
read out HR efficiency (Pierce etal., 1999) has enabled high-
throughput microscopy studies to uncover novel regulators of
HR in mammalian cells. Two important studies have taken a
genome-wide approach to identify genes that are required for
HR repair (Stabicki et al., 2010; Adamson et al., 2012). Many of
the identified genes from these studies are highly conserved and
also appear to be essential for HR in single-cell organisms such as
yeast, including BRCA1, BRCA2, and RAD51 (McKinney et al,,
2013). In addition to these well-known HR components, novel
HR regulators were identified. Notably, genes that control post-
transcriptional processing of RNA, including mRNA splicing,
where found to control HR repair (Adamson et al., 2012). For
instance, depletion of the RNA binding protein RBMX led to
diminished Brca2 levels and a consequent failure to recruit Rad51
to sites of DNA damage. Additionally, a putative helicase SPG48
is required for HR repair, although it remains mechanistically
unclear which step of HR it controls (Stabicki et al., 2010). The
availability of two independent genome-wide siRNA screens for
genes that regulate HR allowed us to compare these data sets and
identify common pathways and genes. To this end, we applied
Gene-Set Enrichment Analysis (GSEA; Subramanian etal,
2005) to uncover additional pathways that modify HR repair, of
which targeting could have therapeutic potential (Figures 3A,B).
Four well-known pathway databases were used for enrichment
analysis, KEGG, Biocarta, Reactome, and GeneOntology
(Figure 3C).

The most striking enrichment was identified in genes that
participate in proteasome or RNA biology. These findings
match earlier reports demonstrating that proteasome inhibition
sensitizes tumor cells to DNA damaging agents, including
crosslinking agents, and radiation (Pajonk et al., 2000). Initially,
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FIGURE 3 | Pathways involved in homologous recombination repair of
DSBs. (A,B) Analysis of the data from genome-wide siRNA screens. Data
were adapted from published studies (Stabicki et al., 2010, A) and
(Adamson et al., 2012, B). In these studies HR efficiency was assessed
using DR-GFP assay in Hela cells (left) and in DR-U20S cells (right).
Relative HR scores in Z-score (left panel) and ‘Relative HR score’ (right
panel) are indicated for genes with an established role in HR: BRCAT,

BRCA2, TP53BP1, NUP153, and RAD51. (C) Gene-Set Enrichment
Analysis (GSEA) was performed on the data presented in (A,B). Four
pathway databases were used for enrichment analysis: KEGG, Biocarta,
Reactome, and GeneOntology. Results of the GSEA on the dataset by
Stabicki et al. (2010) are represented in light gray, and results on the
dataset by Adamson et al. (2012) are represented in dark gray. Red
dashed line indicates 95% confidence interval.
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these effects were explained by proteasome-mediated control
of pro-apoptotic p53 signaling (Vaziri et al., 2005). Thereafter,
a more direct role for the proteasome in controlling DNA
repair was identified. Inhibition of the proteasome using
MG132 or bortezomib, or genetic inactivation of proteasome
components blocked the recruitment of DNA repair components
FancD2, Brcal, and Rad51, whereas upstream the DDR
signaling components H2AX and Mdcl appeared unaffected
(Jacquemont and Taniguchi, 2007; Cronetal, 2013). Due
to defective recruitment of these HR factors, inhibitors of
the proteasome suppress homologous DNA recombination
in mammalian cells (Murakawa etal,, 2007). In line with
this notion, proteasome inhibition using bortezomib was
shown to prevent repair of PARP-inhibitor induced DNA
breaks (Nerietal., 2011). Importantly, combined treatment
with bortezomib and the PARP inhibitor ABT-888 resulted
in sustained levels of H2AX, with defective recruitment of
HR repair components leading to enhanced killing of tumor
cells. Combined, these results show that the proteasome
is involved in HR repair and that therapeutic targeting of
the proteasome, using for instance bortezomib, can be used
to induce ‘BRCAness in tumor cells. Also, the fact that
genome-wide in vitro assays identified the proteasome as
a system that controls HR repair argues that other HR-
controlling pathways may also be uncovered using these
approaches.

Among the enriched pathways involved in HR repair, RNA
processing was highly abundant (Figure 3C), as is matched by the
recent identification of RNA-modifying enzymes as regulators
of HR (Adamson et al,, 2012). In mammalian cells, not much
data exist that mechanistically link RNA to HR repair. However,
some data from model organisms have provided evidence
that RNA processing is involved in DNA repair. Using genetic
analysis in Drosophila, the RNA splice factor SPF45 was shown
to combine a function in RNA splicing and protection against
DNA damage caused by MMS exposure (Chaoukiand Salz,
2006). Notably, mutations that abolish the RNA splicing function
also fail to protect against DNA damage-induced toxicity.
Mechanistically, SPF45 appears to interact with Rad201, a
member of the RecQ/Rad51 family (Chaoukiand Salz, 2006).
An unbiased proteomic screening in budding yeast underscored
the link between RNA metabolism and DNA repair, for instance
by identifying the splicing factor PRP19, as being involved
in the DDR (Smolka et al., 2007). In human cells, a mRNA
splicing complex consisting of Pso4, Cdc5L, and Psf27 was found
to interact with the WNR DNA helicase and was identified
to be required for interstrand cross-link repair (Zhangetal,
2005; Figure 2). Additionally, Dicer and Drosha RNA products
produced from sites of DNA damage where shown to be required
for proper DDR signaling (Francia etal.,, 2012). Again, large-
scale proteomic analysis confirmed this notion, and identified
multiple factors involved in RNA metabolism, illustrating the
intricate connection between RNA splicing and DNA repair
(Matsuoka et al., 2007). Part of this relationship can be explained
by the observation that uncontrolled mRNA maturation disturbs
the DNA-RNA interaction and have deleterious effects on
genomic stability (Montecucco and Biamonti, 2013).

Targeting HR-Deficient Tumors
Clinically

In oncology, many radio- and/or chemotherapeutic regimens
are used in daily practice, which induce high levels of DNA
damage directly or indirectly. These therapeutic regimens
often induce interstrand DNA crosslinks and DNA DSBs, of
which accumulation is very cytotoxic and requires HR for faithful
repair. Consequently, tumors in which HR repair is compromised
due to mutations or epigenetic silencing of HR repair genes
are generally more sensitive to specific DNA damage-inducing
factors. Extensive in vitro and in vivo preclinical studies provided
compelling evidence that HR defects are causally related to the
vulnerability of such cancer cells to certain DNA damaging
chemotherapeutics and radiotherapy. Studies comparing various
neo-adjuvant chemotherapeutic regimens in BRCAI mutant
breast cancers, found that highest response rates were observed
with neo-adjuvant cisplatin chemotherapy (Byrski et al., 2010),
which increased progression free survival (Byrski et al., 2008). In
analogy, responses of ovarian cancer lines to cisplatin were also
influenced by their BRCA 1/2 mutation status as well as the status
of related HR genes (Taniguchi et al., 2003). These data indicate
that inactivation of the HR pathway, either through germ-line or
somatic BRCA1/2 inactivation is linked to increased sensitivity
to DNA damaging therapeutics, notably platinum-based agents.
The fact that DNA repair defects through cancer-associated
mutations lead to specific vulnerabilities is exploited in synthetic
lethal approaches: mutation or inhibition of two separate
pathways leads to cell death, whereas loss of function in either
one of these pathways does not affect viability. The prototypical
synthetic lethal interaction was described for the BRCAI and
BRCA2 mutations, which are synthetic lethal with loss of
PARP-1 (Bryant et al., 2005; Farmer et al., 2005). Mechanistically,
inhibition of PARPI blocks BER and leads to accumulation
of SSBs, which are converted to DSBs in replicating cells
(Bryant et al., 2005; Farmer etal., 2005). These DSBs cannot
be properly repaired due to the HR defect in BRCA1/2 mutant
cells, which results in cytotoxicity Recent studies provided
evidence that PARP is additionally required for restarting of
stalled replication forks (Bryantetal., 2009; Petermann etal.,
2010). PARP1 accumulates at stalled replication forks and
recruits Mrell to catalyze DNA-end processing for replication
restart and recombination. As a consequence, PARP inhibition
also results in replication forks collapse, which again leads to
accumulation of toxic DNA structures in HR-deficient cells
(Schlacher etal., 2011). The finding that BRCA1/2 mutant
cells are selectively sensitive to PARP inhibition constituted
the starting point for several clinical trials and the clinical
development of various PARP inhibitors. In 2005, the first
phase I clinical study investigating a PARP inhibitor (Olaparib,
AZD2281) demonstrated that more than 90% of PARP enzymatic
activity could be inhibited, which was well tolerated and did
not increase toxicity in the BRCA1/2 mutation carriers group
(Fong et al., 2009). More importantly, this study showed clinical
benefit of PARP inhibition in patients with BRCA1/2 mutations
(Fong etal., 2009). This early success prompted the clinical
development of various PARP inhibitors as single agents or
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as part of combined treatment with DNA damaging agents in
phase II clinical trials (Audeh et al., 2010; Tutt et al., 2010). In
addition the reported beneficial effect of PARP inhibition in
breast and ovarian patients with BRCAI/2 mutations boosted
the interest in this type of therapies for other tumors types,
including colon cancers, prostate cancer, and gastric cancer
(Barreto-Andrade et al., 2011; Sebastian de Bono etal., 2011;
Davidson et al., 2013). Results of preformed or ongoing clinical
trials with PARP inhibitors are therefore eagerly awaited.

The preclinical studies and early clinical studies raised
high potential for therapeutic use of PARPI inhibitors, but
unfortunately PARP inhibitors have not yet delivered the clinical
success that preclinical studies promised. Several findings can be
attributed to these discrepancies.

Firstly, it appears difficult to effectively select patients
for PARP1 inhibitor treatment. The most straightforward
strategy to select patients is to obtain the mutation status
of BRCAI/2 in cancer specimens. However, BRCAI or
BRCA2 are not only inactivated through gene mutation,
also DNA hypermethylation of the genes is frequently reported
for several cancers (Estelleretal., 2000; Riceetal., 2000;
Cancer Genome Atlas Research Network, 2011). Patients with
hypermethylated BRCAI/2 genes may benefit from PARP1
inhibitors, but may be missed when only BRCA1/2 mutations
status is analyzed. In contrast, when selection criteria are not
sufficiently strict, effects of PARP inhibitors may be missed.
For example, some studies included all TNBCs, whereas
only a subset of these patients may harbor HR defects, and
may therefore have clinical benefit from PARP inhibitors
(Gelmon etal.,, 2011). A straightforward, but labor-intense
solution to successfully implement PARP inhibitors is to
functionally assess HR efficiency in fresh tumor biopsies
(Willers et al., 2009). Alternatively, measuring consequences
of defective HR, such as genome-wide copy number variation
analysis using aCGH may identify tumors with defective HR
(Vollebergh etal., 2011). Besides selecting BRCA1/2 mutant
tumors, also mutation of other HR genes results in cancers with
similar characteristics, including PALB2 (Rahman et al., 2007) or
RADS51C (Clague et al., 2011). Mutation of these genes appeared
to result in PARPI inhibitor sensitivity (Loveday etal., 2012;
Min et al., 2013). Also novel regulators of HR may be important
in this respect, such as the negative regulator of Brcal called
ID4 (Turner et al., 2007). Whether ID4 mutations or mutations
in other novel HR components are frequently found in cancers
needs to be studies. Clearly, these observations indicate that
there is a strong need to reliably identify cancers with defective
HR repair, in order to stratify patient for therapies that target
HR-deficient cancers, including PARP1 inhibitors.

Secondly, not all PARP inhibitors appear to be very efficient
PARP inhibitors in vivo. Moreover, some PARP inhibitors have
additional effects. For instance, iniparib (BSI-201) also inhibits
other enzymes, including GAPDH (Baueretal., 2002). It is
therefore difficult to verify whether observed clinical benefit in
phase II study was achieved exclusively due to PARP inhibition.

A third complicating factor in developing PARP inhibitors for
HR-deficient cancers, is the recent observation that secondary
mutations may dramatically alter the HR defect of BRCA1/2

mutation cancers. These secondary mutations can be sub-
classified into two categories. The first category consists of
intragenic secondary mutations in affected BRCA1 or BRCA2
alleles that have been described to restore their reading frame
(Sakai et al., 2008; Swisher et al., 2008) and result in resistance
to cisplatin. The second category involves secondary mutations
in other genes, which have been shown to reverse a HR
defect. Mutation of TP53BPI for instance, reverses the HR
defect in BRCAI mutant cancers and render these cancers
resistant to PARP1 inhibition. More recently, Rifl was shown to
counteract Brcal function, and Rifl mutations could rescue the
genomic instability of mouse Brcal~/~ cells (Bouwman et al.,
2010;  Chapmanetal, 2012;  Di Virgilioetal,  2013;
Escribano-Diaz et al., 2013; Feng et al., 2013; Zimmermann et al.,
2013). Whether Rifl mutations also account for therapy
resistance in BRCAI mutant cancers remains to be tested. What
is clear is that BRCA 1/2 mutations do not per se reflect a defect in
HR, and that functional testing of HR capacity may be required
to reliably classify the DNA repair defect in cancers.

Future Perspectives

If HR function could be locally inhibited in cancer cells,
this would allow exploitation of the enhanced sensitivity for
platinum-containing chemotherapeutics, radiotherapy, or PARP
inhibition. The most straightforward approach would be to
directly target HR components. The identification of druggable
HR genes is therefore actively being pursued. One approach is to
chemically inhibit Rad51, the most downstream HR component.
Recent studies making use of high-throughput screens have
identified chemical Rad51 inhibitors, which increased the
sensitivity of glioblastoma cells to alkylating agents (Quiros et al.,
2011), and were shown to sensitize various human cancer cells to
DNA crosslinking agents, including mitomycin C (Budke et al,,
2012).

In addition to directly targeting HR components, the reports
described in this review show that modulation of regulatory
pathways controlling HR components may be useful as well
to achieve an HR-deficient phenotype and thereby sensitize
tumor cells to DNA damaging agents (an overview of cellular
pathways that regulate HR repair is presented in Figure 2). This
has been elegantly shown in pre-clinical studies using cell cycle
modulators, hyperthermia, DDR inhibitors and Hsp90 inhibitors.
Novel approaches, including genome-wide siRNA screens and
proteomic interaction maps, may add novel regulators to this
growing list of potential therapeutic targets that control HR
and warrant translation of these novel targets to uncover their
therapeutic potential.
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