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Increased concern for the welfare of pedigree dogs has led to development of selection
programs against inherited diseases. An example is canine hip dysplasia (CHD), which
has a moderate heritability and a high prevalence in some large-sized breeds. To
date, selection using phenotypes has led to only modest improvement, and alternative
strategies such as genomic selection (GS) may prove more effective. The primary aims of
this study were to compare the performance of pedigree- and genomic-based breeding
against CHD in the UK Labrador retriever population and to evaluate the performance
of different GS methods. A sample of 1179 Labrador Retrievers evaluated for CHD
according to the UK scoring method (hip score, HS) was genotyped with the lllumina
CanineHD BeadChip. Twelve functions of HS and its component traits were analyzed
using different statistical methods (GBLUP, Bayes C and Single-Step methods), and
results were compared with a pedigree-based approach (BLUP) using cross-validation.
Genomic methods resulted in similar or higher accuracies than pedigree-based methods
with training sets of 944 individuals for all but the untransformed HS, suggesting that
GS is an effective strategy. GBLUP and Bayes C gave similar prediction accuracies
for HS and related traits, indicating a polygenic architecture. This conclusion was also
supported by the low accuracies obtained in additional GBLUP analyses performed
using only the SNPs with highest test statistics, also indicating that marker-assisted
selection (MAS) would not be as effective as GS. A Single-Step method that combines
genomic and pedigree information also showed higher accuracy than GBLUP and Bayes
C for the log-transformed HS, which is currently used for pedigree based evaluations in
UK. In conclusion, GS is a promising alternative to pedigree-based selection against
CHD, requiring more phenotypes with genomic data to improve further the accuracy of
prediction.

Keywords: genomic selection, hip dysplasia, dogs, Labrador Retrievers

Introduction

Canine hip dysplasia (CHD) is a complex disease that entails deformation of the hip joint, lead-
ing to secondary osteoarthritis and chronic cartilage degeneration. Two possible (non-mutually-
exclusive) causes have been proposed for this disease (Todhunter and Lust, 2003): excessive laxity
of the hip joint and abnormal endochondral ossification, which is a major component of bone tissue
development. In addition, many environmental factors could influence the development of the hip.
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The interaction of these factors leads to a condition with no cure,
although it can be improved by surgery with some indication that
modifications of diet may also assist in alleviating the condition.

The prevalence of the disease varies across breeds and coun-
tries and is estimated to be 25-40% in the UK Labrador Retriever
(Coopman et al., 2008). In the UK, the British Veterinary Associ-
ation and Kennel Club (BVA/KC) screening method is performed
to diagnose CHD. Under this method, the pelvic area of animals
older than 1 year is radiographically screened for nine different
categorical traits, and their sum for both hips provides a hip score
(HS) between 0 and 106, with 0 being a perfect unaffected hip
and 106 the maximum degree of CHD (Willis, 1997). Three of
these nine traits have higher heritabilities and are mainly related
to joint laxity [Norberg Angle (NA), Subluxation (SUB), and Cra-
nial Acetabular Edge (CrAE)], whereas the others are related
to secondary osteoarthritis and are thus subject to detrimental
age effects. HS has a highly skewed distribution, and thus a log-
transformed measure [THS, log.(1 + HS)] has been suggested to
be more appropriate for analysis and as a selection target (Lewis
et al., 2010b). Although all components have the same weight-
ing in HS, a selection index with component-specific weightings
would provide a more accurate predictor of genetic merit for use
in breeding programs (Lewis et al., 2010b).

Until recently, breeding programs against CHD were primar-
ily based on phenotypic selection below a given threshold, usually
the mean or mode of the population trait values (HS or equiv-
alent), and this approach has provided only moderate success
(Leppanen and Saloniemi, 1999; Malm et al., 2008; Hou et al,,
2013). Thus, other selection schemes should be considered; for
example, the use of Best Linear Unbiased Prediction (BLUP)
using phenotypes and pedigree, MAS or genomic selection (GS).
The use of genomics, in particular with GS, offers the possi-
bility of developing accurate prediction of genetic merit both
between and within full-sib families before selection decisions for
breeding need to be made. However, the accuracy of the genomic
estimated breeding values (GEBV) for a population depends pri-
marily on the size of the training set and on the genetic architec-
ture of the trait, where the major characteristic of the latter is the
number of gene effects contributing to the total genetic variance
(Daetwyler et al., 2010). Several analytical approaches have been
proposed to predict genomic values under different genetic archi-
tectures: some methods assume a single prior distribution for all
marker effects, e.g., additive genetic effects normally distributed
each with identical variance as in ridge regression, equivalent to
GBLUP (Meuwissen et al., 2001), while others assume a mixture
of distributions of marker effects, e.g., Bayes B or C (Meuwissen
et al., 2001; Habier et al., 2011; Gianola, 2013).

While other studies of CHD have been based entirely on phe-
notypic information (e.g., Lewis et al,, 2010a,b) or were per-
formed to identify QTLs, this is the first study to assess the
potential effectiveness of genomic-based selection methods and
to compare this approach with alternative approaches. We assess
the potential impact of GS against CHD by using real data in a
large Labrador Retriever population and compare the accuracy of
pedigree-based prediction with three different genomic predic-
tion methodologies: GBLUP, Bayes C and a Single-Step method
that integrates genomic and pedigree information (Legarra et al.,

2009; Misztal et al., 2009). These models were applied to HS, THS,
the three components associated with joint laxity and a selec-
tion index based on weighted component scores (Lewis et al.,
2010b). The impact of marker number and marker selection on
prediction accuracy for THS was also assessed.

Materials and Methods

Animals and Data

This study is based on a sample of 1500 Labrador Retrievers born
between 2002 and 2008 that had been previously scored for hip
dysplasia following the UK scoring method, as part of the nor-
mal care through participation in the BVA/KC scheme. Nine HS
components were evaluated for each separate hip (Willis, 1997):
NA, SUB, CrAE, Dorsal Acetabular Edge (DAE), Cranial Effective
Acetabular Rim (CrEAR), Acetabular Fossa (AF), Caudal Acetab-
ular Edge (CAE), Femoral Head and Neck Exostosis (FHNE), and
Femoral Head Recontouring (FHR). Owners of animals provided
buccal DNA swabs and filled in a questionnaire with details of
sex, neuter status, body measurements and weight, exercise lev-
els, lifestyle, activity and concurrent health problems. The study
focused on the following traits: total HS, transformed total hip
score [THS; loge(1 4+ HS)] and the three components mainly
related with joint laxity: Norberg angle (NA), Subluxation (SUB)
and Cranial Acetabular Edge (CrAE), which were analyzed on
both hip sides (left, right, and total) (referred to as trait_right,
trait _left, and trait _total).

The optimum index for selection against CHD, proposed by
Lewis et al. (2010b), was also evaluated. This index exploits the
observation that the component traits to HS differ in their her-
itability, and hence their value for estimating breeding values.
The weights associated with the individual components are the
following: NA, 0.538; SUB, 0.546; CrAE, 0.121; DAE, —0.184;
CrEAR, —0.126; AF, —0.310; CAE, —0.186; FHNE, 0.371; and
FHR, 0.564.

The pedigree used in the quantitative genetic analyses
included the genotyped animals (1179, see below) and all of
their ancestors in the Kennel Club pedigree. This resulted in
an extended pedigree of 23,041 animals. Included within this
extended pedigree was a total of 4402 animals with recorded
HS phenotypes, including those with genotypes. The pedigree
obtained was deep, with an average number of 10.9 generations
separating an individual from its furthest ancestor.

SNP Genotyping and Quality Control

Extraction of DNA from Isohelix buccal swabs was performed
according to a standard protocol (Qiagen, 2012). DNA was re-
suspended in water and quantified using a Nanodrop and stored
at 4°C until use.

Samples were genotyped using the Illumina CanineHD Bead-
Chip containing 173,662 SNPs (Illumina, 2010), and quality con-
trol was performed to assure both sample and marker quality
(Turner et al.,, 2011): 275 samples with a sample call rate lower
than 90% were removed, and a further 27 animals were removed
due to potential genotyping errors, detected as inconsistencies
between the genomic and pedigree relatedness of individuals or
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between recorded sex and sex determined from the genotyping.
Previous analysis had shown an increase in HS in animals older
than 5 years, and in order to remove this age-related bias, 19 ani-
mals older than 5 years when scored were also removed, resulting
in a final sample size of 1179 animals.

A total of 59,260 markers were discarded after analysis with
Genome Studio software (Illumina Inc, San Diego) due to low call
rate (<98%), low reproducibility (GTS < 0.6), low or confounded
signal (ABR mean < 0.3) and low minor allele frequency (MAF
< 0.01). SNPs showing deviation from Hardy-Weinberg equilib-
rium (HWE), assessed by PLINK (Purcell et al., 2007), were also
removed. The significance threshold for deviations from HWE
was P < 4.48 x 1077, calculated by applying a Bonferroni correc-
tion to obtain a nominal P-value of 0.05. In addition, SNPs on the
sex chromosomes were removed. This resulted in 106,282 SNPs
for further analysis.

Variance Components and Heritability Estimation
The full pedigree was reduced to a 5 generation pedigree of 10,869
animals for the 1179 genotyped individuals. The genotyped indi-
viduals were offspring of 725 sires (1.63 per sire) and 1069 dams
(1.10 per dam). Variance components for all traits were calcu-
lated using REML for the genotyped individuals with ASReml3
(Gilmour et al., 2009) using only pedigree information, from the
following model:

y=1lp+Xb+a+e

where y is a vector of phenotypic records; u is the overall mean,
with 1 a vector of 1s; X is the incidence matrix relating the fixed
effects to the phenotypes; b is the vector of fixed effects; a is the
vector of random additive polygenic effects assumed to have a
multivariate Normal (MVN) distribution MVN(0, 0,,2A), where
A is Wright's numerator relationship matrix (Mrode and Thomp-
son, 2005); and, & are random residuals assumed to be distributed
MVN(0, 0,.21), where I is an identity matrix. Fixed effects include
sex (1 d.f.), levels of daily exercise (measured on a categorical
scale from 1 to 4; 1: less than 1h, 2: 1-2h, 3: 2-3h, 4: more
than 3 h), and a cubic smoothing spline fitted for the dog’s age at
scoring in days (White et al., 1999). Neuter status and body mass
index (girth/length?) were also examined and tested in the mod-
els and showed no significance; these factors were not included
in the final model. Heritability was calculated for all traits as
h = aaz/(au2 + 062).

Breeding Value Prediction

The performance of genomic prediction was evaluated by exam-
ining the accuracy of predicted breeding values (EBV) obtained
by four different statistical methods using a five-fold cross-
validation procedure. The term EBV will be used irrespec-
tive of whether or not genomics contributed to the prediction.
The methods used were BLUP, GBLUP, Bayes C and a Single-
Step method that combines pedigree and genomic information
(Legarra et al., 2009; Misztal et al., 2009). Single-Step and BLUP
used the phenotypic and pedigree information available from
the 3223 additional records in the extended pedigree, while
GBLUP and Bayes C used only the phenotypic information on the

genotyped animals. The predictions were obtained using adjusted
phenotypes after correction for the fixed effects of age and sex,
with the exception of those obtained with Single-Step, which were
corrected for sex alone as this was the only information available
for all records.

The cross validation was conducted by dividing the 1179 geno-
typed animals into five subsets of approximately 236 individuals
(four sets of 236 and one of 235). Genomic predictions were
computed for each subset (validation set) based on estimated
SNP effects from a pool of the other four subsets (training set).
The predictive ability (PA, accuracy of EBVs) was computed for
each validation set as the Pearson correlation of the EBV with
the adjusted phenotypes of the validation set (r), divided by the
square root of h?, as estimated in Variance Components and Her-
itability Estimation, to adjust for the upper limit of accuracy of a
phenotype/residual (Luan et al., 2009).

BLUP

The BLUP method fits pedigree relationships as random effects
in the model and does not include any genotype information:

y=lp+a+e

where y is the vector of adjusted phenotypic records; w is the
overall mean with 1 a vector of 1s; a is the vector of random
additive polygenic effects, and ¢ is the vector of residuals. Vec-
tors a and ¢ were assumed to follow MVN distributions given
by a~ MVN(O0, 042A) and € ~ MVN(0, o,%I), respectively,
where 7 ;% is the genetic variance associated with A, the pedigree-
based numerator relationship matrix, o, is the environmental
variance, and I is the identity matrix.

GBLUP

The GBLUP method (Meuwissen et al., 2001) is equivalent to esti-
mating individual SNP effects using ridge regression and assum-
ing such effects to be mutually independent. For the current
data set it was computationally more efficient than implementing
ridge regression to fit a model that is similar to BLUP in 2.4.1,
but where a is assumed to follow MVN(0, ¢,2G), where G is
the genomic relationship matrix rather than the pedigree based
A. Estimation of G followed Van Raden’s Model 2 (Van Raden,
2008), with G = 7 Z/n, where n is the number of SNPs. Element
zij of Z is the standardized number of copies of the reference
allele for the i SNP of individual j. For SNP i with a frequency of
the reference allele p; among genotyped individuals, standardiza-
tion was achieved by subtracting the mean (2p;) and then scaling

by 1/,/2pi (1 — pi). GBLUP was implemented using ACTA (Gray
et al., 2012).

Bayes C

This method was first labeled Bayes C by Habier et al. (2011)
but it had been previous implemented (Pong-Wong and Hadji-
pavlou, 2010). In contrast to GBLUP where all effects are assumed
to be drawn from a common variance, in the Bayes C method a
proportion 1-7r of the SNPs is assumed to have no effect, and a
proportion 7 is assumed to have effects with a common variance
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odyp- If © = 1, then Bayes C will be equivalent to GBLUP. The
following model was fitted:

y=1lp+Za+e

where y is the vector of adjusted phenotypic records; u is the
overall mean with 1 a vector of 1 s; the elements of Z, z; ;, are
the counts of a reference allele for SNP i of individual j, centered
by subtracting the mean (2p;), but not scaled; and « is the vector
of allelic effects; and ¢ a vector of random residuals assumed to
be distributed MVN(0, o',°1).

This model was implemented using Gibbs sampling, where
the parameters osnp? and 7 were estimated within the analy-
sis (Pong-Wong and Hadjipavlou, 2010). The prior distribution
for o snp? was a bounded, flat prior and the prior distribution
for m was a Beta(2,2). For each analysis, the first 40,000 cycles
were discarded as a burn-in period, with a following 30,000 cycles
recorded every 10 cycles, giving a total length of chain = 340,000
cycles. The parameter estimates presented are the means of the
posterior distributions.

Single-Step Method

The Single-Step method implemented here modifies the BLUP
model (see BLUP) based on the pedigree relationship matrix, A,
to account for genomic information, and uses all available phe-
notypes, including those of ungenotyped individuals as well as
genotyped individuals. The model is similar to BLUP but a is
assumed to be MVN(0, o,2H). H is obtained from the numer-
ator relationship A for all individuals with phenotypes and G the
genomic relationship matrix for all phenotyped individuals with
genotypes (see GBLUP above) by: (i) setting H~! = A~! and then
(ii) whenever individuals i and j both have genotypes, the element
of H~! is replaced by the corresponding element of G~". Further
details are given by Misztal et al. (2009).

Evaluation of Effects of Pre-Selection of Markers
on Accuracy of Prediction

To evaluate the impact of SNP density on prediction accuracy,
further GBLUP analyses for THS were performed on random
subsets of SNPs (1%, 1063 SNPs; 10%, 10,629; 20%, 21,257; 50%,
53,141; and 75%, 79,712). SNPs were chosen using the—thin
option in PLINK, which extracts a given percentage of SNPs
chosen at random. These SNP subsets were then used to cal-
culate genomic relationships, instead of all available SNPs, and
GBLUP was carried out following 2.4.2. Genomic predictions
were then obtained following the cross-validation procedures
described above for each validation set based on estimation of
SNP effects from the corresponding training set.

An alternative approach to marker pre-selection was tested by
choosing SNPs based on associations with the trait (s) of interest,
instead of at random. To evaluate this, top SNPs were identified
following a GWAS analysis within each training set and ranked
on statistical significance. Subsets of SNPs of different sizes were
then chosen as above: 1%, 1063 SNPs; 10%, 10,629; 20%, 21,257;
50%, 53,141; and 75%, 79,712 based on the ranking. The same
procedure as for randomly-selected SNPs was then followed to
examine the accuracy of genomic predictions.

Results

Variance Component and Heritability Estimation
The estimates of h? obtained for all traits are shown in Table 1.
The magnitudes of the estimates are broadly similar to those
of Lewis et al. (2010a,b) for those traits common to both stud-
ies. The standard errors in this study are much larger reflecting
the smaller number of records (1179 vs. 11,928). As observed by
Lewis etal. (2010a,b), the untransformed HS had a greater h? than
THS, and CrAE had lower 4? than other components. Unlike
Lewis et al. (2010b) the right and left scores for components are
presented as well as the total or mean score, and Table 1 shows
no systematic advantage to measurements on one side compared
to the other. The heritability of the total component was always
estimated to be greater than the average of those for the two sides,
indicating a benefit from averaging out the environmental influ-
ences experienced by the individual dog that are common to both
sides.

Regarding the fixed effects, SUB total, SUB right and THS
showed greater scores in males compared to females (P < 0.05),
supporting the findings of Lewis et al. (2010b), whilst this differ-
ence was statistically non-significant for other traits. Trends with
age were weak over the range of ages included in this study, and
were statistically non-significant.

Accuracy of Genomic Prediction

The values of r and PA for genomic and pedigree-based pre-
dictions for individuals in the validation sets, averaged over the
five validation sets, are presented in Table 2. CrAE traits gener-
ally had the lowest correlations, with CrAE_left giving the lowest
values (r ranging from 0.04 to 0.07). The highest correlations
were obtained for SUB_total (r ranging from 0.24 to 0.30), THS
(r ranging from 0.21 to 0.25) and the optimum selection index
(r from 0.20 to 0.29). The PA are equivalent to the accuracy of
predicting the breeding value of a newborn individual prior to

TABLE 1 | Heritabilities (h2), additive variances (aaz) and residual variances
(092) for the different traits computed by REML analysis.

h2 og ag h?
THS 0.27 (0.11) 0.11(0.04) 0.29 (0.04) 0.35(0.02)
HS 0.59 (0.13) 73.13(17.33) 51.12 (15.08) 0.50 (0.02)
NA right 0.29 (0.11) 0.56 (0.22) 1.41(0.21) -
NA left 0.52 (0.12) 1.10(0.27) 1.01(0.24) -
NA total 0.44 (0.12) 2.88 (0.81) 3.65 (0.73) 0.37 (0.09)
SUB right 0.28 (0.10) 0.29 (0.10) 0.77 (0.10) -
SUB left 0.23 (0.10) 0.33(0.12) 0.78 (0.11) -
SUB total 0.36 (0.10) 1.09 (0.33) 1.95 (0.31) 0.38 (0.03)
CrAE right 0.19 (0.10) 0.08 (0.04) 0.32 (0.04) -
CrAE left 0.06 (0.08) 0.03 (0.04) 0.41 (0.04) -
CrAE total 0.15(0.10) 0.21(0.14) 1.23(0.14) 0.21(0.02)
Index 0.48 (0.12) 2.67 (0.70) 2.96 (0.63) -

Standard errors are given in parenthesis.
When available, comparison with heritabilities (h2) described by Lewis et al. (2010a,b) for
a pedigree of 62,683 animals are given.
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TABLE 2 | Estimates of the correlation of the predicted EBV with phenotypes, averaged over the five validation sets (F) and the predictive abilities

(PA) for the estimated breeding values.

r PA

BLUP GBLUP BayesC SS BLUP GBLUP Bayes C SS
THS 0.21 0.21 0.21 0.25 0.41 0.40 0.40 0.49
HS 0.19 0.15 0.15 0.16 0.25 0.19 0.20 0.20
NA_right 0.08 0.15 0.14 0.08 0.15 0.27 0.25 0.15
NA_left 0.16 0.20 0.21 0.19 0.22 0.28 0.29 0.26
NA_total 0.15 0.21 0.21 0.18 0.23 0.32 0.31 0.28
SUB_right 0.17 0.22 0.22 0.21 0.33 0.42 0.42 0.41
SUB_left 0.18 0.14 0.15 0.20 0.33 0.26 0.28 0.37
SUB_total 0.24 0.26 0.26 0.30 0.40 0.44 0.44 0.49
CrAE_right 0.06 0.13 0.13 0.09 0.14 0.31 0.29 0.22
CrAE_left 0.04 0.06 0.06 0.07 0.15 0.26 0.23 0.27
CrAE_total 0.06 0.12 0.11 0.08 0.15 0.31 0.30 0.22
Index 0.24 0.24 0.25 0.29 0.38 0.38 0.39 0.45
s.e. min 0.02 0.01 0.01 0.01
S.e. max 0.05 0.03 0.08 0.04

PA was obtained from r by dividing it by the square root of the heritability. Results are presented for HS and its related traits using several evaluation methods: pedigree-based BLUR,
GBLUR, Bayes C, and Single-Step (SS). Bold indicates the highest PA for each trait. Ranges of standard errors are presented in the last rows.

obtaining its own phenotype, either as the parent-average EBV
when using BLUP, or from its own genotype when using GBLUP
or Bayes C, or from both its own genotype and the pheno-
types of relatives when using Single-Step. For GBLUP and Bayes
C the information for prediction comes only from the train-
ing sets. For BLUP and Single-Step the information comes both
from the training set and from other ancestors that were phe-
notyped but not genotyped, but excluding all phenotypes in the
validation set.

Statistically significant predictive correlations were obtained
for all traits with the exception of CrAE left. Methods using
the genomic information consistently gave higher accuracy than
BLUP across all traits with the exception of the untransformed
HS. Across the 11 other traits, Bayes C only outperformed both
GBLUP and Single-Step for NA_left, although the differences
in PA between Bayes C and GBLUP was at most 0.03. For the
Index, THS, SUB_left and SUB_total there were larger bene-
fits from using the additional ancestral information in Single-
Step, but GBLUP performed better for other traits. The dif-
ferences between Single-Step and GBLUP appear to be related
to the quality of the pedigree information as these differences
were correlated with the accuracy obtained from pedigree-based
BLUP.

Despite the higher h? for HS than THS, the accuracies mea-
sured by all methods were greater for THS, demonstrating the
greater predictive ability from using this trait. The advantage
of THS over HS as a potential selection target was previously
argued by Lewis et al. (2010a) in terms of the less-skewed
distribution of THS and the more linear relationship between
offspring trait value and mid-parent trait value for THS than
HS. For THS the greatest estimated PA was 0.49 using Single-
Step, hence explaining approximately a quarter of the genetic
variance.

Evaluation of Effects of Pre-Selection of Markers
on Accuracy of Prediction

When using randomly selected SNPs, both r and PA for THS
increased as the SNP density increased but a plateau had been
reached when 10% of the SNPs passing QC were included, cor-
responding to ~10,000 SNPs (Figure 1). This concords with
previous studies in livestock (Hayes et al., 2010; Ilska et al.,
2014), where increasing SNP density in GLUP showed strongly
diminishing returns.

Using the most statistically significant SNPs from a GWAS
conducted within each of the training populations led to a
reduction in r relative to the performance of GLUP using all
SNPs across the whole of the genome. The loss of accuracy
became more pronounced as the number of SNPs in the analy-
sis decreased from 75% down to 1% (Figure 2). For 75% to 10%
the accuracies obtained with SNPs ranked by GWAS were lower
than for randomly chosen SNP (Figure 1). However, with 1% of
SNPs, the accuracy obtained from using the GWAS-ranked SNPs
was greater than using the same number of randomly-chosen
SNPs, although the accuracy was only 0.75 of that obtained
using all SNPs. If the SNPs identified from GWAS with the full
dataset, including both training and validation sets, were used
for genomic prediction in the validation set, accuracies were sub-
stantially higher and increased as the number of SNPs decreased
(Supplementary Figure 1), consistent with the previously docu-
mented upwards bias for markers identified in this manner (e.g.,
Wray et al,, 2013).

Discussion

The primary aim of this study was to evaluate the potential for
selection based on genomic markers against CHD and to evaluate
different genomic-based approaches. Our results demonstrate
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FIGURE 1 | Impact of SNP density on prediction accuracy. GBLUP
correlations (r) for THS for different numbers of SNP markers; markers were
chosen at random (dashed line) or based on p-values from GWAS performed
in the training populations (straight line). The number of analyzed SNPs
(crosses) were 1% (1063), 10% (10,629), 20% (21,257), 50% (53,141), 75%
(79,712), and 100% (106,282).

that even with training sets as small as 940 animals, the predic-
tive accuracy of genomic methods was greater than that from
using pedigree alone for almost all CHD-related traits. In con-
trast to the use of pedigree based methods, where accuracy
is largely static across generations and determined by family
structures amongst recorded individuals, the genomic accura-
cies are expected to increase with the size of the training sets
used (Daetwyler et al., 2008; Ilska et al., 2014). The only trait
for which a benefit from genomics was not demonstrated was
the untransformed HS which is a trait with a distribution that is
highly skewed (Lewis et al., 2010a). These authors demonstrated
that there was a substantial departure from a linear regression of
offspring on mid-parent when using HS, which undermines its
suitability as a trait for direct selection. In this study the trans-
formation of HS using logarithms (THS) and the reweighting
of its components following selection index theory (Index) both
benefited from genomics with predictive accuracies substantially
greater than HS despite the nominally greater estimate of h? for
HS.

The successful application of genomic evaluation of complex
traits in livestock breeding has been based primarily upon the
simultaneous estimation of large numbers of SNP effects to esti-
mate full breeding values. This contrasts with the approach of
identifying a small number of markers in strong linkage dis-
equilibrium (LD) with several QTL, which will only explain
a fraction of the genetic variance in complex traits. However,
estimating a large number of marker effects, generally greatly
exceeding the number of phenotype records, has required the
development and application of models concerned with vari-
able selection or shrinkage procedures to cope with this problem.

In this study, both a shrinkage method, GBLUP, and a variable
selection method, Bayes C, were implemented. Bayes C offers bet-
ter predictive accuracy than GBLUP when the number of QTLs
influencing the trait is small compared to M, (Daetwyler et al.,
2010), where M, is the number of independent segments in the
species genome (Goddard, 2009), which in turn is related to the
extent of LD observed. For this collection of traits the predic-
tion accuracies for GBLUP and Bayes C were very similar for
all traits, which suggests a genetic architecture concordant with
a large number of genes with small effects, with no dominating
QTL, as suggested by previous studies of CHD (Zhu et al., 2012;
Sanchez-Molano et al., 2014).

This conclusion of a complex genetic architecture is consis-
tent with the comparison of GS and marker-assisted selection
(MAS) approaches. Including only SNPs identified as most sig-
nificant from GWAS from gave lower accuracies than GBLUP
for all traits. At low SNP densities, the use of top GWAS SNPs
gave higher accuracies than randomly chosen SNPs. However,
beyond densities of around 4000 markers, the use of the top SNPs
gave lower accuracies than the random SNPs. This result may
be anticipated. First as the proportion of total SNPs is increased
in the predictor, the fraction of these which have a severe over-
estimate in their magnitude of effect, including false positives,
will increase. Consequently, within a relatively small training
set, the significant SNPs characterize the features that are pecu-
liar to the training set data, but do not occur in the validation
set, and these errors are exposed in the validation set. An addi-
tional hypothesis is related to the fact that the top-SNPs tend to
be found in LD blocks and thus cover fewer discrete regions of
the genome than do the random SNPs. As the total number of
SNPs used for genomic prediction increases (along the x-axis of
Figure 1), the number of discrete blocks would increase propor-
tionately for the random SNPs while this would not be the case for
the top SNPs, due to the correlation between p-values of linked
SNPs. This would lead to a greater coverage of discrete regions
of the genome by the random SNPs. Consistent with the first
explanation, an increase in accuracies was observed for all traits
when the top SNPs were identified with the full dataset (i.e., the
training plus the validation set), however this approach provides
upwardly-biased accuracy estimates, capturing features specific
to the training set, and, as observed by Wray et al. (2013), these
would not be expected to be maintained in an independent val-
idation set (as shown here), or in future generations. While it is
clear that genome-wide markers provide much higher accuracy
than subsets of markers, a smaller SNP array could be effec-
tive under certain cost scenarios and our results suggest that a
targeted set of 1000 SNPs would give better results than a ran-
dom set of the same number of markers. As more information
accumulates, more top SNPs may be able to be incorporated to
boost the accuracy of low density chips. Ultimately the greatest
accuracy would come from knowing the QTL and constructing
relationships based on these variants alone, and improvements
in accuracy have been reported for an approach that gives higher
weighting when constructing relationships to the top SNPs (e.g.,
BLUP|GA; Zhang et al. (2014) but, without knowledge of all of
the QTL, genome-wide marker coverage would still be required
to achieve maximum accuracy. These results show that there
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remains scope for methods that better incorporate information
on associations between traits and specific SNPs in an intelligent
manner.

Implications for Implementation

Although purely phenotype-based selection schemes have made
some progress in reducing CHD (Leppanen and Saloniemi, 1999;
Malm et al., 2008; Hou et al., 2013), the rates of improvement
have been modest and thus it is important to consider other
possibilities for a disease that is both common and debilitating.
This study demonstrates that a genomic approach would increase
the accuracy of breeding value estimation and thus the rate of
improvement compared to either pedigree-based schemes pro-
ducing BLUP-EBVs or a phenotype-based scheme (mass selec-
tion below a phenotypic threshold). A further implementation
benefit is that GS allows distinction among littermates at birth,
contrasting with BLUP-EBVs where estimates will be identical
for newborn littermates and with phenotypic selection where the
selection criteria is obtained only after the dog is 1 year old.
This is particularly relevant for dog breeders who make decisions
about breeding early in the dog’s life as it would increase selection
opportunities and intensity through the possibility of selection
within families. An additional advantages of a GS scheme are the
potential to generate more gain for the same rate in inbreeding
(Daetwyler et al., 2007).

One disadvantage of GS is that the EBV accuracy is expected to
decline over time due to the decay of LD between QTL and mark-
ers and so requiring the re-estimation of the marker effects every
few generations (Solberg et al., 2009). This risk would be greater
with low-density SNP sets that do not contain the QTL them-
selves or SNPs in strong LD with them. However, this decrease
in accuracy is expected to be offset by increases in accuracy due
to increases in the size of the training set and continuing re-
estimation over time. Thus, as long as the training set contin-
ues to grow, it is likely that accuracies will remain higher for a
genomic-based breeding scheme than a pedigree-based scheme.

The finding that GBLUP is a competitive method for evalua-
tion is beneficial for implementation for two reasons. Firstly, the
mixed model approach based on a genomic relationship matrix
is widely implemented in livestock and requires the least soft-
ware development beyond existing pedigree-based evaluations
(The Kennel Club, 2014). Secondly, the model can be extended
to utilize not only the genomic data available, but also the data
from dogs phenotyped but not genotyped, as demonstrated here
with Single-Step. This will boost accuracy and will be important
in initial stages of implementation, allowing the use of all pheno-
type information collected whilst genotyped training sets grow.
Several “single-step” approaches to combining information from
genotyped and ungenotyped animals extensions have been pub-
lished (Misztal et al., 2009; Meuwissen et al., 2011). In this study
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the method of Misztal et al. (2009) was applied and benefits in
accuracy were observed for several traits even though the pedi-
gree structure of the data available was weak (e.g., small half-sib
family sizes). For log-transformed hip score (THS), the accuracy
obtained using this relatively small training set with Single-Step
was greater than what is currently achieved in the UK. The single-
step method of Misztal et al. (2009) suffers from bias and alter-
native methods can be developed to avoid this bias (Meuwissen
etal., 2011).

An important result from our study relates to the number of
markers required for high-accuracy GEBVs; only ~10,000 ran-
domly selected SNPs were required to give accuracies close to
those for the complete set of ~106,000. Thus, were a 10K SNP
chip available at a lower price than the HD array, it would be a
cost-effective option. Such a result is consistent with results from
other species, for example Hayes et al. (2010) in cattle and Ilska
et al. (2014) in broiler chickens. If an even lower-density array
of random SNPs were available (e.g., 2K SNPs) at a correspond-
ingly low price, then this could offer further cost benefits, either
by: use in place of the high-density array, but recognizing that
there would be a loss in accuracy that would need to be offset
by the cheaper cost and encouraging more widespread record-
ing; or by use of a mixed genotyping scheme. The latter would
involve strategically chosen individuals genotyped with the HD
array and others with the low-density array, plus imputation to
high-density genotypes for the low-density-genotyped individu-
als. However, this would require a more complex infrastructure.
As mentioned above, a low-density array of ~4000 SNPs includ-
ing top GWAS SNPs would provide higher accuracy than one
including randomly-chosen SNPs.

Conclusions

Different genomic-based prediction methods were compared to
the classical pedigree-based approach in order to assess the per-
formance of different selection methods against CHD. We have
shown that GEBV accuracies based on a training set of 940 ani-
mals already produces estimates that are similar to or higher
than using the pedigree-based EBVs. Genomic evaluation meth-
ods would be expected to improve as the training population
increases, and while training sets develop, additional benefits
would arise from using single step procedures combing informa-
tion from genotyped and ungenotyped individuals. The results
for the different prediction methods are consistent with a genetic
architecture of many loci of small effect for CHD-related traits, in
concordance with previous studies.
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