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On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward
our buildings shape us” (Humes, 1994). Churchill was pondering how and when to
rebuild the British House of Commons, which had been destroyed by enemy bombs on
May 10th 1941. The old House had been small and insufficient to hold all its members,
but was restored to its original form in 1950 in order to recapture the “convenience and
dignity” that the building had shaped into its parliamentary members. The circular loop
whereby buildings or dwellings are shaped and go on to shape those that reside in them
is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter
their cellular host environments to ensure survival. Typically pathogens modify cellular
transcription profiles and in doing so, the pathogen in turn is affected, thereby closing
the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast
and extremely precise set of tools for pathogens to target in order to shape the cellular
environment. This review will focus on host non-coding RNAs that are manipulated by
the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will
briefly describe both short and long host non-coding RNAs and discuss how HIV gains
control of these factors to ensure widespread dissemination throughout the host as well
as the establishment of lifelong, chronic infection.

Keywords: microRNAs, HIV-1, long non-coding RNA, immune evasion, host-pathogen interactions, apoptosis,
double strand breaks

Long Non-Coding RNAs: An Added Layer of Complexity in
Gene Regulation

Only 2% of the metazoan genome encodes protein, yet more than 50% is transcribed and our
knowledge is limited regarding these transcripts that function in the absence of protein production.
In fact, stable non-coding RNA transcripts have been referred to as ‘dark matter’ within the cellular
environment (Yamada et al., 2003). Despite improvements in the human draft genome sequence,
non-coding RNAs remain difficult to define and thus quantify (Ponting and Belgard, 2010; Saxena
and Carninci, 2011). Numerous evolutionary and sequencing studies have revealed that non-
coding RNAs could be expressed at up to 20-fold excess compared to their protein-coding counter-
parts, and are highly conserved (Ponting, 2008; Nagano and Fraser, 2011). Recently, ‘dark matter’
has been confined to those transcripts that constitute the biggest class of non-protein-coding RNAs,
so-called long non-coding RNAs (IncRNAs), which lack an open reading frame and are longer
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than 200 nucleotides (Derrien et al., 2012). Approximately 10
000 IncRNAs have been annotated in humans (Wilusz et al,
2009; Djebali et al., 2012) and additional mammalian cata-
logs are being continually refreshed (Guttman et al., 2009;
Marques and Ponting, 2009; Jia et al., 2010; @rom et al., 2010;
Cabili et al., 2011).

The majority of IncRNAs described to date are independent
transcriptional units with canonical splice sites and alterna-
tively spliced variants. However, they tend to have only two
exons that are also slightly longer than their protein-coding
counterparts (Derrien et al, 2012). While the majority of
IncRNAs are located between protein-coding genes (termed
long intergenic RNAs or lincRNAs; Khalil et al, 2009), the
remaining IncRNAs span or intersect both exonic and intronic
regions of various protein-coding genes (Derrien et al., 2012).
Notably, IncRNAs show a striking degree of tissue-specific
expression as well as co-expression with neighboring genes
(Cabili et al, 2011; Derrien et al., 2012), and are highly
conserved across primates (Derrien et al, 2012). In addi-
tion, many IncRNAs display chromatin signatures typically
associated with promoters and transcribed regions (histone
3 lysine 4 tri-methylation, H3K4me3, and histone 3 lysine
36 tri-methylation, H3K36me3, respectively; Guttman et al,
2009; Derrien et al., 2012). Given the intimate connection to
these epigenetic marks, it is unsurprising that IncRNAs are
preferentially enriched within chromatin and nuclear RNA
fractions (Mondal et al.,, 2010). Their nuclear location also
hints at IncRNA function in modulating protein-coding-gene
activity.

Generally, the observation that IncRNAs are in close prox-
imity to known protein-coding genomic regions (van Bakel
et al, 2010; Cabili et al., 2011) and are particularly con-
centrated near transcription factors (Guttman et al., 2009
Ponjavic et al., 2009), suggests a role in gene regulation. Indeed,
100 IncRNAs were found to be under the control of spe-
cific key transcription factors including p53, NFkp, Sox2, and
Nanog (Guttman et al., 2009). In a separate set of studies,
four IncRNAs (Xist, Air, Kenqlotl, HOTTIP) were robustly
shown to regulate transcription of numerous target genes
through epigenetic modifications (Brown et al., 1991; Penny
et al., 1996; Sleutels et al, 2002; Pandey et al., 2008; Wang
et al., 2011). By altering the histone proteins around which
DNA is wrapped, IncRNAs can tune expression of the asso-
ciated genes through activation or repression of the chro-
matin (Flynn and Chang, 2012). Chromosomal looping has
also been suggested to play a part in IncRNA function as
many appear to be transcribed from enhancer regions (@rom
et al, 2010; Wang et al, 2011). These latter transcriptional
control elements are capable of activating gene expression
independent of their location or distance. Furthermore, while
the exact mechanisms of gene regulation by IncRNAs remain
largely obscure, their ability to control host transcription pro-
vides a critical point of manipulation for pathogens. Although
limited in genome size, pathogens specifically and directly
alter host gene expression profiles in their favor, and obli-
gate parasites such as HIV, seem to be particularly adept at
this.

Long Non-Coding RNAs and Proteins:
Functioning together In Cis and In
Trans

To date, only a small number of IncRNAs have been functionally
characterized. This is testament to the difficulty of detecting these
RNA species which tend to be expressed at very low levels (Ravasi
et al., 2006; Cabili et al., 2011), as well as the use of direct per-
turbation experiments required to identify their functional roles.
Typically gain- or loss-of-function studies are used but often
the choice of which phenotype to investigate remains unclear
(Willingham et al., 2005). Despite these challenges, IncRNAs
have been shown to regulate gene expression from the level of
chromatin modification and transcription through to RNA mat-
uration, transport and translation (Wapinski and Chang, 2011).
In addition, IncRNAs seem to function both in cis, by exerting
their effect(s) on a neighboring gene located on the same allele
as the transcribed IncRNA, or in trans when the IncRNA and tar-
get gene are not on the same allele (Guttman and Rinn, 2012).
Notably, IncRNAs all seem to function via their interaction with
one or more protein partners (reviewed in Nagano and Fraser,
2011; Wang and Chang, 2011; Guttman and Rinn, 2012; Cech and
Steitz, 2014). Together these ncRNA-protein complexes perform
a myriad diverse functions with a surprising degree of complex-
ity. While the details of each mechanism are beyond the scope of
this review and have been covered elsewhere (Nagano and Fraser,
2011; Wang et al.,, 2011; Guttman and Rinn, 2012; Kornienko
et al., 2013), some IncRNA-protein interactions are noteworthy
because they pertain to HIV.

Long Non-Coding RNAs and HIV: Viral
Manipulation at the Heart of Gene
Regulation

As an intracellular pathogen, HIV relies on host cellular machin-
ery to complete its life cycle. Integral to this is the modula-
tion of host gene expression to ensure a co-ordinated regu-
lation of pro- and anti-viral host factors (Strebel et al., 2009;
Rasaiyaah et al.,, 2013). Given that the virus specifically carves
out the transcriptional status of infected host cells, and that
IncRNAs regulate transcription, it is unsurprising that HIV
directly manipulates these specific host factors. As a retro-
virus, HIV converts its RNA genome to a DNA copy that
is then integrated randomly into host chromatin. This action
induces DNA damage in the host genome, alters chromatin struc-
ture, triggers innate immunity and ultimately ensures latency
and chronic infection for the virus. Multiple facets of gene
regulation are involved in each of these steps but to date,
only a couple of HIV-IncRNA interactions have been described
(Zhang et al., 2013; Barichievy et al., submitted). In each case,
host IncRNAs that regulate innate immunity or the cellular
response to DNA damage are manipulated by HIV. However,
given the complexity of factors involved in gene regulation,
it is likely that more HIV-host IncRNA interactions will be
described.
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HIV and NEAT1

The mammalian nucleus contains many distinct structures
including nearly 10 different nuclear bodies (Mao et al., 2011).
One of these structures, the paraspeckle, forms around the
nuclear paraspeckle assembly transcript 1 IncRNA, NEAT1
(Hirose et al., 2014). Within paraspeckles, NEAT1 modulates
cell survival in response to stress by repressing transcription
of several genes via sequestering specific proteins into the
paraspeckle (Hirose et al., 2014; Imamura et al., 2014). One
such host protein, splicing factor proline/glutamine rich (SFPQ),
is sequestered by NEAT1 thereby releasing repression of the
cytokine interleukin-8 (IL8; Imamura et al., 2014). The activa-
tion of IL8 is critical for the innate immune response, particu-
larly following viral infection. Indeed, the interplay of NEAT1
and SFPQ regulates several antiviral innate immunity genes
in response to influenza and herpes simplex viruses (Imamura
et al., 2014). In HIV-infected CD4 T cells, NEAT1 has been
shown to increase HIV expression by enhancing the nuclear
export of viral mRNAs, although the molecular mechanism was
not uncovered (Zhang et al,, 2013). However, as NEAT1 also
represses the RNA-specific adenosine deaminase B2 (ADARB2)
gene, thereby controlling nucleocytoplasmic transport of ADAR-
sensitive mRNAs (such as HIV transcripts), it is tempting to
speculate that the virus manipulates NEAT1 to control innate
immunity (via SFPQ) as well as post-transcriptional modula-
tion of viral mRNAs (via ADARB2). Whether the virus inter-
acts with NEAT1 or its protein binding partners is unclear,
however, by targeting a single IncRNA involved in innate
immunity, HIV ensures the cellular environment favors the
virus.

HIV and lincRNA-p21

Human immunodeficiency virus replication can only occur fol-
lowing successful integration of an HIV proviral genome within a
host chromatin region that is conducive to gene expression (Lusic
and Giacca, 2014). The virus is thus sensitive to the temporal and
spatial dynamics of host chromatin architecture, and the estab-
lishment of HIV latency is intimately connected to this. Another
pivotal characteristic of successful HIV replication underlies the
integration event itself. Viral integrase is responsible for cleaving
the host DNA and enabling integration of the proviral genome
(Craigie and Bushman, 2012). Inherent in this action is the
generation of a double strand break (DSB) within the cellular
chromatin, which is the most detrimental form of DNA lesion
for mammalian cells to undergo (Jackson and Bartek, 2009). As
there is no intact complementary strand to serve as a template
for repair, DSBs are poorly tolerated (Khanna and Jackson, 2001)
with a single DSB sufficient to kill eukaryotic cells if it inactivates
an essential gene (Rich et al., 2000). Given the potential severity
of uncorrected DSBs, metazoan cells have evolved sensitive
mechanisms to detect the damage (Hartlerode and Scully, 2009).
The tumor suppressor protein p53 is a core transcription factor
that plays a central role in the response to DNA damage (Meek,
2004). Activation of p53 leads to apoptosis, senescence or cell-
cycle arrest (Zhou and Elledge, 2000). Cell-cycle arrest promotes
survival by permitting time for the DNA damage to be repaired,
while both senescence and apoptosis are terminal outcomes

for the cell (Riley et al., 2008). As infecting retroviruses cannot
co-ordinate the number of integration events and consequent
DSBs per host cell, they would need to either mask the DSB from
the cell or carefully orchestrate any cellular response to the DSB
to avoid triggering apoptosis. Furthermore, to induce a DSB yet
ensure survival, retroviruses must take control of prosurvival
mechanisms and suppress activation of proapoptotic genes.

It is now understood that p53 outsources a critical portion of
the apoptotic transcriptional response to a long intergenic non-
coding RNA (Huarte et al., 2010). In response to DNA damage,
p53 transcriptionally activates lincRNA-p21 which, together with
a nuclear-localized protein binding partner hnRNP-K, orches-
trates the apoptotic trigger by specifically repressing the tran-
scription of prosurvival p53 target genes in cis (Huarte et al,
2010) and in trans (Dimitrova et al., 2014). One of these tar-
gets is MAP2K1, the primary kinase involved in phosphorylating
ERK2 which functions in normal cells to ensure survival (Chang
and Karin, 2001). In healthy cells, p53 is negatively regulated via
HDM2-mediated ubiquitination and as a p53 transcription co-
factor, hnRNP-K is similarly negatively regulated (Moumen et al.,
2005; Enge et al., 2009). Thus p53-transcribed genes, including
lincRNA-p21, are not expressed in healthy cells. Concurrently,
activated ERK2 phosphorylates hnRNP-K thereby ensuring cyto-
plasmic accumulation of the latter protein (Habelhah et al,
2001) and preventing its association with lincRNA-p21. In addi-
tion, healthy cells further negatively regulate lincRNA-p21 via
the action of nuclear HuR/ELAV1 by destabilizing the lincRNA
through the action of Ago2 and let-7 (Yoon et al,, 2012). The
combined effects of these intersecting pathways ensures cellular
survival. In contrast, DNA damage such as DSBs results in alter-
native modifications of p53 thereby negating HDM2 regulation
(Enge et al., 2009). ERK?2 is also not activated and thus hnRNP-
K relocates to the nucleus where it can act with p53 to transcribe
lincRNA-p21 (Moumen et al., 2005). As a complex, hnRNP-K and
lincRNA-p21 then inactivate a suite of prosurvival genes leading
to apoptosis (Huarte et al., 2010). Our most recent data show
that HIV specifically and deliberately alters lincRNA-p21 func-
tion to mask integration-induced DSBs and gain control of the
MAP2K1/ERK2 survival cascade (Barichievy et al., submitted).

As HIV must induce a DSB during integration, apopto-
sis is a likely outcome of infection. Indeed, the progressive
loss of CD4 T cells is a prognostic marker of disease, driven
in part by integration (Cooper et al., 2013), but also due
to abortive infection (Doitsh et al., 2010). Widespread dis-
semination of the virus throughout the host is facilitated by
macrophages which are also readily infected by HIV. In con-
trast to CD4 T cells, macrophages are spared from TRAIL-
induced apoptosis (Swingler et al., 2013) but more intriguingly,
HIV is able to selectively impair apoptosis in macrophages
by controlling MAP2K1/ERK2 and lincRNA-p21 (Barichievy
et al., submitted). Activated ERK2 is required for successful
HIV integration in macrophages and forms part of the pre-
integration complex (PIC; Jacque et al, 1998; Bukong et al,
2010). As HIV gains control of this host protein prior to the
integration event itself, the subsequent DSB can be masked.
Indeed, our recent data show that HIV integration does not
activate ATM autophosphorylation or downstream activation
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of apoptosis-specific marks on p53, and lincRNA-p21 is thus
not transcribed by p53 (Barichievy et al., submitted). Key to
these events is viral control of ERK2 and its upstream kinase
MAP2KI, as inhibitors of these host factors results in apop-
tosis only in the presence of HIV. Importantly, MAP2KI is a
target of lincRNA-p21 thereby providing a connection between
cell survival and apoptosis. Another consequence of viral control
over MAP2K1/ERK2 is that hnRNP-K remains in the cytoplasm
and is thus unavailable for its pro-apoptotic binding partner
lincRNA-p21 (Barichievy et al., submitted). Nutlin3 can be used
to overcome the HIV-induced nuclear entry block of hnRNP-
K, and apoptosis does then occur (Barichievy et al., submitted).
Notably, HIV integration in CD4 T cells is facilitated by JNK
and Pinl as opposed to ERK2 (Manganaro et al., 2010), possibly
because ERK2 expression is switched off following differenti-
ation in these cells (Fischer et al, 2005; Chang et al., 2012).
The intimate connection between cell survival and apoptosis at
the point of lincRNA-p21 and ERK2 thus possibly only occurs
in macrophages, and it seems that HIV has evolved a pivotal
mechanism to exploit this interaction in favor of viral survival
(Figure 1).

The Opposite of Long is Short:
microRNAs in Transcriptional
Regulation

The dark matter of the nucleus encompasses both short and
long non-coding RNAs. The former include microRNAs (miR-
NAs) which are small endogenous non-coding RNA tran-
scripts (~22 nucleotides in length) that regulate host gene
expression as part of the RNA interference (RNAi) pathway
(Fire et al., 1998; Elbashir et al., 2001). The first miRNA
was identified in 1993 in Caenorhabditis elegans by Ambros
and colleagues, but the field has since exploded with the use
of more recent technologies, including deep sequencing (Lee
et al., 1993). There are currently over 2500 annotated human
miRNAs, more than double the number that were identi-
fied only 2 years ago (Kozomara and Griffiths-Jones, 2014).
Furthermore, it has been estimated that more than 60% of all
human genes are regulated by endogenous miRNAs (Friedman
et al, 2009), highlighting the pivotal role of these ncRNAs
in cellular transcription. Indeed, a single miRNA can regu-
late multiple mRNA molecules that can in turn also be acted
upon by numerous miRNAs (Barbato et al, 2009; Sashital
and Doudna, 2010). The non-orthogonal nature of miRNA-
mRNA interactions means that adjustments to expression levels
of even a few miRNAs can facilitate the rapid and synchro-
nized shift in the expression levels of hundreds of genes (Davis
and Hata, 2009). Thus, the endogenous miRNA pathway rep-
resents a highly efficient system to simultaneously fine-tune
the expression of numerous genes as well as modulate spe-
cific functional pathways (Hwang and Mendell, 2007), includ-
ing innate immunity and host-pathogen interactions (Sayed
and Abdellatif, 2011; Seddiki et al., 2014). Here we will dis-
cuss cellular miRNAs that are perturbed following HIV infec-
tion, then shift focus on to specific host miRNAs that act

either directly or indirectly on HIV to regulate viral repli-
cation, and look at counter strategies used by the virus to
evade RNAI

The Impact of HIV Infection on Host
miRNA Expression Profiles

Over the last decade a number of studies have reported a
general perturbation of the host miRNA landscape following
HIV infection (Klase et al., 2012; Swaminathan et al., 2014).
An early microarray-based study that had utilized HeLa cells
transfected with an infectious pNL4-3 clone, showed the virus
down-regulated 312 host miRNAs, while ensuring none were
up-regulated (Yeung et al., 2005). These findings were then con-
tradicted in a study that utilized the same microarray approach,
applied to Jurkat cells and HIV-infected patient-derived PBMCs,
to show that the miR-17/92 cluster was down-regulated and 11
host miRNAs were up-regulated (Triboulet et al., 2007). In addi-
tion, this study revealed that host miR-122, miR-370, miR-373*
and miR-297 were exclusively expressed in HIV-infected cells up
to 42 days post-infection, supporting the hypothesis that HIV
uses these host factors to modulate functional cellular pathways
in favor of the virus. Indeed, in a more recent study that eval-
uated the expression levels of 702 host miRNAs as well as 25,
000 mRNA species in response to HIV infection, in silico analysis
revealed perturbations in the apoptosis, MAPK, T cell recep-
tor and Wnt signaling pathways (Gupta et al.,, 2011). Thus it
is clear that HIV disturbs cellular miRNA expression during
infection.

While HIV-mediated modulation of the host miRNA land-
scape seems highly selective, the poor concordance between dif-
ferent studies has made tabulating a reliable list of such miRNAs
difficult. In a recent publication, Whisnant et al. (2013) sought to
address these conflicts by incorporating data from different cell
types, viruses, and sequencing methods. In this study, BAL and
pNL4-3 infection in TZM-bl cells, C8166 T cells, and PBMCs,
only altered the expression levels of a few host miRNAs 72 h
post-infection. A single miRNA, miR-30b-5p, was up-regulated
in BAL-infected PBMCs but not in similar cells infected with
pNL4-3. Furthermore, in contrast to previous data from PBMCs
(Triboulet et al., 2007), no significant change in the miR-17/92
cluster was observed regardless of the cell type/viral strain used
(Whisnant et al., 2013). While the latter findings contradict pre-
vious studies (Triboulet et al., 2007; Gupta et al., 2011; Sun et al.,
2012), the different time points and half-lives of the relevant
cellular cultures used to assess host miRNA expression profiles
differed between the data sets. Timing seems to be a key factor
to consider. Indeed, a recent study that utilized small RNA seq at
5, 12, and 24 h post-infection in Sup-T1 cells, showed discrete
and temporal effects on the expression levels of 15 host miR-
NAs (Chang et al., 2013). A distinct subset was suppressed at 5
and 12 h, yet recovered by 24 h post-infection. An overlay with
corresponding mRNA expression data revealed that T cell acti-
vation and cell cycle pathways were being similarly differentially
regulated.
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HIV infection in macrophages leads to cellular survival

HIV PIC

.

HIV

HIV PIC

FIGURE 1 | Hypothetical model of HIV-mediated manipulation of transcribed and cannot complex with hnRNP-K to suppress prosurvival genes
lincRNA-p21 to evade cellular apoptosis. During HIV infection of including MAP2K1. In CD4 T cells, ERK2 expression is down-regulated and
macrophages (upper panel), MAP2K1-activated ERK2 is incorporated into the thus unavailable for incorporation in the PIC. JNK and Pin1 mediate integration
pre-integration complex (PIC) enabling HIV integration. Active ERK2 also leads but as the virus does not mediate control over ERK2, hnRNP-K can translocate
to the cytoplasmic accumulation of hnRNP-K thereby preventing its interaction to the nucleus, complex with p53-transcribed lincRNA-p21 and suppress

with lincRNA-p21 in the nucleus. As p53 is not activated, lincRNA-p21 is not prosurvival genes including MAP2K1, leading to apoptosis.
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A comparison of the findings from the Chang and Whisnant
groups revealed that only two miRNAs, miR-143-3p and
miR-10a-5p, exhibited similar trends of suppressed expression.
Thus, even after factoring in cell type variation and the confound-
ing effects of time, it is clear that the impact of experimental
parameters restrains comparisons between such datasets. Given
this, elite controllers, may provide the most informative data in
this arena. Elite or viremic controllers are individuals who are
able to naturally restrict HIV replication to undetectable levels
(<50 viral copies/mL; Blankson, 2010). The exact mechanisms
by which they are able to effect this control over HIV replica-
tion are not understood. However, as host miRNAs inherently
have antiviral properties, the possibility that they mediate some
aspect of the ‘elite control’ remains an area of great interest.
Several studies that investigated miRNA expression profiles in
elite controllers revealed that miR-150 and miR-125b, miR-31 and
miR-31% were consistently suppressed in these patients (Houzet
et al., 2008; Witwer et al., 2012; Reynoso et al., 2014). In addi-
tion, miR-29b-3p, miR-33a-5p and miR-146a-5p were elevated in
elite controller samples compared to chronically infected patients
(Reynoso et al., 2014). Intriguingly, miRNA pathway analysis
revealed the Toll-like receptor signaling pathway to be regulated
by these three miRNAs (Vlachos et al., 2012). The central role of
this host pathway in restricting pathogens is certainly in line with
the ability of elite controllers to control HIV replication.

While all of studies touched upon here have reported pertur-
bations in host miRNA expression profiles in response to HIV
infection, there is only modest consensus on both the degree
to which the virus is able to manipulate global miRNA expres-
sion, as well as the specific miRNAs involved. When considering
the combined implications of these studies, a few salient points
are noteworthy: (i) the effect of HIV infection on host miRNA
expression is highly dependent on experimental variables includ-
ing cell type, HIV variant, and the method of quantification
(Yeung et al., 2005; Triboulet et al., 2007; Chang et al., 2013;
Whisnant et al., 2013); (ii) while the individual miRNAs identified
between studies may differ it is clear that miRNA dysregulation is
targeted to specific functional pathways important for HIV repli-
cation (Gupta et al., 2011; Reynoso et al., 2014); (iii) the effect of
HIV infection on host miRNA expression is dynamic and may
orchestrate a complex series of temporally sensitive molecular
events (Chang et al., 2013; Whisnant et al., 2013); and (iv) the
discrimination between viral and host-driven effects on miRNA
expression are important but not yet well-described and thus
further attention.

Host miRNAs that Act on HDFs to
Affect HIV (Indirect Effects on Viral
Replication)

A number of host miRNAs have been identified as modulators of
HIV replication and elicit their effects either via a direct interac-
tion with viral products, or indirectly via the regulation of viral
host dependency factors (HDFs). Direct interaction with viral
proteins generally leads to decreased HIV replication, while the
targeting of HDFs can lead to either increased or decreased viral

replication. A summary of these findings is in Table 1 and we
expand on some of the more recent observations here, beginning
with indirect effects. The toll-like receptors 3 and 4 (TLR3 and
TLR4) are activated by double-stranded RNA (dsRNA) as part of
the innate immune response. In HIV-infected monocyte-derived
macrophages (MDMs), TLR3/4 activation led to increased miR-
155 expression, which in turn translationally repressed ADAMIO0,
TNPO3, Nupl53, and LEDGF/p75 (Swaminathan et al., 2013;
Seddiki et al., 2014). As these HDFs are required for nuclear
trafficking and integration of HIV, their repression via miR-155
negatively impacted viral replication. The targeting of TLRs was
also recently connected to HIV replication via exosomes (Aqil
etal,, 2014). The viral accessory protein Nef influenced the secre-
tion of at least 47 host miRNAs from exosomes, and target
identification revealed an enrichment for pro-inflammatory and
TLR transcripts (Aqil et al., 2014). As these miRNAs also func-
tion as cell non-autonomous signals for TLR activation, they may
contribute to the ability of Nef-containing exosomes to trigger
apoptosis in uninfected CD4" T cells (Lenassi et al., 2010).

Interestingly, many of the miRNAs enriched in exosomes
(e.g., miR-125b, miR-29b, miR-223, and Let-7) have also been
described as suppressors of HIV replication (Wang et al., 2009;
Chiang et al., 2013; Whisnant et al., 2013). This suggests that
HIV may actively and selectively utilize the exosomal secretion
process to exclude miRNAs with antiviral activity. Alternatively,
HIV may use exosomes to modulate the intracellular levels of
RISC-free small RNAs that indirectly inhibit virion production
(Chen et al, 2014). This latter observation is intriguing as it
involves a novel mechanism in which host miRNAs decrease
viral replication. HIV Gag proteins multimerize at the cell mem-
brane to facilitate virus assembly, and this process is enhanced by
the non-specific binding of Gag to host mRNAs (Muriaux et al.,
2001; Jouvenet et al., 2009). Overexpression of miR-146a or miR-
888 disrupted Gag multimerization leading to decreased virion
production (Chen et al., 2014). The same effect was observed
if AGO2 was depleted thereby leading to a general increase in
endogenous small RNA levels. These findings also have implica-
tions for expression-based studies, as a comprehensive evaluation
of variations in exosomal-miRNA secretion across different HIV
strains and cell types has not been published. As a contributing
factor to chronic T cell activation and the persistence of viral
reservoirs (Jain et al., 2013), the control of miRNA export from
exosomes by HIV definitely warrants further investigation.

The positive regulation of HIV replication by host miRNAs
is far less well-described. Cellular miR-217 and miR-132, both
targeting HDFs, lead to increased viral replication. In the first
case, miR-217 suppressed SIRT-1 protein in HeLa-derived MAGI
cells infected with HIV (Zhang et al., 2012). SIRT-1 deacetylates
Tat thereby disrupting activation of the HIV LTR (Zhang et al,,
2009), and overexpression of miR-217 releases the negative reg-
ulation. Similarly, in activated CD4" T cells and Jurkat cells,
up-regulation of miR-132 increased viral replication (Chiang
et al., 2013). Notably, overexpression of miR-132 also modulated
HIV latency by reactivating latent virus and delaying regression
to latency following TNF-« treatment (Chiang et al., 2013). This
was linked to a known miR-132 target, MeCP2, although the
specific interactions remain unknown. Given the recent clinical
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TABLE 1 | Host miRNAs that have indirect and direct effects on HIV replication.

miRNA name
(miRBase v.18)

Cell type

Target

Effect on HIV replication

Reference

Suppression of Tat-mediated LTR
activation

Restricted Vpr-mediated modulation of
cell cycle factors

Suppression of Tat-mediated LTR
activation

Suppressed HIV LTR activation

Restricted nuclear import of HIV
Pre-integration complex

Inhibition of Gag multimerization

Enhanced replication/activation of
latent virus

Enhanced LTR activation replication

Post-transcriptional silencing of HIV
RNA

Triboulet et al. (2007)

Ma et al. (2014)

Shen et al. (2012)

Sung and Rice (2009)

Chang et al. (2012)

Swaminathan et al. (2012)

Chen et al. (2014)

Chiang et al. (2013)

Zhang et al. (2012)

Houzet et al. (2012)

Huang et al. (2007)

Indirect  miR-20a, Jurkat and CD8+ p300/CBP-associated factor
miR-17-5p Depleted PBMCs
miR-1236 Monocytes VprBP
miR-15a, miR-15b, PUR-a
miR-16, miR-93,
miR-106b
miR-198 Cylin-T1
miR-27b, miR-29b, Resting CD4+ T cells
miR-150, miR-223
miR-155 Monocyte-derived ADAM10 TNPO3 Nup153
macrophages LEDGF/p75
miR-146a HEK293 cells AGO2 (endogenous small
miR-888 RNAs)
miR-132 Primary CD4+ T cells MeCP2 and other
miR-217 Hela-derived MAGI SIRT-1
cells
Direct miR-133b, 42CD4 cells HIV RNA
miR-138, miR-149, (HEK-derived)
miR-326, miR-92a
miR-28b, CD4+T cells
miR-125b,
miR-150, miR-223
miR-382
miR-29a Jurkat cells
miR-29b-3p, MT2 and CD4+T cells
miR-33a-5p
miR-423 C8166 and TZM-bl cells

miR-301a, miR-155

Ahluwalia et al. (2008)
Reynoso et al. (2014)

Whisnant et al. (2013)

success of miRNA-directed therapies targeting Hepatitis C Virus’
dependency on host miRNA-122 (Jopling et al., 2005; Shimakami
et al., 2012), the exploitation of viral dependencies on host miR-
NAs may hold great promise for HIV as well. While our current
repertoire of such dependencies remains limited, this exciting
field of research along with the number of miRNAs able to
regulate HIV replication should only increase in the coming
years.

Host miRNAs that Act on Virus
Proteins to Affect HIV (Direct Effects
on Viral Replication)

In silico approaches have been predominantly used to predict
host miRNA binding sites within HIV transcripts, and many of
these have subsequently been validated experimentally. Across
multiple HIV clades, miR-29a and miR-29b were predicted to
target HIV nef transcripts, while miR-149, miR-378, miR-324-5p
were predicted to target vpr, env, and vif transcripts respectively
(Hariharan et al., 2005). Exogenous expression of miR-29a did
reduce Nef protein expression and subsequent viral replication in
Jurkat cells, but this was not similarly true for miR-29b (Huang
et al., 2007; Ahluwalia et al., 2008; Sun et al., 2012). In contrast,

miR-29b suppressed HIV replication in 42CD4 cells (Houzet
et al., 2012), MT2 cells and CD4™" T cells (Reynoso et al., 2014)
although PAR-CLIP (a technique that directly links miRNAs to
their cognate mRNA transcripts) revealed that miR-29b did not
target nef transcripts (Whisnant et al., 2013; Reynoso et al,
2014). PAR-CLIP did reveal four putative miRNA-binding clus-
ters for miR-423, miR-301a, miR-155, and miR-29a in the HIV
genome, and the first three miRNAs were indeed able to directly
bind to and negatively regulate HIV transcripts (Whisnant et al.,
2013). However, miR-29a did not negatively regulate nef expres-
sion as previously observed (Huang et al., 2007; Ahluwalia et al.,
2008; Sun et al., 2012). Taken together, these data once again
hint at the difficulties in reliably identifying anti-HIV miRNAs.
Compounded with the extremely high mutation rate inherent in
HIV replication, and clear to any patient who has failed non-
combination therapy, it is perhaps more wise to focus on those
cellular miRNAs that indirectly inhibit HIV in our pursuit of
novel anti-viral targets.

HIV and RNAi Evasion Strategies

A discussion of cellular miRNA-mediated regulation of viral
replication is not complete without touching upon counter
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strategies utilized by the pathogens themselves. The conser-
vation of viral effectors known as viral suppressors of RNAi
(VSR) or RNAI silencing suppressors (RSS) has been docu-
mented for many plant and animal viruses alike, suggesting
that the host RNAi pathway may have been an important
determinant of viral evolution in general (Li and Ding, 2006;
Diaz-Pendon and Ding, 2008) and for HIV in particular (Qian
et al.,, 2009; Coley et al., 2010; Hayes et al, 2011). HIV Tat
has RSS activity as the viral protein abrogates Dicer function-
ing (Bennasser et al., 2005). By altering the Tat RNA binding
domain via a lysine to alanine mutation (K51A), the RSS activ-
ity of Tat was abolished (Bennasser et al., 2005). Interestingly,
a plant virus RSS, P19, could rescue HIV transcription fol-
lowing infection with a Tat K51A virus, although this study
disputed that the RSS effects of Tat were via Dicer targeting
(Qian et al., 2009). Viral Vpr and Nef may contribute to the
RSS effects of Tat, as HIV strains deficient in these factors led
to altered host miRNA expression profiles compared to wild-
type virus (Hayes et al, 2011), and ectopic expression of Vpr
or Nef down-regulated Dicer expression (Coley et al., 2010).
Nef is also able to directly bind Ago2 leading to decreased
cleavage of reporter transcripts (Aqil et al., 2013). Furthermore,
wildtype Nef expression rescued ANef HIV infection, but Nef
variants lacking Ago2 binding sites could not (Coley et al,
2010). HIV RNA has also been shown to have RSS activity.
The host TAR RNA binding protein (TRBP) is an important
factor in miRNA biogenesis as it binds Dicer in order to pro-
cess pre-miRNAs into mature miRNA molecules (Haase et al.,
2005). Depletion of TRBP thus negatively impacts endogenous
RNAi-mediated silencing. HIV TAR RNA interacts with TRBP
and this sequestration is thought to prevent interaction with
Dicer thereby suppressing the RNAi pathway (Bennasser et al.,
2005).

Another method employed by HIV to counter the cellu-
lar RNAi pathway involves secondary structures of the viral
RNA itself. It has been postulated that the complex fold-
ing of HIV transcripts may represent a highly evolved strat-
egy to evade regulation by host miRNAs (Watts et al.,, 2009).
Indeed, miRNA-mediated suppression of nef transcripts was
significantly impacted by increasing the length (and subse-
quent secondary structure) of these viral mRNAs (Sun et al,
2012). In addition, a shorter nef reporter transcript inca-
pable of forming a predicted secondary loop, was highly sup-
pressed by miR-29a and miR-29b. In addition, HIV transcripts
exhibited a 100-fold higher refraction to RISC binding com-
pared to host mRNAs (Whisnant et al, 2013). The finding
that HIV RNA secondary structures renders them resistant
to RNAi was first observed a decade ago (Westerhout et al,
2005). The initial effectiveness of a siRNAs targeting HIV
RNA resulted in escape variants encoding nucleotide substitu-
tions/deletions that led to altered RNA secondary structures and
occlusion of the siRNA binding sites (Westerhout et al., 2005).
Considering that significant variations in both transcript length
and sequence composition have been documented between dif-
ferent HIV variants, even within a single infected individual
(Péloponése et al., 1999; Bandaranayake et al., 2010), the effi-
cacy of host miRNAs targeting these viral transcripts must

vary as well. Furthermore these findings caution against the
use of popular 3’ UTR reporter systems that do not accu-
rately mimic the secondary structures of the RNAs for which
they serve as proxies. As we already suggested, these find-
ings do not bode well for miRNA-based therapies aimed at
directly targeting viral RNA, but there is still vast hidden poten-
tial within the host miRNome for natural restriction of HIV
replication.

Perspectives

In this review we have discussed some of the mounting evi-
dence that strongly suggests the host non-coding component is
at the centre of a dynamic power struggle between virus and
host, with each seeking to utilize the regulatory potential of non-
coding RNAs to promote their own survival. We have covered
the limited number host long non-coding RNAs that are manip-
ulated by HIV, and it seems that the virus itself may also encode
a IncRNA thereby enabling self-modulation of viral transcrip-
tion (Saayman et al., 2014). This provides yet another interesting
example whereby HIV manipulates cellular dark matter and
closes the circular loop of ‘buildings’ that are shaped and then go
on to shape those that reside in them.

Human immunodeficiency virus has also seemingly evolved
a number strategies to selectively manipulate the host miRNA
landscape, while at the same time protecting its own RNA tran-
scripts within highly complex secondary structures that may
occlude RISC-loaded miRNA binding (Sun et al., 2012; Whisnant
etal.,2013). HIV viral proteins Tat, Vif, and Vpr have been shown
to independently regulate the expression levels of a discrete sub-
sets of host miRNAs (Hayes et al., 2011). While a few potential
host miRNA regulators of HIV infection have been proposed by
independent studies, a functional miRNome-wide interrogation
of host miRNAs capable of modulating HIV replication remains
conspicuously absent from the current literature.

A small number of miRNAs have been reported to be dif-
ferentially expressed in both the PBMC population and plasma
of elite controllers (Witwer et al., 2012; Reynoso et al., 2014).
Additionally two of these miRNAs have also been shown to
suppress HIV replication in primary CD4" T cells thus sug-
gesting a potential role for host non-coding RNAs in elite con-
troller phenotypes. Greater insight into the general contribution
of non-coding RNAs to the ‘elite control’ of HIV may there-
fore guide future therapeutic strategies and also expand our
limited understanding of the endogenous functions of these
molecules.

The non-coding ‘dark matter’ of the host represents a poten-
tially abundant and relatively unexplored resource in terms of
novel therapeutic approaches, while the practical adaptation of
RNAI for therapeutic benefit remains in its infancy. Given the
grand scale of the regulation mediated by the non-coding com-
ponent of the human genome in so many clinically relevant
disorders, including HIV infection, it would not be presumptu-
ous to speculate that many future therapeutic breakthroughs may
hinge on us shedding more light on the role of this ‘dark matter’
in infection.
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