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The generalized linear mixed model (GLMM) is a useful tool for modeling genetic

correlation among family data in genetic association studies. However, when dealing

with families of varied sizes and diverse genetic relatedness, the GLMM has a special

correlation structure which oftenmakes it difficult to be specified using standard statistical

software. In this study, we propose a Cholesky decomposition based re-formulation of

the GLMM so that the re-formulated GLMM can be specified conveniently via “proc

nlmixed” and “proc glimmix” in SAS, or OpenBUGS via R package BRugs. Performances

of these procedures in fitting the re-formulated GLMM are examined through simulation

studies. We also apply this re-formulated GLMM to analyze a real data set from Type 1

Diabetes Genetics Consortium (T1DGC).

Keywords: family data, generalized linear mixed models (GLMM), genetic correlation, genetic variance

components, random genetic effects, re-parameterization, Cholesky decomposition, Bayesian methods

1. Introduction

Generalized linear mixed model (GLMM) provides a rich class of statistical models to model
correlated data with responses from the exponential family of distributions including Gaussian,
Binomial, Poisson, etc. (see McCulloch and Searle, 2001). The mixed model approach, which is also
called the variance component approach, has long been used in genetic studies to estimate genetic
parameters, predict breeding values and model correlated family or pedigree data (Henderson,
1963, 1975; Amos, 1994; Falconer and Mackay, 1996; Almasy and Blangero, 1998; Abecasis et al.,
2000; Sham and Purcell, 2001). Due to the diverse genetic correlation structures among families
or pedigrees, currently fitting this type of GLMM often relies on special genetic software packages,
such as SOLAR (Almasy and Blangero, 1998), Multic (de Andrade et al., 1998, 2006). More recently,
as an extension of the R package lme4, Vazquez et al. (2010) also developed an R package pedi-
greemm following the method of Harville and Callanan (1989). Pedigreemm can handle the additive
genetic correlation among all sampled individuals via a Cholesky decomposition of the coancestry
(or so-called numerator relationship) matrix. However, despite the popularity of these software
packages, they often lack many options such as choosing different algorithms for maximizing the
likelihood or specifying various particular type of the covariance structures that are available in
standard statistical software packages such as procedures “proc mixed,” “proc glimmix,” and “proc
nlmixed” in SAS (SAS Institute, Inc.) or OpenBUGS in R (e.g., via R package BRugs). One major
obstacle in using these standard software packages to fit the GLMM is the requirement of the same
correlation structures across all the families (or clusters). A few recent studies also suggested fitting
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the GLMM by using SAS (Feng et al., 2009; Wang et al., 2011).
But it appears that these studies have only considered the cases
where all the families had the same genetic correlation structure.

The genetic correlation structure among family members for
additive effects, dominance and epistasis has been well described
(see Lynch andWalsh, 1998). In this study, for the special type of
GLMM thatmodels family data with varied family sizes or diverse
genetic relatedness, we propose a Cholesky decomposition based
re-formulation of the GLMM so that the re-formulated GLMM
can be specified conveniently when using some standard statis-
tical software packages. First, a standard GLMM is presented,
which can account for the genetic correlation among family
members. We briefly discuss the identifiability issue of the vari-
ance components from their possible confounding perspective
in the GLMM. Next, we explain how the GLMM can be re-
formulated into a GLMM with random regression coefficients
of equal variances. Assuming that there is no genetic correlation
between different families, we start by applying separate Cholesky
decompositions on the genetic kinship matrices within each fam-
ily. Then we stack these Chelosky decomposition matrices from
different families into one column and treat the columns of the
stacked matrix as fixed covariates. Unlike the regular Cholesky
decomposition performed on the whole covariance matrix of
the random genetic effects (e.g., Vazquez et al., 2010), here the
stacked matrix has its column size being the maximum family
size instead of the summation of all family sizes.With the reduced
number of columns, this re-formulated GLMM can then be spec-
ified conveniently in “proc nlmixed” or “proc glimmix” using
SAS, and OpenBUGS via R package BRugs. We provide detailed
codes on fitting this re-formulated GLMM by using either “proc
nlmixed” or “proc glimmix” in SAS, and OpenBUGS with R (via
R package BRugs). The performances of these procedures on fit-
ting the re-formulated GLMM are also examined through some
simulation studies. Finally, we apply this re-formulated GLMM
to a real data set from Type 1 Diabetes Genetics Consortium
(T1DGC).

2. Methods

2.1. A Generalized Linear Mixed Model (GLMM)
Suppose that we have a randomly collected sample of N fami-
lies from a study population. In the i-th family of size ni, let yij
be a (binary or continuous) response variable for a disease phe-
notype; zij be some fixed environmental covariates that need to
be adjusted for; gij denote the observed genotypes at certain tar-
geted genetic marker loci, for family members j = 1, 2, · · · , ni
and i = 1, 2, · · · ,N. To model the family data and test for
the association of gij with the phenotypic response yij, we need
to account for the genetic correlation among family members
induced by identity-by-descent (IBD) alleles shared by the family
members at some putative disease susceptible loci (DSL). In addi-
tion, family members may share certain common environmental
factors which could also contribute to the disease phenotypes. Let
vij denote the random genetic effect from those putative (unob-
served) DSL on the phenotypic response yij, and ei be the shared
environmental effect such as diets for members in a family i.
Define µij = E(yij|vij, ei). Then a generalized linear mixed model

(GLMM) to model the family data can be written as























yij|vij, ei ∼ fyij|vij,ei (y|vij, ei), j = 1, · · · , ni
E(yij|vij, ei) = µij

g(µij) = m+ zijα + x(gij)β + vij + ei, j = 1, · · · , ni
vi = (vi1, · · · , vini )

T ∼ N(0, 6i)
ei ∼ N(0, σ 2

c ), ei⊥vi

(1)

where g(·) is a known link function, m is an intercept for
the baseline, α is a p-dimensional vector of parameters for
the fixed effects of environmental covariates zij, x(gij) is a q-
dimensional vector with its components being defined by certain
coding functions for marker genotypes (see Wang, 2011), and
β is a q-dimensional vector of parameters for the fixed genetic
effects contributed by the observed genotypes gij. Typically, the
random effects {vi, i = 1, · · · , n} from different families are
assumed to be independent. Given the random effects vi and ei,
yij, j = 1, · · · , ni, are also assumed to be conditionally inde-
pendent. As each vij represents an aggregated polygenic effect
from multiple putative DSLs, vij tends to be normally distributed
based on the Central Limit Theorem. Therefore, 6i denotes the
genetic covariance matrix among the g-transformed conditional
means g(µi1), · · · , g(µini ), which is often induced by identity-by-
descent (IBD) alleles shared by the i-th family members at the
putative DSL.

For a quantitative phenotypic trait, the link function g is often
chosen as an identity function (i.e., g(x) = x). Assuming that
there is no inbreeding between parents, it has been known that
the genetic covariance between a pair of relatives j, k within a
family i can be expressed as Kempthorne (1955), Amos (1994),
Lynch and Walsh (1998), and Yu et al. (2006)

Cov(vij, vik) = 2φjkσ
2
A + δjkσ

2
D (2)

where σ 2
A and σ 2

D are the so-called additive and dominant genetic
variance components, which are contributed by the additive
allelic effects and allelic interactions from those unknown DSL,
respectively; φjk and δjk are the so-called kinship and double
coancestry coefficients between the two relatives. Similarly, for
a general link function g, we can also define σ 2

A and σ 2
D as the

additive and dominant variance components contributed by the
allelic effects and allelic interactions from those unknown DSL to
the variation of the g-transformed conditional means g(µij). Let
µi = (µi1, · · · , µini ). From model Equations (1), (2), we have

Cov(g(µi)) = 28iσ
2
A + 1iσ

2
D + σ 2

c Jni

where Jni is a ni × ni matrix of 1’s, 8i = (φjk) and 1i = (δjk)
are ni × ni kinship and double coancestry matrices, respectively,
for the i-th family members. In the absence of inbreeding, the
expected kinship and double coancestry coefficients for various
common relatedness have been well established (e.g., see Table 7.1
in Lynch and Walsh, 1998). In practice, the actual kinship and
double coancestry coefficients could deviate from their expected
values because the realized IBD status could vary for a particular
pair of family members due to the randomness in their parents’
inheritance segregation. Two parents could also be related to each
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other due to possible inbreeding from their common ancestry.
Therefore, the genetic covariance matrix 6i = 28iσ

2
A + 1iσ

2
D

may have varied sizes across different families. For families with
the same size and relatedness, their actual kinship and double
coancestry matrices could also be different. Nowadays, with the
high density of genome-wide genetic markers available, such as
single nucleotide polymorphism (SNPs), it is possible to estimate
the actual genome-wide kinship and double coancestry coeffi-
cients among family members using external programs such as
PLINK (Purcell et al., 2007). The genome-wide kinship matrix
can also be estimated as half of the genomic relationship matrix
(see VanRaden, 2008).

The above GLMM provides a rich class of statistical models,
which is applicable to both quantitative and qualitative traits.
Depending on the family structures, however, not all the variance
components in a GLMM are always estimable. For example, for
a quantitative trait with g(·) being the identity link function, the
GLMM becomes a linear mixed model (LMM).

yij = m+ zijα + x(gij)β + vij + ei + ǫij,

where i = 1, ...,N, j = 1, ...ni, ǫij ∼ N(0, σ 2) are the
model residuals, with σ 2 being the residual variance of random
effects from other risk factors not captured by zij, gij, vij, and ei.
When each family comprises two parents and one offspring, the
expected 1i = I3, which is a 3× 3 identity matrix for any family
i. We have

Cov(yi) = 28iσ
2
A + (σ 2

D + σ 2)I3 + σ 2
c J3, i = 1, · · · ,N

Thus, the dominant variance component σ 2
D and the residual

variance σ 2 are completely confounded. Similarly, if each family
consists of only siblings (e.g., in a sib-pair design), then

V(yij) = σ 2
A + σ 2

D + σ 2
c + σ 2, i = 1, · · · ,N

Cov(yij, yik) =
1

2
σ 2
A +

1

4
σ 2
D + σ 2

c , j 6= k

In this case, we cannot distinguish the four variance components
from each other unless some of them are negligible (e.g., assum-
ing σ 2

D = σ 2
c = 0). For a sample of unrelated individuals, it is

also easy to see that all the four variance components σ 2
A, σ

2
D, σ

2
c ,

and σ 2 are inseparable.

2.2. In Fitting the GLMM
Themain goal in fitting GLMMEquation (1) is to make statistical
inference on the fixed effects α, β as well as assessing the variance
components σ 2

A, σ 2
D, and σ 2

c . Based on model Equation (1), the
full likelihood is

L(α, β|{yij, zij, gij}) =

N
∏

i= 1

∫

vi

∫

ei

fyi|vi,ei (yi|vi, ei) fvi (vi)

fei (ei)deidvi

We need to calculate a multi-dimensional integration for each
family, which in most cases cannot be analytically evaluated in
closed forms. Various methods in fitting a standard GLMM have

been proposed based on either numerical approximations to the
integrations or a linearization of the regression model. Tradi-
tional methods for numerical integral approximation include
Laplace approximation (Wolfinger, 1993), the adaptive Gauss-
Hermite quadrature (Pinheiro and Bates, 1995), Monte Carlo
integration, and Bayesian method via Markov chain Monte
Carlo. The model linearization is often made via Taylor expan-
sion on the inverse of the nonlinear link function g(·), based
on which the pseudo-likelihood or restricted pseudo-likelihood
for optimization can then be derived (Wolfinger and O’Connell,
1993). It has been known that the numerical integral approxi-
mations could become computationally intractable when a large
number of random effects are involved. On the other hand, the
model linearization approach could encounter severe unconver-
gence problems especially for binary outcomes with small cluster
(family) sizes.

In practice, several common statistical software packages are
available in fitting a standard GLMM. These include but not
limited to “proc nlmixed” and “proc glimmix” procedures in
SAS, and OpenBUGS for Bayesian approach. The “proc nlmixed”
mainly conducts integral approximations using an adaptive
Gauss-Hermite quadrature as default, and then directly maxi-
mizes the approximately integrated likelihood. In contrast, the
“proc glimmix” primarily performs several model linearization
based pseudo-likelihood methods, although it can also fit the
GLMM using Laplace or adaptive Gauss-Hermite quadratures
for integral approximations (see documentations supported by
SAS Institute Inc, Raleigh, NC). In addition, the model fitting
algorithm in R package “lme4” consists of an iteration between
two sub-optimization procedures. One is to determine the con-
ditional modes of the fixed and random effects, given the cur-
rent deviance and variance components using penalized itera-
tively re-weighted least squares (PIRLS). The other is to obtain
MLE of the deviance and variance components based on a profile
likelihood from Laplace approximation, given the current condi-
tional modes of the fixed and random effects (Bates et al., 2012).
Nonetheless, these software packages typically require the ran-
dom effects to have the same covariance (or correlation) struc-
tures across all the clusters. When families have different sizes
or varied kinship or double coancestry matrices, it is difficult to
directly specify GLMM Equation (1) using these software pack-
ages. It should be pointed out that the R package pedigreemm
can fit a GLMM to family data with complex family structures
without separating families into clusters. It also allows individuals
from different families to be correlated. Here, we focus on fitting
GLMM (1) using “proc nlmixed” and “proc glimmix” procedures
in SAS, or OpenBUGS as an alternative choice.

To deal with different families sizes or varied kinship or dou-
ble coancestry matrices, we apply a Cholesky decomposition
based re-parameterization of the random genetic effects vi to
re-formulate GLMM Equation (1) into a GLMM with random
regression coefficients. First, we apply separate Cholesky decom-
positions on the kinship and double coancestry matrices: 28i =

L8iL
T
8i,1i = L1iL

T
1i, for i = 1, · · · ,N. We then re-parameterize

the random genetic effects within family i as vi = L8iai + L1idi,
where ai = (ai1, · · · , airi )

T ∼ N(0, σ 2
AIri ) with ri = rank(8i),

and di = (di1, · · · , disi )
T ∼ N(0, σ 2

DIsi ) with si = rank(1i).
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Besides, we assume that ai’s are independent of di’s. By replacing
vi by L8iai + L1idi in model Equation (1), we have

Cov(vi) = Cov(L8iai + L1idi) = 28iσ
2
A + 1iσ

2
D = 6i

Note that the random effects ai and di are orthogonal within fam-
ilies as well as across families, even though the dimension of these
random effects may still vary from family to family because the
families may have different sizes.

Next, to deal with possible different family sizes, let r =

maxi{ri} and s = maxi{si} be the maximum number of columns
in {L8i, i = 1, · · · ,N} and {L1i, i = 1, · · · ,N}, respectively. For
those families with ri < r (or si < s), we further expand their
design matrices L8i (or L1i) to r (or s) columns by adding r − ri
(or s − si) columns of 0’s at the right end (or any places). Then,
we obtain a re-formulated GLMMwith all the families having the
same dimension r (or s) for their random effects ai (or di) as the
following.

g(µi) = 1nim+ Ziα + X(gi)β + L8iai + L1idi + 1niei

where Zi = (zi1, · · · , zini )
T , X(gi) = (x(gi1), · · · , x(gini ))

T , ai ∼
N(0, σ 2

AIr), di ∼ N(0, σ 2
DIs) and ei ∼ N(0, σ 2

c ). Finally, we con-
struct the design matrix L8 of ai from L8i, i = 1, · · · ,N, by
stacking them one above the other; and similarly build the design
matrix L1 of di by stacking L1i, i = 1, · · · ,N, one above the
other. Now, the columns of the two matrices L8 and L1 can be
treated as (r + s) ordinary fixed continuous covariates with ai’s
and di’s being their random regression coefficients. Within each
family, all the familymembers share the same set of slopes. Across
different families, the ai, i = 1, · · · ,N (or di, i = 1, · · · ,N), are
independent but share the same variance component σ 2

A (or σ 2
D).

The re-formulated GLMM above can be easily specified by
“proc nlmixed” or “proc glimmix” procedures in SAS.With “proc
glimmix,” we can use three separate “random” commands “ran-
dom e/subject = famid,” “random La1 ... Lar/subject = famid type
= TOEP(1);” and “random Ld1 ... Lds/subject = famid type =
TOEP(1);” to specify the correlation structures for the random
effects ei, ai, and di, respectively. Here, La1, ... , Lar represent the
columns of the stacked matrix L8; Ld1 ... Lds denote the columns
of the stacked matrix L1. The option “TOEP(1)” can force all
the elements in ai (or di) to share the same variance component
σ 2
A (or σ 2

D). For “proc nlmixed,” currently it only allows to have
one “random” command. But we can specify a joint multivari-
ate normal distribution for ei, ai, and di via “random e a1 ... ar
d1 ... ds ∼ normal(mu, v) subject=famid,” where v is a diagonal
matrix with one σ 2

c , r elements of σ 2
A’s and s elements of σ 2

D’s on
its diagonal. As an example, the SAS codes for specification of a
GLMM using both “proc glimmix” and “proc nlmixed” for fami-
lies with two parents and two full sibs (i.e., r= s= 4) are provided
in Appendices A, B (Supplementary Material), respectively. We
also explored using the R package lme4 to fit the re-formulated
GLMM. But it appears that the functions “lmer” and “glmer” pro-
vided in lme4 do not have an option that can force all the elements
in ai (or di) to share the same variance component σ 2

A (or σ 2
D).

This re-formulation also makes it more convenient to fit
GLMM Equation (1) using the Markov chain Monte Carlo

(MCMC) based Bayesian approach. We use R package BRugs
to get access to OpenBUGS software (Christensen et al., 2011),
which has the Bayesian approach implemented. It is noticed that
OpenBUGS has a weak support formatrix operations. In the orig-
inal GLMM Equation (1), the genetic covariance matrix 6i =

28iσ
2
A + 1iσ

2
D involves two unknown variance components σ 2

A
and σ 2

D. As a result, we cannot directly specify the covariance
matrix6i in OpenBUGS.With the re-formulated GLMM, we can
pass L8 and L1 as fixed covariates to OpenBUGS with ai and
di being their random regression coefficients. Since the Bayesian
approach often treats all the model parameters as random, it
appears especially suitable for fitting the re-formulated GLMM.
We can also extract from the MCMC the posterior distributions
of random effects for each individual, which allow us to assess the
variation contribution from the putative random genetic effects
{vij} to the total variance of {g(µij)}. The R codes for specification
of a re-formulated GLMM using BRugs + OpenBUGS are also
provided in Appendix C (Supplementary Material).

3. Simulation Study

In this section, we examine the performances of procedures “proc
nlmixed” and “proc glimmix” in SAS (version 9.3) as well as
R packages BRugs + OpenBUGS in fitting the re-formulated
GLMM through simulation. We consider three biallelic genetic
markers with alleles “0” or “1,” and one fixed explanatory covari-
ate Z ∼ Bernoulli(0.5). The three genetic markers are assumed
to be unlinked (i.e., independent) and have allele frequencies
p1 = 0.5, p2 = 0.2, p3 = 0.1 for alleles “1” at locus 1, 2, and
3, respectively. We first generate a pairs of haplotypes indepen-
dently for each parent, where each haplotype is comprised of
three alleles randomly generated from Bernoulli(pj) for j = 1,
2, and 3, respectively. Each child inherits one haplotype from
father, and the other frommother. The haplotype from father (or
mother) consists of three alleles with each allele being selected
from the two paternal (or maternal) alleles at the same locus with
50% chance. In case where a family has more than one child, the
above random process is repeated for each child independently.
For simplicity, we use the expected values to construct the kinship
and double coancestry matrices for each family.

We first consider simulating quantitative traits from a LMM.
Let gij = (gij1, gij2, gij3) be the genotypes of the j-th subject in
family i, where gijk ∈ {0, 1, 2} counts the number of alleles “1” at
locus k = 1, 2, 3. The quantitative trait values are simulated from
the following LMM.

yij = m+ zijα + x(gij1)β1 + x(gij2)β2 + x(gij3)

β3 + vij + ei + ǫij, i = 1, ..., n, j = 1, ...ni

where x(gijk) = (xa(gijk), xd(gijk))βk with xa(gijk) = gijk,
xd(gijk) = 1 (or 0) if gijk = 2 (or otherwise) based on the allele-

coding (see Wang, 2011), and βk = (βka, βkd)
T being the effects

of marker k for k = 1, 2, 3. We further set σ 2
c = σ 2 = σ 2

A = 1
and σ 2

D = 0.5. The other true values of parameters are listed in
Table 1. Each simulation data set contains n1 families with two
parents and one child and n2 families with two parents and two
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TABLE 1 | The true values of model parameters in simulation.

Parameter Definition True value

n1 The number of families with one child 0, 500, 1000

n2 The number of families with two children 500, 1000, 2000

m The intercept 10

α The fixed effect of Z 2

β1 The genetic effects of marker 1 (1, -2)

β2 The genetic effects of marker 2 (1, 0)

β3 The genetic effects of marker 3 (1, -1)

children. We consider three cases: (a) n1 = 500, n2 = 500; (b)
n1 = 1000, n2 = 1000; (c) n1 = 0, n2 = 2000.

For each simulation data set, we fit the GLMM by using two
methods: (1) adaptive Gaussian quadrature (AGQ) via “proc
nlmixed” in SAS; (2) Bayesian approach via BRugs+OpenBUGS.
Based on 200 simulation data sets, the parameter estimates are
summarized in Table 3. We also explored using “proc glimmix”
to fit the simulation data but abandoned it due to some severe
unconvergence problems. In running BRugs + OpenBUGS, we
choose the following priors for initialization of the parameters:
m ∼ N(0, 10), α ∼ N(0, 10), βka ∼ N(0, 10) and βkd ∼ N(0, 10)
for k = 1, 2, 3, τa ∼ Gamma(1, 1), σD ∼ Uniform(0, 5), τc ∼

Gamma(1, 1), and τ ∼ Gamma(1, 1), where τa = 1/σ 2
A, τd =

σ 2
D, τc = 1/σ 2

c , and τ = 1/σ 2. We use the first 10,000 updates
as burn-in, and another 10,000 updates to estimate parameters
as posterior means. The parameter estimates and their standard
deviations (SD) from the 200 simulations are summarized in
Table 2. For each simulation data, we also calculate the length
of the 95% confidence (or probability) interval for each param-
eter in running “proc nlmixed” (or BRugs + OpenBUGS). The
average length of these intervals and their coverage rate for each
true parameter value from the 200 simulations are summarized
in Table 3.

From Table 2 we can see that both methods can provide rea-
sonable estimates of the fixed effects α, βka, and βkd (k = 1, 2,
3) as well as the variance components with improved accuracy as
sample size increases. As expected, the estimate of allelic interac-
tion βkd has a larger SD than that of the additive allelic effect βka

at each locus k, for k = 1, 2, 3. The estimates of σ 2
D and σ 2 are

slightly biased, which could be caused by the potential confound-
ing between these two variance components. Besides, it appears
that “proc nlmixed” tends to over-estimate the dominant variance
σ 2
D and under-estimate the residual variance σ 2. Meanwhile, the

Bayesian method heads to the opposite way. From Table 3 the
coverage probabilities are close to the nominal level of 95% for
most parameters except σ 2

D and σ 2. The average lengths of the
95% confidence (or probability) intervals for σ 2

D and σ 2 are also
greater than the ones for other two variance components. In addi-
tion, the average length of the 95% confidence (or probability)
intervals for β3d is substantially larger than that for β1d and β2d,
which is likely caused by the fact that the allele “1” at marker locus
3 is rare and the homozygous genotypes “11” at marker locus 3
are much less present in a simulation data set than those at the
other two loci.

Overall, the results from “proc nlmixed” and BRugs + Open-
BUGS are quite comparable in all three cases. As we have men-
tioned before, the variance components σ 2 and σ 2

D are con-
founded in single-child families, and only two-child families are
informative for distinguishing them. In case (b), where there is an
increased number of 2-child families, the estimates of these two
variance components are improved with both methods. In case
(c), the accuracy in estimates of these two variance components is
further improved. In terms of the computational speed, it appears
that the “proc nlmixed” runs much faster than BRugs + Open-
BUGS. We ran BRugs+OpenBUGS on one laptop installed with
Intel(R) Core(TM)i7-3520MCPU@ 2.90GHz. It took about 19 h,
50 h and 38 min, and 59 h and 15 min of CPU time to complete
the 200 simulations (including data generation and MCMC iter-
ations) in cases (a), (b), and (c), respectively. The “proc nlmixed”
procedure in SAS was performed on a UNIX workstation which
has a compatible speed with the laptop, and it took about 2 and
a half hours, 6 and a half hours, and 7 h 18 min of CPU time to
complete the 200 simulations in cases (a), (b), and (c), respec-
tively. By contrast, the Bayesian approach can provide the poste-
rior distributions for all the parameters rather than just themodes
(MLE) and their variance or covariance estimates. When σ 2 and
σ 2
D are almost completely confounded, we found that the “proc

nlmixed” may give unreliable estimates of the model parameters
or encounter unconvergence problem caused by the nearly singu-
lar Hessian matrix, while the Bayesian approach can still provide
reasonable estimates at least for other model parameters except
σ 2 and σ 2

D.
We also consider binary traits and simulate phenotypic values

from the following mixed logistic regression model.

logitP(yij = 1|zij, gij1, gij2, gij3, vij, ei) = m+ zijα

+ x(gij1)β1 + x(gij2)β2 + x(gij3)β3 + vij + ei,

for i = 1, ..., n and j = 1, ..., ni. In order to have enough number
of events, we choosem = −3. Meanwhile, we keep the same true
values as before for other model parameters.We explored various
options on using “proc nlmixed” and “proc glimmix” but failed
to fit the above model appropriately due to severe unconvergence
problems. By contrast, BRugs + OpenBUGS can still provide rea-
sonable estimates for most of the model parameters. Using the
similar priors in the previous setting, 10,000 burn-in and 10,000
updates for parameter estimation, we compute the means and
standard deviations (SD) of the parameter estimates and the aver-
age lengths (AL) and coverage rates (CR) of the 95% probability
intervals from 200 simulations as summarized in Table 4.

Under our simulation setting, it appears that the SAS proce-
dures “proc nlmixed” and “proc glimmix” perform unexpectedly
poorly especially for binary outcomes. But we have to admit that,
although we have explored many options that are available in
running “proc nlmixed” and “proc glimmix,” our exploration is
surely not exclusive based on our limited knowledge. Besides, we
use SAS version 9.3 on our Linux computer system. Recently,
a newer version 9.4 of SAS has become available for PC users,
which may provide improved performance in fitting the GLMM.
Unfortunately, we do not have access to this new version of SAS
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TABLE 2 | Mean and standard deviation (SD) of the parameter estimates from 200 simulations for linear mixed models.

No. families (a) n1=500, n2 = 500 (b) n1 = 1000, n2 = 1000 (c) n1 = 0, n2 = 2000

Parameters AGQ Bayesian AGQ Bayesian AGQ Bayesian

m 10.01 (0.07) 10.00 (0.07) 10.00 (0.06) 9.99 (0.05) 10.00 (0.05) 10.00 (0.05)

α 2.00 (0.06) 2.01 (0.06) 2.00 (0.04) 2.00 (0.04) 2.00 (0.03) 2.00 (0.03)

β1a 1.00 (0.07) 1.00 (0.07) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05)

β1d −2.00 (0.11) −2.00 (0.11) −2.01 (0.08) −2.00 (0.07) −1.99 (0.07) −2.00 (0.07)

β2a 0.99 (0.06) 1.01 (0.06) 1.01 (0.05) 1.00 (0.05) 1.00 (0.04) 1.01 (0.05)

β2d 0.04 (0.17) −0.01 (0.18) −0.00 (0.11) −0.02 (0.11) −0.00 (0.10) 0.00 (0.11)

β3a 1.00 (0.08) 1.00 (0.08) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05)

β3d −0.98 (0.30) −0.97 (0.33) −1.00 (0.21) −0.99 (0.21) −1.00 (0.21) −0.98 (0.17)

σ2
A

1.01 (0.18) 0.98 (0.18) 1.01 (0.12) 1.00 (0.12) 1.00 (0.11) 1.00 (0.11)

σ2
D

0.54 (0.36) 0.46 (0.31) 0.53 (0.30) 0.49 (0.27) 0.51 (0.22) 0.49 (0.22)

σ2
c 0.99 (0.11) 1.01 (0.12) 0.99 (0.08) 1.00 (0.08) 0.99 (0.08) 1.01 (0.08)

σ2 0.95 (0.36) 1.06 (0.32) 0.97 (0.31) 1.02 (0.27) 0.99 (0.23) 1.03 (0.23)

TABLE 3 | The average length of the 95% confidence (or probability) intervals and the coverage rate for true parameters from 200 simulations for linear

mixed models.

No. families (a) n1 = 500, n2 = 500 (b) n1 = 1000, n2 = 1000 (c) n1 = 0, n2 = 2000

Parameters AGQ Bayesian AGQ Bayesian AGQ Bayesian

m 0.31, 96.0% 0.31, 96.0% 0.22, 94.5% 0.22, 96.0% 0.21, 96.0% 0.21, 96.5%

α 0.21, 94.5% 0.21, 94.5% 0.15, 95.0% 0.15, 97.0% 0.14, 96.0% 0.14, 95.0%

β1a 0.28, 96.0% 0.28, 94.0% 0.20, 95.0% 0.20, 96.5% 0.18, 95.0% 0.18, 96.5%

β1d 0.43, 95.5% 0.43, 95.0% 0.30, 93.5% 0.30, 97.0% 0.28, 93.0% 0.28, 92.0%

β2a 0.26, 97.5% 0.26, 96.5% 0.18, 95.5% 0.18, 94.5% 0.17, 97.0% 0.17, 90.5%

β2d 0.67, 93.5% 0.67, 92.0% 0.47, 96.0% 0.47, 97.5% 0.44, 96.0% 0.44, 96.0%

β3a 0.32, 95.0% 0.32, 96.5% 0.23, 98.5% 0.23, 96.5% 0.21, 95.5% 0.21, 94.5%

β3d 1.22, 96.5% 1.20, 92.5% 0.85, 94.5% 0.85, 97.0% 0.78, 95.0% 0.78, 98.5%

σ2
A

0.68, 94.5% 0.68, 92.0% 0.49, 96.0% 0.48, 95.0% 0.47, 97.0% 0.46, 95.0%

σ2
D

1.61, 87.0% 0.77, 74.0% 1.16, 89.5% 0.66, 75.0% 0.84, 93.5% 0.62, 84.0%

σ2
c 0.44, 94.5% 0.44, 95.0% 0.32, 94.5% 0.31, 94.0% 0.31, 96.0% 0.31, 94.0%

σ2 1.54, 87.0% 0.87, 74.5% 1.12, 88.5% 0.72, 75.5% 0.86, 95.0% 0.67, 85.0%

TABLE 4 | Means (SD) of the parameter estimates and AL (CR) of the 95% probability intervals from 200 simulations for mixed logistic regression models.

No. families (a) n1 = 500, n2 = 500 (b) n1 = 1000, n2 = 1000 (c) n1 = 0, n2 = 2000

Parameters Mean (SD) AL (CR) Mean (SD) AL (CR) Mean (SD) AL (CR)

m −2.69(0.20) 0.82, 69.0% −2.69(0.16) 0.63, 56.0% −2.69(0.14) 0.58, 47.0%

α 1.80(0.13) 0.58, 75.5% 1.79(0.11) 0.44, 58.0% 1.80(0.10) 0.41, 58.5%

β1a 0.89(0.14) 0.55, 85.5% 0.89(0.10) 0.40, 80.5% 0.90(0.09) 0.37, 77.5%

β1d −1.78(0.22) 0.90, 85.5% −1.79(0.16) 0.66, 78.5% −1.81(0.16) 0.62, 74.0%

β2a 0.90(0.12) 0.49, 87.5% 0.89(0.11) 0.36, 78.0% 0.91(0.09) 0.34, 83.5%

β2d 0.01(0.31) 1.24, 95.5% 0.02(0.23) 0.87, 95.0% −0.01(0.22) 0.82, 94.5%

β3a 0.88(0.15) 0.58, 85.0% 0.89(0.11) 0.42, 83.0% 0.88(0.10) 0.39, 77.0%

β3d −0.84(0.55) 2.20, 95.0% −0.85(0.40) 1.56, 93.0% −0.84(0.36) 1.46, 94.5%

σ2
A

1.11(0.45) 2.00, 95.5% 1.08(0.42) 1.56, 93.0% 1.02(0.32) 1.45, 98.5%

σ2
D

0.49(0.18) 0.80, 94.5% 0.52(0.20) 0.73, 93.5% 0.57(0.17) 0.72, 94.5%

σ2
c 0.74(0.19) 0.83, 78.0% 0.72(0.14) 0.64, 62.0% 0.75(0.14) 0.62, 70.0%
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yet based on our current Linux computer system. The perfor-
mance of “proc nlmixed” and “proc glimmix” in SAS 9.4 on fitting
the re-formulated GLMM needs further exploration.

While the frequencist approach implemented in “proc
nlmixed” and “proc glimmix” often require numerical approx-
imations to the full likelihood, the Bayesian approach directly
maximizes the full likelihood via MCMC. From our simulation
study, it seems that the Bayesian approach can better handle
the re-formulated GLMM especially for binary traits. However,
it should be pointed out that the choice of priors in using the
Bayesian approach could have a significant impact on conver-
gence of an MCMC procedure. Besides the gamma priors for all
the τ ’s, we also tested using uniform priors on σ ’s and obtained
similar results. Throughout our simulation, the Monte-Carlo
errors for all the parameter estimates appear to be acceptable. But
some auto-correlations in certain Markov chains (e.g., the ones
for σ 2

D and σ 2) are noticed. Typically, the auto-correlation could
be reduced by thinning the Markov chains. Otherwise, appro-
priate adjustment is needed in computing the SD of parameter
estimates.

4. Analysis of T1DGC data for Type I
Diabetes

As an example, we consider fitting a real family data set obtained
from the Type 1 Diabetes Genetics Consortium (T1DGC). The
data set includes five cohorts: Asia-Pacific (AP), Danish Steno
Diabetes Center (DAN), European (EUR), Sardinian (SAR) and
United Kingdom Genetic Resource Investigating Diabete (UK).
For simplification, we only adopt nuclear families and exclude
some grand-parents or grand children (less than 1% of the total
subjects). Most of the families (about 80.4%) consist of 2 par-
ents and 2–3 children. There are 13 families that have more
than 9 family members, and they all belong to the DAN cohort.
The actual numbers of subjects and families we used in the five
cohorts are listed in Table 5.

Our research interest is to test for association of HLA-DQB1
locus with Type 1 Diabetes (T1D) incidence, while appropriately
controlling for other potential genetic risk factors on the inci-
dence of T1D. The adjustment for random additive and domi-
nance effects is important because it has been known that T1D is
a polygenic disease. Some studies have suggested that other genes
such as INS andCTLA4 could be implicated with T1D (Anjos and
Polychronakos, 2004; McGinnis et al., 2009). One article “Genet-
ics and Diabetes” from the World Health Organization (WHO)
web site “http://www.who.int/genomics/about/Diabetis-fin.pdf”
also provides a nice review of the T1D. From our previous study
(Glisic et al., 2009), we classify the subjects into 4 groups: low risk

TABLE 5 | Number of subjects and families in T1DGC by cohorts.

Cohort AP DAN EUR SAR UK

No. of subjects 741 664 1936 347 465

No. of families 184 147 475 77 113

Maximum family size 6 14 8 6 6

(DQrisk = 0), moderate risk (DQrisk = 1), high risk (DQrisk =

2), and very high risk (DQrisk = 3) based on the HLA-DQB1
genotypes and CD4 + CD25 + highT-cell apoptosis. Gender and
age are also known risk factors for T1D. We categorize age
into 6 categories: age≤18, 18<age≤30, 30<age≤40, 40<age≤50,
50<age≤60, and age>60. By choosing the “high risk” (the largest
group across all cohorts) at HLA-DQB1, male and “age≤18” as a
baseline, we fit each cohort separately using the following mixed
logistic regression model.

logitP(yij= 1|vij, ei) = µ + α1 ∗ 1(18<age≤30) +

α2 ∗ 1(30<age≤40) + α3 ∗ 1(40<age≤50) +

α4 ∗ 1(50<age≤60) + α5 ∗ 1(age>60) + α6 ∗ 1(sex = F) +

β1 ∗ 1(DQrisk= 0) + β2 ∗ 1(DQrisk= 1) +

β3 ∗ 1(DQrisk= 3)+vij + ei

where ei ∼ N(0, σ 2
c ), e

αi (i = 1, · · · , 5) are odds ratios of hav-

ing T1D in different age groups comparing with the youngest

age group of age ≤18, eβj (j = 1, 2, 3) are odds ratios of having

T1D in different HLA-DQB1 risk groups comparing with the high

risk group, eβ6 is the odds ratio of T1D in females versus males,

and {vij} have the covariance structures as specified in GLMM

Equation (1).

To simplify the calculation, we use the expected values to con-

struct the kinship and double coancestry matrices for each family.

As the actual kinship and double coancestry matrices should be

close to their expected matrices, we would expect only minor devi-

ations from the fitted GLMM. In running “proc glimmix” and

“proc nlmixed” to fit the GLMMs, we encountered some severe

unconvergence problems (data not shown). In running BRugs +

OpenBUGS, we use 10,000 burn-in and another 10,000 updates to

estimate the parameters. For the DAN cohort, the current BRugs +

OpenBUGS cannot accommodate more than 12 additive or dom-

inant random coefficients in the model specification—see part (2)

of Appendix C in Supplementary Material, where “maxsize” (i.e.,

the number of columns of the stacked matrices L8 and L1) cannot

exceed 12 even though the total number of family members can

still exceed 12. We also find that some of the parameter estimates

become unstable whenwe actually use 10–12 columns. So we adopt

using 8 columns of the stacked matrices L8 and L1 in fitting the

Dan cohort. The estimates of odds ratios and variance compo-

nents in the fitted models from running BRugs + OpenBUGS are

summarized in Table 6.

The results have confirmed that age is significantly associated

with T1D incidence. In most cohorts except AP, the odds of T1D

occurrence reaches the highest in the youngest group of age < 18

and then decreases quickly as age increases. The females appear

to have a less chance of having T1D than males in DAN and EUR

cohorts. For HLA-DQB1, it appears that in each cohort there is a

significant increase of T1D risk in the HLA-DQB1 very high risk

group comparing with the high risk group, and the high risk group

is also significantly different from the low risk and moderate risk

groups after adjusting for the age and gender effects. The odds

of T1D for the high or very high risk groups appear significantly

higher than that for the low or moderate risk groups, which are

consistent with the relative risk of 3–45 of the HLA-DQB1 suscep-

tibility variant reported in “Genetics and Diabetes” fromWHO.
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TABLE 6 | Posterior means and 2.5%, 97.5% percentiles of the odds ratios and variance components for type I diabetes in five cohorts of the T1DGC data

set.

Cohorts AP DAN EUR SAR UK

Baseline intercept (µ) 2.32 (1.58,3.29) 2.64 (1.72,3.67) 3.70 (3.05,4.48) 1.11 (0.12,2.14) 2.22 (1.44,3.20)

18<age≤30 vs. age≤18 (eα1 ) 1.23 (0.56,2.82) 0.50 (0.19,1.39) 0.35 (0.20,0.59) 0.69 (0.21,2.32) 0.45 (0.15,1.35)

30<age≤40 vs. age≤18 (eα2 ) 0.10 (0.036,0.25) 0.25 (0.09,0.64) 0.047 (0.024,0.086) 0.48 (0.15,1.45) 0.014 (0.003,0.045)

40<age≤50 vs. age≤18 (eα3 ) 0.01 (0.003,0.04) 0.07 (0.02,0.19) 0.007 (0.002,0.014) 0.06 (0.01,0.22) 0.004 (0.001,0.013)

50<age≤60 vs. age≤18 (eα4 ) 0.005 (0.001,0.022) 0.04 (0.01,0.11) 0.002 (0.0004,0.004) 0.009 (0.001,0.063) 0.005 (0.001,0.025)

age>60 vs. age≤18 (eα5 ) 0.012 (0.002,0.055) 0.009 (0.002,0.032) 0.0004 (0.0001,0.0015) 0.003 (0.0001,0.023) 0.027 (0.0003,1.25)

Female vs. Male (eα6 ) 1.27 (0.75,2.21) 0.60 (0.35,0.97) 0.60 (0.43,0.83) 0.60 (0.24,1.38) 1.36 (0.64,2.92)

DQrisk = 0 vs. 2 (eβ1 ) 0.09 (0.025,0.26) 0.02 (0.005,0.06) 0.04 (0.02,0.08) 0.11 (0.01,0.71) 0.02 (0.002,0.12)

DQrisk = 1 vs. 2 (eβ2 ) 0.14 (0.05,0.30) 0.30 (0.14,0.59) 0.25 (0.15,0.39) 0.19 (0.04,0.63) 0.24 (0.08,0.71)

DQrisk = 3 vs. 2 (eβ3 ) 2.26 (1.17,4.80) 5.84 (2.75,14.47) 5.91 (3.48,10.61) 15.89 (4.80,82.60) 8.36 (3.30,26.13)

Additive variance (σ2
A
) 0.71 (0.20,1.90) 0.69 (0.21,1.73) 0.47 (0.17,1.05) 0.68 (0.19,2.11) 0.71 (0.17,2.05)

Dominant variance (σ2
D
) 1.64 (0.28,6.35) 1.44 (0.21,4.93) 0.66 (0.23,1.85) 2.96 (0.41,10.51) 1.25 (0.28,4.32)

Family-shared variance (σ2
c ) 0.62 (0.20,1.45) 0.66 (0.22,1.42) 2.36 (1.33,3.92) 0.56 (0.17,1.42) 0.63 (0.19,1.67)

Regarding the variance components, the estimates of the addi-

tive and family shared variances appear reasonably well, although

the dominance variances in SAR and AP cohorts have relatively

large variation due to perhaps the lack of information in their fam-

ily data. To see whether we should not include σ 2
D in the models,

we also fit the GLMMmodels without σ 2
D and compare them with

our previous models. Based on the deviance information criterion

(DIC), which is an estimate of the expected predictive error (lower

deviance is better) and it can account for both model fitness and

model complexity, the models with both additive and dominance

variances included have their DIC values of 658.6, 647.3, 1525,

342.2, and 316.6 which are lower than the DIC values of 669.5,

658.9. 1543. 354.1, and 322.3 in the reduced models without σ 2
D in

AP, DAN, EUR, SAR, and UK cohorts, respectively. So the models

with both additive and dominance variances included are prefer-

able. We also estimate the variations contributed by the random

putative genetic effects {vij}, which account for 22%, 26%, 9%, 27%,

and 12% of the total variation in logitP(yij = 1|vij, ei) for the AP,

DAN, EUR, SAR, and UK cohorts, respectively.

The T1DGC family data was collected from the observational

retrospective sampling, which likely had over-sampled families

with T1D children. It is well known that fitting a mixed logistic

regression model with random effects to a retrospective data set

may no longer provide the equivalent maximum likelihood esti-

mates of the model parameters as the ones defined in the same

model for a prospective cohort. Therefore, the results above are

only applicable to the families we obtained from T1DGC. For

general populations, an adjustment for the retrospective sampling

strategy is needed in order to avoid the bias in the parameter

estimates.

5. Discussion

In this study, we propose a Cholesky decomposition based re-

formulation of the GLMM to fit family data with varied sizes

and diverse genetic relatedness. Assuming that there is no genetic

correlation between different families, we first apply separate

Cholesky decompositions on the genetic kinship (or double co-

ancestry) matrices within each family. Next, we stack these Che-

losky decompositionmatrices from different families into columns

to form two stacked matrices. The columns of the stacked matri-

ces can then be treated as fixed covariates with random regression

coefficients of equal variances. It should be pointed out that apply-

ing separate Cholesky decompositions on each family does not

provide computational or storage benefits comparing with the reg-

ular Cholesky decomposition on the whole covariance matrix of

the random genetic effects because the non-diagonal blocks in the

sparse matrix decomposition are actually not saved. However, with

the reduced number of columns in our stacked matrices, this re-

formulatedGLMMcan be specifiedmore conveniently using “proc

nlmixed” and “proc glimmix” in SAS, or OpenBUGS via R pack-

age BRugs. Theoretically, the re-formulated GLMM is equivalent

to the original GLMM. Therefore, it should retain the same valid-

ity and power in testing the fixed and random genetic effects as

the original GLMM. From our simulation, it appears that this re-

formulated GLMM can be fitted reasonably well by “proc nlmixed”

and BRugs + OpenBUGS for quantitative traits with moderate

family sizes. For binary traits, our simulation and real data exam-

ple shows that at least BRugs + OpenBUGS can appropriately fit

the re-formulated GLMM for families of sizes not exceeding 12.

This Cholesky decomposition based re-formulation of GLMM

in fitting family data is somewhat analogous to Haseman and

Elston’s regression method for sib-pairs (Haseman and Elston,

1972). While Haseman and Elston’s algorithm regresses the

squared sib-pair’s phenotypic difference on the kinship and dou-

ble coancestry coefficients at a targeted locus with fixed effects,

our Cholesky decomposition based GLMM regresses all family

members phenotypic values on the square roots of the kinship

and double coancestry coefficient matrices with random regression

coefficients across families.

Except SOLAR, Multic, and pedigreemm, many other spe-

cial software packages are currently available for analyzing pedi-

gree data. For examples, VITESSE implemented the well-known

Elston–Stewart’s peeling algorithm for computing the likelihood of

pedigrees in linkage analysis (Elston and Stewart, 1971; O’Connell
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and Weeks, 1995). Mendel can run pedigree analysis for quantita-

tive traits (Lange et al., 2013). SAGE SAGE (2012) can be used for

pedigree analysis of binary traits. Based on the score statistics and

generalized estimating equations, FBAT and its extension PBAT

can also be used in association testing for both quantitative and

binary traits (Rabinowitz and Laird, 2000; Lange and Laird, 2002;

Lange et al., 2004; Laird and Lange, 2006). Nevertheless, our study

provides an alternative choice for analyzing the pedigree data by

using standard statistical software, which could be useful for statis-

ticians who are not very familiar with these special genetic software

packages. The standard statistical software packages often provide

many options on choosing different optimization techniques to

maximize the likelihood. As long as the optimization procedure

converges appropriately, the standard statistical software packages

can provide reliable results in most of the cases.

Sometimes we may want to perform hypothesis tests on the

existence of certain variance components. For non-Bayesianmeth-

ods in fitting the GLMM, it has been known that the likelihood

ratio statistics (LRS) usually do not asymptotically follow the stan-

dard Chi-square distributions under the null because the zeros

under the null hypothesis are located on the boundary of the

parameter space for the variance components, where the standard

regularity conditions no longer hold. As pointed out inWang et al.

(2011), in the hypothesis testing of a single variance component

H0 : σ 2
A = 0, the asymptotic distribution of LRS has 0.5χ2

0 +0.5χ2
1

under the null. In the hypothesis testing of more than one variance

components such as H0 : σ 2
A = σ 2

D = 0, the asymptotic distribu-

tion of LRS could be a mixture of several chi-square distributions

with their weights of themixture depending on the number of fam-

ily types. Therefore, directly using LRS to test for the existence of

variance components could be incorrect. On the other hand, the

Bayesian method can always provide appropriate estimates of the

variance components as well as their variances without relying on

the asymptotic results.

It should be pointed out that this Cholesky decomposition

based re-formulation in fitting the GLMM has some limitations.

For example, in order to synchronize the varied family sizes, the

number of random effects in smaller families needs to be expanded

to match that in the largest family. The Cholesky decomposition

also requires that the kinship and double coancestry matrices be

positive. When the kinship matrix is calculated from genome-

wide genotypes, the kinship or double coancestry matrices could

become singular for some of the families. One possible solution to

this problem is to apply a different type of decomposition to the

kinship and double coancestry matrices for these families. Note

that the decomposition matrices can have a reduced number of

columns as long as a good approximation to the kinship and dou-

ble coancestry matrices is maintained. Finally, it appears that the

computational speed in fitting the re-formulated GLMM via SAS

or OpenBUGs is slow. The proposed GLMM re-formulation is

probably more suitable for a refined analysis on certain targeted

loci rather than a genome-wide scan for a large number of genetic

markers.
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