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Streptococcus pneumoniae is a prominent human pathogen responsible for many
severe diseases and the leading cause of childhood mortality worldwide. The
pneumococcus is remarkably adept at colonizing and infecting different niches in the
human body, and its adaptation to dynamic host environment is a central aspect of
its pathogenesis. In the last decade, increasing findings have evidenced small RNAs
(sRNAs) as vital regulators in a number of important processes in bacteria. In S.
pneumoniae, a small antisense RNA was first discovered in the pMV158 plasmid
as a copy number regulator. More recently, genome-wide screens revealed that the
pneumococcal genome also encodes multiple sRNAs, many of which have important
roles in virulence while some are implicated in competence control. The knowledge
of the sRNA-mediated regulation in pneumococcus remains very limited, and future
research is needed for better understanding of functions and mechanisms. Here,
we provide a comprehensive summary of the current knowledge on sRNAs from S.
pneumoniae, focusing mainly on the trans-encoded sRNAs.
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Introduction

Streptococcus pneumoniae, the pneumococcus, is an opportunistic pathogen responsible for a wide
spectrum of human diseases, ranging from mild otitis media to more severe infections such as
meningitis, sepsis, or endocarditis. It is the main etiological agent of community-acquired pneu-
monia, causing more deaths in young children than any other infectious disease (O’Brien et al.,
2009). Pneumococcal vaccines cover only a small number of the 93 different serotypes, and the
treatment of pneumococcal diseases is hampered by the emergence and spread of drug-resistant
strains1. S. pneumoniae is a normal component of the human commensal flora, asymptomatically
colonizing the upper respiratory tracts of children and healthy adults. Human nasopharyngeal (NS)
carriage is the source of transmission from person to person and serves as the first step in patho-
genesis (Bogaert et al., 2004). Transition to opportunistic pathogen often occurs after a respiratory
tract infection and is triggered by unknown host and bacterial factors. Disease progression exposes
S. pneumoniae to numerous environmental changes and stress conditions, and rapid adaptation is
a key factor for survival and replication.

1http://www.who.int/drugresistance/technicalguidance/en/resistantinfection.pdf
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In recent years, a plethora of RNAs with regulatory functions
has been discovered in many pathogenic and non-pathogenic
bacteria. These small RNAs (sRNAs) accomplish a large variety
of regulatory functions, and are essential elements in bacterial
pathogenicity (Toledo-Arana et al., 2007; Waters and Storz, 2009;
Storz et al., 2011; Bobrovskyy and Vanderpool, 2013; Caldelari
et al., 2013). Often non-coding, the sRNAs can act at the level
of transcription, translation or RNA degradation. The majority
of them regulate pathways that sense and transfer the external
signals, and adapt the cell population in response to stress and
environmental changes. Some regulate replication and mainte-
nance of plasmids and phages (Brantl, 2002) and others, such as
the CRISPR RNAs, protect the core genome from foreign nucleic
acids (Fineran and Charpentier, 2012). They can act through
three main mechanisms: (1) by base-pairing with nucleic acids,
mostly mRNA targets, having either extensive or more limited
complementarity; (2) modulating the activity of proteins bymim-
icking other nucleic acids, or (3) acting as riboswitches, sensing
physical cues or metabolites and modulating expression of down-
stream genes (Winkler and Breaker, 2005; Zhang et al., 2010).
RNA-interacting proteins play important roles in the expression
and activity of sRNAs. Nucleases have critical roles in their pro-
duction, quality control, and activation, and the RNA chaperone
Hfq mediates the action of many sRNAs (Vogel and Luisi, 2011;
Saramago et al., 2014).

Whereas a variety of sRNAs have been identified and stud-
ied in many Gram-positive and Gram-negative bacteria, little is
known about these regulators in S. pneumoniae. Recent system-
atic approaches have uncovered multiple chromosomal-encoded
sRNAs in the pneumococcus (Livny et al., 2006, 2008; Kumar
et al., 2010; Tsui et al., 2010; Acebo et al., 2012; Mann et al.,
2012) but only a few have been functionally studied (Halfmann
et al., 2007; Schnorpfeil et al., 2013). In this review, we outline
our current knowledge on the sRNA–mediated regulation in S.
pneumoniae, compiling all information available and providing
a comprehensive list of the sRNAs identified and their biological
functions.

RNAs Encoded in Extrachromosomal
Elements

The first regulatory RNA discovered in pneumococcus was a
plasmid-encoded bona-fide antisense RNA described by del Solar
and Espinosa (1992), and its role in establishment, replication,
and copy number regulation has been deeply investigated. The
pMV158 is a promiscuous plasmid able to replicate in pneu-
mococci, whose replication is initiated by the plasmid-encoded
initiator protein RepB. Expression of RepB is subjected to a tight
control exerted by two trans-acting plasmid elements, a transcrip-
tional repressor protein (CopG) and an antisense RNA (RNAII;
del Solar et al., 1995; Figure 1A). Both CopG and RepB are tran-
scriptionally but not translationally coupled (López-Aguilar et al.,
2013), and CopG is able to bind to their operator sequence and
repress synthesis of the copG-repB mRNA (Hernández-Arriaga
et al., 2009). Post-transcriptionally, the short 48-nt long anti-
sense RNAII, whose synthesis is directed by the PctII promoter,

inhibits translation of repB message by directly pairing to the
region immediately upstream of its translational initiation sig-
nals (del Solar et al., 1997). Structural analyses by chemical and
enzymatic probing, revealed that the RNAII consists of single
stranded 5′ and 3′ tails and a hairpin, which together with the
adjacent U-reach 3′ tail compose a very efficient intrinsic termi-
nator (del Solar and Espinosa, 2001; López-Aguilar and del Solar,
2013). The most recent investigations (López-Aguilar, personal
communication) demonstrated that the 5′-tail of RNAII play a
critical role in the binding and translation inhibition of repBmes-
sage, while the hairpin plays a secondary role. A singular binding
mechanism is envisaged whereby initial pairing between comple-
mentary single stranded regions in the antisense and sense RNAs
progresses upward into the corresponding hairpin to form the
intermolecular duplex.

Both regulatory elements, CopG and RNAII, acts synergisti-
cally to ensure the plasmid copy number within a narrow range.
Themechanism of repression by CopG has been extensively stud-
ied, as well as the RNAII mode of action, and constitutes the only
regulatory RNA mechanistically studied in S. pneumoniae.

Chromosomal-Encoded sRNAs

A combination of computational predictions, transcriptome
analyses, and RNA sequencing approaches has been applied
to discover chromosome-encoded riboregulators in S. pneumo-
niae. Although the available software for sRNA identification
were mainly developed on the basis of sRNA features from
Gram-negative genomes, adaptation of novel programs have also
enabled the discovery of a large number of sRNAs in Gram-
positive bacteria. As much as 128 sRNAs were bioinformatically
predicted in intergenic regions (IGRs) of the pneumococcal
chromosome through two different computational approaches,
using the sRNAPredict2 software and the high throughput
kingdom-wide prediction tool SIPHT (Livny et al., 2006, 2008).
Additionally, searching for promoters containing a consensus
CiaR (response regulator)-binding sequence allowed to identify
the first class of five sRNAs located within IGRs of the genome
(Halfmann et al., 2007). After that, three groups reported the
use of high-throughput methodologies to experimentally dis-
cover sRNAs in pneumococci. First, Kumar and coworkers found
50 putative sRNAs in the clinical isolate TIGR4 genome by
high-resolution tiling microarrays (Kumar et al., 2010). Further,
Acebo and coworkers identified 88 potential sRNAs by deep
sequencing, 68 of which were novel candidates (Acebo et al.,
2012); and, finally, Mann et al. (2012) increased the total num-
ber to 178, of which 37 were identified by at least two different
methods. Differences inherent to the technique used and/or dif-
ferent sequence coverage may explain the moderate overlapping
observed between searches. Most of these sRNAs are conserved
among pneumococcal species and some (71) are also present in
other bacteria, mainly in fellow streptococci (59). Interestingly,
about 40% (70) appear to be unique to this human pathogen.

Among the sRNAs identified, some belonged to previously
known families of Cis-acting RNAs like riboswitches or leader
regions (i.e., pyr, TPP riboswitch, T-box). Others belonged to the
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FIGURE 1 | Regulation by small RNAs (sRNAs) in pneumococci. The
cytosol and the extracellular environment (upper part of the figure) are separated
by the cell membrane. (A) Replication of plasmid pMV158 is initiated by RepB
protein upon binding to double stranded origin (dso). RepB transcription is
inhibited by CopG. The antisense RNAII represses RepB translation by
base-pairing with the region immediately upstream of RepB translational
initiation signals in the copG-repB message. (B) Postulated mechanism of
competence regulation by sRNAs. The extracellular concentration of CSP, an
exported peptide pheromone derived from precursor protein ComC, is sensed
by the membrane histidine kinase ComD. Binding of CSP to ComD results in
phosphorylation of ComD, which then transfers the phosphate group to the

cognate response regulator ComE, thus activating transcription of early
competence genes (comC, comD, comE, and comX1/X2). ComC, D and E are
cotranscribed in a long mRNA. Expression of the five csRNAs (within a gray box)
is activated by the CiaRH two component system. The csRNAs then associate
with the SD sequence and start codon of comC inhibiting its expression through
an antisense mechanism. Similarly, the srn206 (within a gray box) associates
with comD message sequestering its translation initiation signals. The five
csRNAs and the srn206 act together to maintain the competence switched off.
Predicted secondary structure of the csRNAs (by Mfold) and the srn206 (by
RNAfold) as previously published in (Halfmann et al., 2007) and (Acebo et al.,
2012), respectively, is shown.

so-called functional sRNAs, such as RNase P, the 6S RNA, or
tmRNA, whose predicted biological activities and mechanism of
action are based on the knowledge of sRNA orthologs in other
bacterial species. Some sRNAs have been identified as BOX ele-
ments, mobile sequences exclusively found in pneumococci and
closely related species, which are numerous and randomly dis-
tributed in IGRs (Knutsen et al., 2006; Croucher et al., 2011).
They have the potential to form stable stem-loop structures and
may affect expression levels of neighbor genes either by stabi-
lizing mRNAs or serving as DNA-binding sites for regulatory
proteins. However, the majority of the sRNAs identified could not
be assigned to a functional family. Remarkably, no Cis-antisense
or CRISPR RNAs have been identified so far, in what appears to
be a pneumococcal singularity.

Biological Functions of
Chromosomal-Encoded sRNAs

Expression of eighty out of the 178 putative sRNAs was tested
by northern-blot or qRT-PCR and 70 of them were success-
fully validated (Halfmann et al., 2007; Kumar et al., 2010; Tsui
et al., 2010; Acebo et al., 2012; Mann et al., 2012). However,

knowledge about their biological function remains very limited
and, with a few exceptions, no clearly defined targets or regula-
tory mechanisms were determined so far. Chromosome-encoded
sRNAs have been mainly linked to fine-tuning metabolic pro-
cesses or stress adaptation, and this often results in the lack
of severe phenotypes upon deletion or overexpression. In fact,
three sRNAs were deeply investigated in the D39 pneumococ-
cal strain using deletion mutants and overexpressing strains,
but no effects in common phenotypes or transcription patterns
were conclusively found (Tsui et al., 2010). Nevertheless, several
groups have recently succeeded in attributing diverse functions
to pneumococcal sRNAs and some of them have been shown to
control various aspects of virulence and participate in important
regulatory networks such as competence or autolysis.

sRNAs Control Virulence
The importance of sRNAs in virulence was overlooked until
recently, when the application of targeted genetic knockouts and
Tn-seq transposon screening mutagenesis demonstrated that a
significant portion of the pneumococcal sRNAs have important
global and niche-specific roles in virulence (Mann et al., 2012).
Measurements of relative fitness and competitive index of sRNA
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pneumococcal mutants generated by random transposon inser-
tion in the nasopharynx, lungs, and bloodstream, rendered a
comprehensive list of sRNA mutants with altered fitness. The
majority showed defects in nasopharynx colonization, lung infec-
tion, or replication in bloodstream (Table 1), but a small number
of mutants actually resulted in a fitness benefit in certain host
sites. These data indicate that sRNAs contribute to pneumococcal
pathogenesis, both for systemic infections as well as for tissue-
specific tropisms. Targeted knockout mutants validated these
results and demonstrated that eight of them were also attenuated
in establishing invasive disease upon intranasal (IN) challenge.
These attenuated mutants were deeply studied, including analy-
sis of their ability to adhere to and invade endothelial (ET) andNS
cells, as well as transcriptomic and proteomic analyses to identify
putative targets (for details see Table 1).

Two sRNAs of especial interest resulted from this extensive
analysis: the F20, also named as srn157, and the F32, pre-
viously identified as the tmRNA (Kumar et al., 2010; Acebo
et al., 2012). Both the srn157 and tmRNA deletion mutants
showed decreased adhesion/invasion of NS or ET cells, respec-
tively, in concert with a lack of fitness and competitive index
in the nasopharynx and lungs (Table 1). They also resulted
in a dramatic alteration in abundance of several proteins (88
and 100, respectively), as well as in a substantial change in the
gene expression profile. In case of srn157 deletion mutant, pro-
teomic analysis indicated that proteins responsible for purine
metabolism were strongly downregulated, whereas DNA synthe-
sis and repair pathways were greatly upregulated. Thus, dele-
tion of this sRNA had pleiotropic effects that could explain its
attenuation. In the tmRNA mutant, several metabolic networks
encompassing the lactose transport system and multiple PTS sys-
tems were downregulated. The tmRNA has been associated with
deficiencies in stress-response and pathogenicity in other bacte-
ria (Withey and Friedman, 2003; Okan et al., 2006, 2010; Keiler,
2008) and has a central role in the trans-translation mechanism,
a RNA and protein quality control system that resolves chal-
lenges associated with stalled ribosomes on non-stop mRNAs
(Giudice et al., 2014; Shimizu, 2014). This role is consistent
with the strong effect in pathogenesis observed in the tmRNA
mutant.

All these data provide compelling evidence that sRNAs play
important roles in virulence, that their effects can arise at several
levels of control, and hence these roles can be restricted to specific
host tissues. However, no direct regulatory link was established
yet between sRNAs and putative targets.

sRNAs Modulate Competence
Competence is a pivotal mechanism in S. pneumoniae, which reg-
ulate the expression of ∼200 genes and is involved in virulence
and antibiotic resistance (Lau et al., 2001; Oggioni et al., 2004;
Prudhomme et al., 2006; Kowalko and Sebert, 2008). But simul-
taneously, competence induction is highly stressful for the cell
and needs to be tightly controlled. Thus, different layers of reg-
ulation in which proteins and regulatory RNAs act in concert to
fine-tuning competence activation could be expected.

The first chromosomal-encoded sRNAs described in pneu-
mococcus are part of the regulon of the two-component

system CiaRH (Halfmann et al., 2007). These five csRNAs (cia-
dependent small RNAs), designated from 1 to 5, are non-coding
RNAs between 87 and 151 nt-long with a high degree of simi-
larity to each other. Their predicted secondary structure consists
of a stem-loop at the 5′-end and an unpaired region followed
by a terminator stem-loop. Sequences complementary to the
Shine-Dalgarno and the start codon AUG in the unpaired region
suggested that csRNAs may control initiation of translation.
CiaRH two-component system has been implicated in β-lactam
susceptibility, autolysis, bacteriocin production, competence, and
virulence, and some of these functions appear to be mediated by
the csRNAs. For instance, stationary-phase autolysis was affected
by csRNA4 and csRNA5 (Halfmann et al., 2007), and csRNA5
was defective in lung infectivity (Mann et al., 2012). But one of
the most apparent phenotypes associated with CiaRH is block-
ing of spontaneous competence upon CiaRH activation (Guenzi
et al., 1994; Müller et al., 2011). On this regard, csRNA1 was
first shown to act negatively on competence development (Tsui
et al., 2010), reversing the natural competence induction phe-
notype of the �CiaRH mutant, but no direct link between this
csRNA and competence genes as targets could be established.
Recently, csRNA target prediction analysis and evaluation by
translational fusions identified six genes, which were all down-
regulated by the csRNAs acting additively (Schnorpfeil et al.,
2013). One of these target genes was comC, encoding the precur-
sor of the competence stimulating peptide CSP. Hyperactivation
of CiaRH in the absence of csRNAs did not block competence
development and partial disruption of comC complementarity to
the csRNAs greatly diminished csRNA-mediated repression and
relieved competence from CiaRH-dependent control. Therefore,
CiaRH competence control is mediated by csRNAs, which block
production of CSP precursor thereby inhibiting competence
development (Figure 1B). Interestingly, CiaRH also controls pro-
duction of the serine protease HtrA, which acts negatively on
competence by degradation of CSP (Cassone et al., 2012). Which
negative CiaRH-dependent control mechanism prevails, csRNA-
or HtrA-mediated, depends strongly on growth conditions.

In addition to these five redundant csRNAs, another non-
coding RNA, the srn206, has been suggested to participate in
competence control. The srn206 is a highly structured 120-nt
long RNA that was predicted to associate to the translation
initiation region of comD mRNA (Acebo et al., 2012). ComD
is the histidine kinase of the ComDE two-component system
that, upon induction by CSP, allows the entrance into a compe-
tent state of pneumococcal cells (Claverys et al., 2009; Johnston
et al., 2014). Binding of CSP to ComD protein results in a
phosphorylation cascade that finally activates the transcription
of competence genes. Target prediction analysis suggested that
srn206 could regulate ComD levels by sequestering its start
codon and ribosome-binding site, thereby preventing activation
of competence (Figure 1B). In fact, overexpression of srn206
significantly reduced the transformation efficiency of pneumo-
coccal cells in response to exogenous CSP (Acebo et al., 2012).
Nevertheless, no direct link between srn206 and ComD trans-
lational repression could be established so far and more exper-
iments are required to uncover the precise role of srn206 in
competence.
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TABLE 1 | Studied small RNAs (sRNAs) in pneumococci.

sRNA name Pathogenesis profilea Direct target and mechanism of action Regulatory functions

RNAII∗ Translational repression of repB by
base-pairingb

Control of plasmid replicatione

F14 Nasopharynx

F24 Nasopharynx

F38; srn254; spd-sr17 Nasopharynx

F51 Nasopharynx

F52 Nasopharynx

F63 Nasopharynx

F64 Nasopharynx

R16 Nasopharynx

SN30 Nasopharynx

SN39 Nasopharynx

SN50 Nasopharynx

srn142 Nasopharynx FMN riboswitch

trn0156 Nasopharynx

trn0760 Nasopharynx

F66; srn502; SN27 Nasopharynx and blood

R12; trn0830 Nasopharynx and blood

R8 Nasopharynx and blood

trn1025; SN46 Nasopharynx, blood, and lungs

F41; srn277 Nasopharynx and blood; IN Challenge

F20; srn157 Nasopharynx and lung; IN Challenge;
reduced ET and NS adhesion and
invasion

F2 Blood

F27; trn0358 Blood TPP riboswitch

F45 Blood

R4 Blood

SN38 Blood

srn279 Blood

F5; trn0052 Blood and lungs

trn0012; SN1; csRNA3 Blood and lungs Translational repression of comC, spr0081,
spr0159, brnQ and spr1097, by base-pairingc

Competence modulation and
autolysisf

F25; trn0332; SN11 Blood; IN Challenge; reduced ET
adhesion

F26; SN12 Lung Pyr regulator

F29 Lung

F47; srn368; SN24 Lung T-box

F59; srn235; SN20 Lung

F60; trn0485 Lung

F62 Lung

R14 Lung

R6; srn400 Lung T-box

F8; SN5; csRNA1;
spd-sr56

Lung Translational repression of comC, spr0081,
spr0159, brnQ and spr1097, by base-pairingc

Competence modulation and
autolysisf,g

SN6; csRNA2 Lung Translational repression of comC, spr0081,
spr0159, brnQ and spr1097, by base-pairingc

Competence modulation and
autolysisf

SN2 Lung

SN22 Lung; reduced ET adhesion

SN26 Lung

SN31 Lung

SN32 Lung

srn218 Lung

trn0634 Lung

(Continued)
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TABLE 1 | Continued

sRNA name Pathogenesis profilea Direct target and mechanism of action Regulatory functions

F32; srn226; SN16; tmRNA Lung; IN Challenge; reduced ET and
NS adhesion and invasion

Trans-translationh

F7; srn061; SN35; csRNA5 Lung; IN Challenge; reduced ET
adhesion

Translational repression of comC, spr0081,
spr0159, brnQ and spr1097, by base-pairingc

Competence modulation and
autolysisf

F22 IN Challenge

F44 IN Challenge; reduced ET adhesion

F48 IN Challenge

srn395; SN34; 6S Control of gene expression in
stationary phaseh

srn098; SN8; RNaseP tRNA maturationh

SN7; csRNA4 Translational repression of comC, spr0081,
spr0159, brnQ and spr1097, by base-pairingc

Competence modulation and
autolysisf

srn206 Translational repression of comC, spr0081,
spr0159, brnQ and spr1097, by base-pairingd

Competence modulationd

∗Plasmid encoded antisense RNA.
aShows the contribution of sRNAs to pathogenesis on each host site as described in Mann et al. (2012). Deletion mutants with altered fitness in nasopharynx colonization,
blood replication or lungs are indicated. Deletion mutants attenuated in invasive disease upon intranasal challenge (IN Challenge) or with reduced ability to adhere or to
invade endothelial (ET) or nasopharyngeal (NS) cells are also indicated.
bdel Solar et al. (1997); cSchnorpfeil et al. (2013); dAcebo et al. (2012); edel Solar et al. (1995); fHalfmann et al. (2007); gTsui et al. (2010); hBiological activities predicted
based on the knowledge in other bacteria.

Therefore, although more investigation is required, current
data suggests that different pneumococcal sRNAsmay participate
in competence modulation acting at distinct levels of the compe-
tence cascade, resembling the quorum sensing circuits described
in other bacteria (Bejerano-Sagie and Xavier, 2007).

Concluding Remarks and Perspectives

As shown above, numerous sRNAs have been identified in S.
pneumoniae, but the understanding of sRNA-mediated regula-
tion is largely insufficient and identification of targets and modes
of action is still missing. Nevertheless, important aspects have
been uncovered. For instance, the use of a multi-organ Tn-
seq approach revealed that many sRNAs display global roles in
discrete host tissues during disease, and provided a comprehen-
sive list of sRNAs playing distinct roles in pathogenesis in the
nasopharynx, the lung or the bloodstream. The analysis of sRNA
contribution to pneumococcal pathogenesis in different host sites
may provide a framework for future investigations to elucidate
the precise function of these sRNAs. Moreover, a regulatory cir-
cuit including the concerted action of proteins and regulatory
RNAs appears to control activation of competence in pneumo-
cocci. In this circuit, the five redundant csRNAs and the srn206
act together, contributing to the maintenance of the competence
on–off switch. Interestingly, all streptococcal genomes harbor
from two to six csRNAs genes and their expression was vali-
dated for some of them (Marx et al., 2010). Therefore, the study
of pneumococcal regulatory RNAs may uncover novel sRNA
functions in other streptococcal species.

Trans-encoded antisense RNAs often require the action the
RNA chaperone Hfq (Vogel and Luisi, 2011). This protein is
present in 50% of all sequenced bacterial species, and a few
species like Bacillus anthracis encode even two. In Gram-negative
bacteria, Hfq is essential for activity and/or stability of most

trans-encoded sRNAs. However, in Gram-positives its role is still
controversial, and examples of Hfq-dependent antisense regula-
tion have been reported only in Listeria monocytogenes (Nielsen
et al., 2010) and Clostridium difficile (Boudry et al., 2014). As
other streptococci, S. pneumoniae lacks an homolog of Hfq, and
future research is needed to know whether pneumococcal trans-
acting sRNAs require RNA chaperones to function or whether
they have evolved fundamentally different mechanisms of action.
Identification of a pneumococcal Hfq-like protein might be help-
ful to detect additional sRNAs and to identify targets.

The breadth of pneumococcal species and clinical isolates is
an important issue for pneumococcal pathogenesis. They often
differed in aspects such as invasiveness or antibiotic resistance,
and comparison of their sRNA repertoire may help to eluci-
date their biological activity. Furthermore, the use of sRNAs as
diagnostic tools and platforms for the development of antimi-
crobial therapies has long been suggested as an important
outcome of sRNA studies. Clearly there are many exciting fron-
tiers and unanswered questions in research on bacterial sRNAs
and it is likely that important insights will come from break-
throughs in methodology. Understanding the ways that bacteria
respond to and influence communities and how they survive
such diverse environments will benefit from further studies of
sRNAs.
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