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Estimated breeding values (EBVs) are traditionally obtained from pedigree information.

However, EBVs from high-density genotypes can have higher accuracy than EBVs

from pedigree information. At the same time, it has been shown that EBVs from

genomic data lead to lower increases in inbreeding compared with traditional selection

based on genealogies. Here we evaluate the performance with BLUP selection based

on genealogical coancestry with three different genome-based coancestry estimates:

(1) an estimate based on shared segments of homozygosity, (2) an approach based

on SNP-by-SNP count corrected by allelic frequencies, and (3) the identity by state

methodology. We evaluate the effect of different population sizes, different number of

genomic markers, and several heritability values for a quantitative trait. The performance

of the different measures of coancestry in BLUP is evaluated in the true breeding values

after truncation selection and also in terms of coancestry and diversity maintained.

Accordingly, cross-performances were also carried out, that is, how prediction based on

genealogical records impacts the three other measures of coancestry and inbreeding,

and viceversa. Our results show that the genetic gains are very similar for all four

coancestries, but the genomic-based methods are superior to using genealogical

coancestries in terms of maintaining diversity measured as observed heterozygosity.

Furthermore, the measure of coancestry based on shared segments of the genome

seems to provide slightly better results on some scenarios, and the increase in

inbreeding and loss in diversity is only slightly larger than the other genomic selection

methods in those scenarios. Our results shed light on genomic selection vs. traditional

genealogical-based BLUP and make the case to manage the population variability using

genomic information to preserve the future success of selection programmes.
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1. Introduction

Best linear unbiased prediction (BLUP) is possibly the most common selection method in ani-
mal and plant breeding, where it is used to calculate estimated breeding values (EBVs). BLUP
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evaluations maximize the genetic gain given the data by
increasing the accuracy of the predictions (Henderson, 1984).
This method relies on both the additive relationship matrix
between the individuals in the population, which are tradition-
ally obtained from pedigree records, and on phenotypic records
of the candidates to selection. Such is the power of BLUP that
it is actually not only used in breeding programmes, but also in
evolutionary ecology to estimate the strength of selection and
evolutionary change (see Hadfield et al., 2010 for a review) and
more recently in human genetics for the prediction of complex
traits (Makowsky et al., 2011).

With the advent of high-throughput genotyping techniques
and the development of chips containing thousands of sin-
gle nucleotide polymorphisms (SNPs) at a reasonable cost, the
implementation of genome-wide evaluations (Meuwissen et al.,
2001; Goddard and Hayes, 2007) is routinely used in many
breeding programs, and conventional BLUP selection based on
pedigrees is now migrating to genomic selection.

Genome-based EBV (estimated breeding values based on
high-density marker data across the genome) have generally
yielded a higher accuracy than pedigree-based EBV (Meuwissen
et al., 2001; Goddard, 2009; Hayes et al., 2009; Sonesson et al.,
2012; Rodriguez-Ramilo et al., 2014). This is because genetic
markers provide amore accurate relationshipmatrices than pedi-
gree data (Goddard, 2009), which accounts for the expected
genetic relationships. For example, while the genealogical rela-
tionship between two full-sibs is 0.5, usingmolecularmarkers like
high-density SNP chips, a more accurate value can be obtained,
thus showing that the true relationship deviates from 0.5 (Viss-
cher et al., 2006) and varies among pairs of sibs, depending on the
segregation of the parental chromosomes (Garcia-Cortes et al.,
2013).

Genomic selection can therefore lead to high levels of accu-
racy at an early age and generation intervals can be shortened
leading to faster genetic gains within a specific breeding pro-
gram. Furthermore, genomic selection not only has increased the
accuracy in the breeding values, but also the increase in inbreed-
ing per generation is lower than that obtained with conventional
pedigree-based BLUP selection (Daetwyler et al., 2007; Sones-
son et al., 2012). However, both traditional and genomic selec-
tion increase the levels of both inbreeding and coancestry, thus
decreasing the pool of genetic diversity. This has wide-ranging
consequences, as it is clear that such variation is needed for
selection but also to avoid leading the population into extinc-
tion (Frankham et al., 2002). A crucial issue thus is a thorough
understanding of the measures of coancestry between individuals
and how they are affected by the relationship matrix used in the
selection process, i.e., pedigree or genomic-based coancestries.

Traditionally, genealogical measures from pedigree records
were used to calculate coancestry. As molecular markers became
commonly used, estimates of genealogical coancestry from these
markers were developed (Weir et al., 2006). It is only with the
high-density panels that replacing genealogical coancestry with
marker-based coancestry has become accepted as leading tomore
accurate predictions (Meuwissen et al., 2001; Meuwissen, 2007;
Solberg et al., 2008) and to maintain more diversity in conser-
vation programmes (de Cara et al., 2011). However, while the

increase in accuracy in the EBVs using different marker types and
densities is well-understood (Solberg et al., 2008; Jannink, 2010),
the effect of different measures of coancestries in genomic and
traditional selection has not received as much attention (Sones-
son et al., 2012; Bjelland et al., 2013; Luan et al., 2014). For
instance, genomic selection to estimatemarker effects and predict
the breeding values from them exploits the linkage disequilib-
rium between the markers in the panel and the causal mutations
or QTL (Habier et al., 2007; de los Campos et al., 2010). When
selection is performed via BLUP based on genomic relationships,
the genetic gain is superior based on these relationships as com-
pared to BLUP based on pedigree based relationships (Villanueva
et al., 2005; Meuwissen, 2007) when the number of candidates for
selection is large (Bastiaansen et al., 2012; Sonesson et al., 2012).
Furthermore, selection based on genomic relationships also leads
to lower increases in inbreeding and maintains more diversity
(Sonesson et al., 2012; Liu et al., 2014).

In this study we analyse the effect of BLUP selection with
four measures of coancestry on the genetic gain and on the
increase in coancestry and inbreeding. For this purpose, we carry
out simulations with three different genome-based relationship
matrices and the matrix of genealogical relationships when infer-
ring breeding values using BLUP. The three genomic measures
of coancestry were: (1) based on shared segments of homozy-
gosity (Fisher, 1954; Stam, 1980; Gusev et al., 2009), (2) using
identity by state, that is, marker-by-marker similarity (Eding and
Meuwissen, 2001; Caballero and Toro, 2002) and (3) based on
a marker-by-marker count corrected by allelic frequencies (Van-
Raden, 2008). We measured the performance of selection with
BLUP based on these four coancestries by analysing the genetic
gain as measured with the true breeding values (TBVs).

2. Materials and Methods

2.1. Base Population
A base population was simulated with an effective size of 1000
individuals (half males, half females) during 10,000 generations
until an equilibrium in the average genome-wide heterozygosity
was reached. Every individual had a genome of 10 chromosomes
of 1M with 10,100 biallelic positions each. Initially, every posi-
tion in the genome carried alleles 0 or 1 at random, so that the
average initial heterozygosity was 0.5. Themutation rate per posi-
tion and generation was 2.5× 10−3. Every generation during the
creation of the base population we firstly performed mutations
in every individual, then chose a male and a female at random
with replacement and produced an offspring with recombina-
tion. The number of recombinations per chromosome were sam-
pled from a Poisson distribution and the recombination positions
were drawn from a uniform distribution. The base populations
were generated with a fortran 90 code available upon request.

2.2. Selection
We performed 100 replicates of each scenario here studied by
selecting 1000 polymorphic positions from this base population
to be later used as selective loci (also known as QTLs in the lit-
erature). We sampled these selective loci from positions with
0.05 < pj < 0.95, where pj is the allelic frequency of allele 1
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at locus j. Note thus that the 100 replicates are all created from
one single base population by selecting different selected loci and
different individuals in each replicate.

Founder individuals for each replicate were chosen at random
from the base population without replacement, by drawing an
equal number N of founder sires and dams from the base pop-
ulation to create generation 0. We then performed 6 generations
of random mating to record the genealogy.

From generation 7 onwards we performed truncation selec-
tion for 15 generations (up to generation 21), by selecting the best
50% of the sires and 50% of the dams according to each individ-
ual’s expected breeding value. These sires and dams weremated at
random to produce N sires and N dams for the next generation.

The default parameters used in our simulations are N = 50,
a marker density of 10,100 markers per chromosome and a trait
with heritability of h2 = 0.25. To have a thorough understanding
of the dependence of the results on population size, heritabil-
ity and marker density, we also studied the following scenar-
ios: we evaluated population sizes N = 10 and N = 30, two
other heritabilities of the quantitative trait (h2 = 0.10 and 0.50)
and two other lower marker densities (2525 and 5050 markers
per chromosome). Table 1 shows a summary of the simulated
scenarios.

2.3. Calculation of Phenotypic Values and True
and Estimated Breeding Values
We calculated the TBV of individual i as

TBVi =

nS
∑

j= 1

aj
(

xij − 1
)

, (1)

where xij is the number of copies of the allele 1 that individual
i has at the j-th selective locus, aj is the effect of the allele 1 at
position j and nS is the number of selective loci. The values of
the effects a were drawn from a Gaussian distribution with mean
zero and variance one. The phenotypic values (yi) of individuals
were simulated as

yi = µ + TBV i + ei, (2)

where ei is an error term for individual i, which was normally dis-
tributed withmean zero and variance σ 2

e . The phenotypic average
µ was set arbitrarily to be equal to 100, although this value does
not affect the EBV. The variance σ 2

a was calculated as the empir-
ical variance of the TBVs in the base population and σ 2

e was
adjusted so that the heritability was the desired h2. We had the
phenotypic values for all individuals in the population.

EBV were calculated by solving Henderson’s mixed model
equations (Henderson, 1984) as follows:

[

X′X X′Z

Z′X Z′Z+
σ 2
e

σ 2
a
A−1

]

[

µ̂

ˆEBV

]

=

[

X′y

Z′y

]

, (3)

where X and Z are the incidence matrices for the fixed and ran-
dom effects, respectively and A is the relationship matrix. We
assumed the variance components to be known. Equation (3)
provides the pedigree-based breeding values, while genomic
based breeding values can be obtained by replacing A and σ 2

a

in Equation (3) by the following genomic relationships and
variances.

2.3.1. Coancestry Estimates
The four following genetic relationship matrices, here defined as
twice the coancestry coefficient, were used:

1. Additive relationship matrix (A): This was calculated using the
coancestry coefficient between individuals i and k, fA(i, k) fol-
lowing (Malecot, 1948) as the probability that two alleles taken
at random, one for each individual, are identical by descent
(IBD).

2. Marker-by-marker relationship matrix (G): In this case, the
coancestry coefficient between individuals i and k, fG(i, k),
is the probability that two alleles at a given locus taken at
random from each individual are equal (identical by state,
IBS). In this study, fG(i, k) was calculated as fG(i, k) =
1
4M

∑M
n= 1

∑2
li=1

∑2
mk=1 In(li,mk) where M is the number of

markers and In(li,mk) is the identity of gamete l from individ-
ual i with gametem from individual k at marker n and takes a
value of 1 if both alleles are identical and 0 otherwise.

3. ROH-based relationship matrix (R): Following the study by
de Cara et al. (2013), the coancestry coefficient based on shared
segments of the genome between individuals i and k was cal-
culated as fR(i, k) = 1

4L

∑

j

∑2
ai=1

∑2
bk=1 Lj(ai, bk), where

Lj(ai, bk) is the length of the j-th shared segment measured
over the gametes ai and bk of individuals i and k and L is the
length of the genome. For a region to be considered a shared
segment, we used a minimum length of 100 shared contigu-
ous markers. The idea behind this segment-based relationship
is that a segment shared between parents is a potential run of
homozygosity (ROH) in the offspring.

4. Marker-by-marker corrected by allele frequencies relation-
ship matrix (V): Following VanRaden (2008) a measure
of coancestry fV (i, k) between individuals i and k can be

TABLE 1 | Parameters simulated for the different scenarios.

N h2 SNPs

10 30 50 0.10 0.25 0.50 2525 5050 10,100

N 10 30 50 50 50 50 50 50 50

h2 0.25 0.25 0.25 0.10 0.25 0.50 0.25 0.25 0.25

SNPs 10,100 10,100 10,100 10,100 10,100 10,100 2525 5050 10,100
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calculated as

fV (i, k) =
1

M

M
∑

n= 1

(

gin − pn
) (

gkn − pn
)

pn
(

1− pn
) , (4)

where gin refers to the gene frequency value genotypes 00, 01,
and 11, coded as 1, 0.5, and 0, respectively, of individual i at
locus n. Gene frequency is half the number of copies of the
reference allele 1 and pn is set at 0.5 (Forni et al., 2011).

Every generation we estimated the additive variance of the
base population using restricted maximum likelihood (REML).
We performed REML by using a Monte Carlo expextation-
maximization (EM) algorithm (Guo and Thompson, 1991) to
avoid the repeated matrix inversion required by exact algorithms
(Meyer, 1991). Additive variances were estimated after six thou-
sand iterations and discarding the first 1000. As for the base pop-
ulation, the fortran 90 code for the selection process is available
upon request.

3. Results

As summarized in Table 1, we studied a combination of three
population sizes, three heritabilities of the trait and three marker
densities. The default case unless otherwise stated is the case of
10,100 markers per chromosome, heritability h2 = 0.25 and a
population size with 50 males and 50 females per generation.

3.1. Distribution of Coancestries
Most likely, the differences in our results are going to be due to
the distribution of coancestries, as the different selection strate-
gies here performed are based on the matrix of relationships
between individuals. We show in Figure 1 the distributions for
the four measures of relationships prior to selection and give the
variance within each figure. There we can see how the shape of the
distribution of the genealogical coancestry is multimodal, given
the sparse nature of the genealogical coancestry matrix and its
distribution has the largest variance of all coancestry matrices,
as well as the lowest mean. The distribution of coancestries fV
and fG are fairly similar, the first one having a lower mean and a
slightly larger variance although both distributions have a very
small variance. Lastly, the distribution of coancestries fR has a
mean considerably lower than the other genomic coancestries fV
and fG and a substantially larger variance.

3.2. Genetic Gain
Changes in TBVs obtained with the four relationship matrices
for three population sizes N = 10, N = 30, and N = 50, three
heritabilities h2 = 0.1, h2 = 0.25, and h2 = 0.50, as well as
three marker densities of 2525, 5050, and all 10,100 per chro-
mosome are shown in Figure 2 vs. generations. We only show
results after generation 7, when selection starts. For a better com-
parison between the different coancestries here used, we show the
value at each generationminus the initial value right before selec-
tion (i.e., at generation 7). Overall, all four methods performed
similarly in terms of genetic gain for the sizes here studied. As
expected, the final TBV increased with the number of individu-
als and with the heritability of the trait. The density of markers

had no effect when selecting with the genealogical coancestry fA,
as expected, and, within the range of densities here studied no
differences were detected in the genetic gains achieved by the
genomic based estimates fV and fG. The most surprising result
is that for a low density of markers, the genetic gain is larger per-
forming selection based on fR. It must be noticed that the size for
a region of homozygosity to be considered as such was kept con-
stant and thus, a ROH of 100 contiguous markers covers a much
longer stretch than for 10,100 marker per chromosome. This is
also surprising as it has been pointed out that the longer the ROH,
the more correlated ROH-based inbreeding is with genealogical
inbreeding.

3.3. Changes in Relatedness
We show in Figure 3 results for the changes in each of the four
measures used of coancestry with each selection scenario. We
have used a logarithmic scale as overall, the differences between
genealogical based selection and genomic based selection were
very large. That is, line “A” shows the results for genealogical
coancestry resulting from selecting based on this coancestry fA
and so on for scenarios G, R, and V. The results for inbreeding
are not shown as they display a very similar pattern. In order to
better appreciate the differences between the four measures of
coancestries, we show log

[

(1− f )/(1− f7)
]

in Figure 3. In this
way, we compare the speed of increase in each average coancestry
scaled with their values at generation 7 (f7), right before selec-
tion started. The increase in genealogical coancestry (the decay in
this log scale) is the largest, followed by ROH-based coancestry.
Changes in fV and fG are hardly distinguishable and very sim-
ilar to fR for small heritability. The smaller the population, the
larger the increase in any measure of coancestry. The differences
in fG and fV are hardly different as heritability increases from
h2 = 0.25 to h2 = 0.5.

In Figure 4 we show a similar plot for the change in pedi-
gree based coancestry obtained under each selection scenario. All
cases studied showed that the three genomic based selection led
to lower increases in pedigree-based coancestry and the differ-
ences between the selection based on genomic relationships are
hardly noticeable. The results are very similar for fV and fG based
BLUPs on genealogical coancestry and it seems that fR-based
BLUP leads to slightly larger genealogical coancestries.

3.4. Diversity Maintained
As a measure of the diversity maintained we used fG, as this
is directly related to observed heterozygosity. In Figure 5, we
show the changes on this marker-by-marker relatedness over
generations when selection was carried out using the four strate-
gies analyzed. As previously done for all coancestries and for
genealogical coancestry, we show its rate of decrease by plotting
log(1 − fG) in Figure 5, minus this value right before starting
selection log(1− fG(7)) to compare all selection processes. There-
fore, in this scale, the largest decrease means the largest increase
in fG.

It is important to highlight that the highest loss in genetic
diversity (the largest increase in fG) was observed for the selec-
tion based on the additive relationship matrix without exception.
The fastest decay is for the smallest population size ofN = 10 and
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FIGURE 1 | Histograms of the coancestries at generation 6 right

before selection. Top row shows the histogram for genealogical

coancestry fA for 10, 30, and 50 individuals from left to right. Similarly,

the second row shows the histogram for molecular marker-by-marker

coancestry fG. The third row shows the histograms for segment-based

coancestry fR, for N = 10, N = 30, and N = 50 from left to right. The

bottom row shows the histogram for molecular marker-by-marker

coancestry corrected by allelic frequencies fV , for N = 10, N = 30, and

N = 50 from left to right. The variance of each histogram is given within

each plot.
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FIGURE 2 | Mean true breeding values (TBV) for different marker

densities (bottom row), heritability (middle row), and population size

(top row) vs. generations of selection. TBV values are shown minus the

value right before truncation selection started. The default values are 50 sires

and 50 dams, a heritability of 0.25 and 10,100 markers, unless the value at

the top of the figure indicates otherwise.

then for N = 30 and this decay is largest with decreasing popula-
tion size than heritabilities or marker densities. Within each sce-
nario, it seems that initially most diversity is maintained selecting
with the genomic coancestries and the difference between fG and
fV is small. The difference between fG or fV and fR is small, though
fR-based BLUP can lead to slightly larger decreases in molecular
coancestry than the other two genomic measures of relatedness,
especially for small marker density. That is, fR-based BLUPmain-
tains slightly less genetic diversity than the other genomic based
BLUPs.

4. Discussion

We have shown here results for truncation selection performed
with four different measures of coancestry: fA, fG, fR and fV . All
results shown are selecting the top 50% of sires and dams and we
have compared results with three different population sizes, three
different heritabilities of the selected trait and three different
number of markers per chromosome.

We have performed 6 initial generations of random mating
to have a deeper pedigree and have a fairer comparison between
molecular markers which record the whole population history
and genealogies, which are usually only stored when the selection
programme starts.

There seems to be currently a consensus that genomic BLUP
selection, whereby we mean selection based on genomic mea-
sures of relatedness, is superior to traditional pedigree-based

BLUP selection (Daetwyler et al., 2007, 2010; Sonesson et al.,
2012) in terms of higher genetic gain and lower increase in
inbreeding. However, few studies have paid attention to the loss
of genetic variability caused by each selection strategies of selec-
tion (Jannink, 2010; Bastiaansen et al., 2012; Heidaritabar et al.,
2014; Liu et al., 2014). We discuss our main conclusions and the
differences with these previous studies below.

4.1. On Genetic Gain
One of the main properties of BLUP is that by definition, the
largest gain is obtained when the additive genetic variance of
the base population is known. This is a difficult task, as for
a large number of loci under selection which may be linked,
the standard formula of σ 2

a =
∑nS

j= 1 2pj
(

1− pj
)

a2j (Falconer

and Mackay, 1996) does not apply. Furthermore, this vari-
ance is not appropriate when the performed BLUP relies on
the genomic relationships fG, fR or fV . Thus, we estimated the
additive variance components using REML. While it is well-
known that the estimates obtained with REML are more accu-
rate for larger population sizes than the ones here studied,
the differences between the four selection strategies here stud-
ied are small. We think that these differences are independent
of whether the variance could have been better estimated. We
believe that a more accurate estimate of the variance of the
base population would lead to larger gains for all four BLUPs
here performed and the differences in the trends would stay the
same.
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FIGURE 3 | Change in each coancestry for different marker densities (bottom row), heritability (middle row), and population size (top row) vs.

generations of selection. The change in each coancestry is shown as log
(

1−f
1−f7

)

.

FIGURE 4 | Changes in genealogical coancestry for different

marker densities (bottom row), heritability (middle row), and

population size (top row) vs. generations of selection. The change

in each coancestry is shown as log

(

1−fA
1−fA (7)

)

, where fA is the

genealogical coancestry at each generation and fA (7) is the value before

selection starts.

Frontiers in Genetics | www.frontiersin.org 7 April 2015 | Volume 6 | Article 127

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Rodriguez-Ramilo et al. BLUP and genomic relationships

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

 0

 8  10 12 14 16 18 20lo
g

((
1
-f

G
)/

(1
-f

G
(7

))
)

2525

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
 0

 8  10 12 14 16 18 20lo
g

((
1
-f

G
)/

(1
-f

G
(7

))
)

5050

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
 0

 8  10 12 14 16 18 20lo
g

((
1
-f

G
)/

(1
-f

G
(7

))
)

10100

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

 0

 8  10 12 14 16 18 20lo
g

((
1

-f
G

)/
(1

-f
G

(7
))

)

h2 = 0.1

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

 0

 8  10 12 14 16 18 20lo
g

((
1

-f
G

)/
(1

-f
G

(7
))

)

h2 = 0.25

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
 0

 8  10 12 14 16 18 20lo
g

((
1

-f
G

)/
(1

-f
G

(7
))

)

h2 = 0.5

-1

-0.8

-0.6

-0.4

-0.2

 0

 8  10 12 14 16 18 20lo
g

((
1

-f
G

)/
(1

-f
G

(7
))

)

N = 10

-0.6

-0.4

-0.2

 0

 8  10 12 14 16 18 20lo
g

((
1

-f
G

)/
(1

-f
G

(7
))

)

N = 30

-0.3

-0.2

-0.1

 0

 0.1

 8  10 12 14 16 18 20lo
g

((
1

-f
G

)/
(1

-f
G

(7
))

)

N = 50

FIGURE 5 | Changes in molecular coancestry as a measure of change

in diversity for different marker densities (bottom row), heritability

(middle row), and population size (top row) vs. generations of

selection. This change is shown as log

(

1−fG
1−fG (7)

)

, where fG is the value of

molecular coancestry at each generation and fG (7) is the value before

selection starts.

Overall, the genetic gain was very similar with the four rela-
tionship matrices, although BLUP based on fR performed slightly
better than the other BLUPs in terms of gain for lower marker
densities. It also performed somewhat better for small popula-
tion size and the intermediate heritability here studied, at least
up to generation 18 (i.e., after 10 generations of selection). It is
worth emphasizing that for the lower marker densities here stud-
ied, we kept the same threshold size of 100 consecutive markers
for a ROH to be considered as such. That means that for 2525
markers per chromosome, such ROH would cover a section of
about 4 cM, while for 10,100 a ROH of 100 consecutive markers
covers 1 cM. Thus, for higher marker densities, it is likely that the
gains could be increased by using a larger threshold for what is
considered a ROH.

As expected, the final TBVs were larger for larger population
size and for higher trait heritability. This is due to the larger
genetic variance for larger population sizes in which selection
can act upon, while the negative effects of inbreeding are reduced
with higher population sizes. It is however somewhat surprising
that the differences are small in genetic gain withmarker densities
for the genomic relationships matrices, particularly for fV and fG.
This could indicate that a density of 2525 markers per chromo-
some would give the same correlation between the true genomic
relationship if we had the whole sequence and that estimated with
such marker density (Rolf et al., 2010).

It is likely that the lack of differences in genetic gain between
the genomic and pedigree based relationships stems from the
fact that we use the marker data to infer the relationships,

but not to estimate the marker effects. It is in this later sce-
nario where genomic selection seems considerably superior
to traditional pedigree BLUP, although it depends on having
enough training generations where both phenotypes and geno-
types are recorded, as reviewed recently by Van Eenennaam et al.
(2014).

In genomic selection, markers that densely cover the genome
are expected to be in complete or partial linkage disequilibrium
with the trait under selection. Genomic prediction based on IBS
information uses the family structure of the population (Habier
et al., 2007), since the markers capture the linkage disequilib-
rium that arises from the family structure. Recently, Luan et al.
(2014) have proposed an approach to predict genomic estimated
breeding values from runs of homozygosity. This study indi-
cates that runs of homozygosity yield a multi-locus measure of
linkage disequilibrium and thus can account for larger chromo-
somal distances to capture linkage disequilibrium than genomic
prediction based on IBS information. It is worth noting that in
their study, Luan et al. (2014) used a somewhat different defini-
tion of segment that we have used here. They obtained slightly
better predictions for the ROH-based scenarios than for other
genomic-based scenarios. Our results seem to be in line with
those obtained by Luan et al. (2014), although a more thorough
analysis of both methods is required for a better comparison. The
measure of ROH used by Luan et al. (2014) does not seem to
require a threshold size for a run of homozygosity, but it requires
knowledge of the mutation rates and the effective population
size.
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No significant differences were detected between the genetic
gain obtained with fG and fV . The reason is that with the fG
approach alleles that are IBD and IBS can not be distinguished
and are both included in the coancestry (and inbreeding) mea-
sures. To express both pedigree- and genomic-based estimates in
the same scale several methodologies have been proposed Toro
et al. (2011). However, these methods are generally inaccurate
and their performances are very similar to those for fG Toro et al.
(2002).

Sonesson et al. (2012) compared breeding schemes by
simulating truncation or optimum contribution selection. They
estimated breeding breeding values based on genome- or
pedigree-based BLUP and recorded trait information on full-sibs
of the candidates. This study concluded that to control inbreed-
ing it is necessary to account for it on the same basis as what is
used to estimate breeding values. Our results are in general agree-
ment to those of Sonesson et al. (2012) regarding the genetic gain
both with genomic- and pedigree-based selection procedures and
with those of Bastiaansen et al. (2012), where higher accura-
cies were obtained for the genomic methods than for traditional
pedigree-based BLUP.

4.2. On Coancestries and Inbreeding
As we have shown in Figure 4, the largest increases in coances-
tries, and similarly for inbreeding, is for the genealogical coances-
try compared to other genomic measures of coancestry. At the
same time, this increase in genealogical coancestry is larger with
traditional pedigree-based BLUP than for any other BLUP here
performed. This is in line with what Sonesson et al. (2012)
obtained using BLUP combined with optimal contributions to
control the increase in inbreeding, that the rate of increase in
pedigree coancestry is higher for the pedigree-based selection
scenario than for the genome-based selection approaches. This
can be observed regardless the population size, the true her-
itability, or the density of markers. Bastiaansen et al. (2012)
showed similar differences between traditional pedigree-based
and genomic-based BLUP. They also showed how this differ-
ence built up with generations and was hardly noticeable after
one round of selection. This study showed that the increase
in inbreeding hardly depended on the genomic architecture of
the selected trait, which is in line with what we observe in
Figure 4, where the increase in coancestry seems independent of
the marker density or the heritability of the trait. In agreement
with Bastiaansen et al. (2012), we have also shown that genomic-
based BLUPs can track Mendelian sampling within families,
which is not possible with genealogical-based BLUP. Our results
are apparently in contrast with the recent study of Liu et al.
(2014), who obtained a lower increase in inbreeding for the larger
heritability 0.25 in their study compared to that obtained for
h2 = 0.05. This is most likely due to the fact that they looked
at the results after 8 generations of selecting the top 25% can-
didates each generation, while we have performed selection on
the top 50% candidates and looked at the increase of coancestry
after 14 generations of selection. This shows the importance of
understanding the dynamics at different generation intervals.

Liu et al. (2014) debated whether using genealogical records
would be a good measure of inbreeding, as it reflects expected

relationships and not the actual ones. They proposed measuring
inbreeding then based on runs of homozygosity, and obtained
that genomic-based BLUPs lead to lower increases on genealogi-
cal inbreeding as compared to phenotype BLUP, but this was not
the case for inbreeding measured with ROHs. Our results for fR
are very similar to those here presented for fA, and thus in the sce-
narios here studied, all genomic measures lead to lower increases
in inbreeding whether we measure it with genealogies or with
ROHs.

Our results show that the increase in genealogical coancestry
seems slightly larger for ROH-based BLUP as compared to the
other genomic-based BLUPs, although the differences are small.

4.3. On Diversity Maintained
It is well-known that selection reduces variation around the
selected loci due to hitchhiking (Maynard-Smith and Haigh,
1974; Heidaritabar et al., 2014; Liu et al., 2014). Thus, if we aim
at maintaining diversity while selecting favorables variants, it is
important to understand which selection strategy works better
overall. We evaluated fG as a measure of diversity maintained in
the selection procedures simulated in the present study indicated
that all genomic estimates maintained more variability than the
pedigree-based ones. This result is in agreement with those also
observed using simulated data but in the context of conservation
programmes (de Cara et al., 2011), and with previous results in
genomic selection (Liu et al., 2014).

An interesting study by Jannink (2010) showed thatmore vari-
ation could be maintained by placing more weight on favorable
variants that are at low frequencies. This can potentially main-
tain more diversity both on the selected loci and on neutral loci.
According to that study, this strategy leads to larger gains in the
long-term, and thus this strategy could be optimal depending
on how long is the long-term. Based on this study, it would be
worthwhile studying whether placing weight on rare haplotypes
could lead to a compromise between genetic gains and diversity
maintained.

The study byHeidaritabar et al. (2014) has shown that changes
in allelic frequencies are more localized around the selected loci
with genomic based BLUP, while pedigree based BLUP leads
to similar changes throughout the genome. Thus, it seems that
genomic selection can lead to quick losses in genetic variation in
specific regions of the genome, and thus great care is required if
these regions provide potential adaptation of the breed.

In agreement with Liu et al. (2014), we have obtained that
a larger heritability leads to larger decreases in diversity main-
tained when selecting with traditional BLUP. Similarly to what
happened with genealogical inbreeding, the loss of diversity does
not seem to depend on heritability when selecting with genomic-
based BLUPs.

Interestingly, ROH-based BLUP seems to lead to slightly
larger losses in diversity than the other genomic BLUPs, but mas-
sively smaller than pedigree BLUP. Consequently, a deep study
of the factors involved in the definition of a ROH could help to
improve the genetic gain obtained with this estimator while also
keeping the a very high genetic variability.

In conclusion, in this study conventional pedigree based selec-
tion, which has been used for decades, results in similar genetic
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gains and does not maintain as much genetic variability as the
genomic based selection methods. These results highlight the
utility of genomic selection and also the need to manage the
population variability using genomic information to preserve the
future success of selection programs.
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