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Genome researches have revealed that a large portion (over 50%) of genetic variants on human
chromosomes are rare variants (RVs) with extremely low allele frequency (usually defined as less
than 1%) in populations. In recent years, advances of DNA genotyping and sequencing technologies
have been facilitating the discovery of RVs, and the association between RVs and human diseases
is of rapidly growing interest in understanding genetic and molecular mechanism of both common
and rare diseases (Cirulli and Goldstein, 2010; Gibson, 2012).

As a potential source of contribution to the “missing heritability” that cannot be explained by
common variants in most SNP-array based genome wide association studies (GWAS), RVs have
been identified to be associated with some human diseases or disease-related complex traits, such
as cholesterol level (Cohen et al., 2004), hypertriglyceridemia (Johansen et al., 2010), autoimmune
disease (Hunt et al., 2012), and Alzheimer’s disease (Lord et al., 2014). In spite of these findings, it
is still quite challenging to identify the RV association for many diseases and traits, due to the rarity
of RVs in populations.

When allele frequencies become very low, the odds of observing RVs in study samples will be
small. As a result, the lack of variation in the observed data usually makes the statistical test of asso-
ciation significantly underpowered, which has been widely recognized as the major issue in most
RV association studies. To improve the power, numerous statistical methods have been developed,
investigated, and used in recent years (Bansal et al., 2010; Basu and Pan, 2011; Ladouceur et al.,
2012; Dering et al., 2014; Lee et al., 2014), mostly based on a hypothesis that multiple RVs within a
genetic unit (usually a gene) may function in a similar way and collectively contribute to a disease
(such phenomena have been observed in many diseases). These methods can be categorized into
burden test, non-burden test, and unified test. When burden tests, e.g., CMC (Li and Leal, 2008)
and WSS (Madsen and Browning, 2009), are designed for detecting the association of a genotypic
“burden” score summarized from a set of RVs, non-burden tests keep individual RVs as individual
variables and evaluate whether at least one of multiple RVs is associated with the trait (Wu et al.,
2011; Kim et al., 2014; Wang, 2014), and unified tests provide a hybrid analysis combining both
burden and non-burden tests (Lee et al., 2012; Sun et al., 2013). In general, burden tests are more
powerful when the portion of causal variants increases, non-burden tests may outperform when
only a small portion of variants are causal, and unified tests provide an optimized balance between
burden and non-burden methods (Lee et al., 2012). One key feature of these methods is that they
test the collective effect (not individual effects) of multiple RVs as an entire group, therefore, once
the association of a group of RVs is identified, further analyses are still required to determine which
one or ones in the group cause the association. Another limitation is that although these methods
provide useful tools for association analysis, they usually lack the estimation of heritability of RVs;
further analyses of heritability using appropriate methods, e.g., bootstrap-sample-split algorithms
(Liu and Leal, 2012), are still warranted.

The main benefit from collective tests is that statistical power can be substantially increased if
the majority (or a significant portion) of a set of RVs have effects on a trait. However, the power
can be compromised by neutral or “noise” variants (i.e., the variants with no effects) mingled in
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analysis. To deal with this issue, many bioinformatics databases
and tools (Adzhubei et al., 2010; Wang et al., 2010; Preeprem
and Gibson, 2014) have been used to annotate or predict the
functions of RVs, and the variants that are unlikely to have func-
tions (e.g., synonymous variants) are usually excluded. For those
RVs kept in an analysis after the exclusion based on bioinfor-
matics prediction, since their contributions to a trait could be
very different, many methods have been proposed to assign dif-
ferent weights to individual RVs when building a collective test.
Weights for individual RVs can be determined by, for exam-
ple, allele frequency (Madsen and Browning, 2009), genotyping
score, annotation score, and many statistics or probabilities esti-
mated from the experimental and/or public data. Particularly,
adaptive weighting methods (Lin and Tang, 2011; Pan and Shen,
2011; Zhang et al., 2011) even allow weights to be learned from
an initial association analysis using the observed genotype and
phenotype data; usually, these methods can improve power at a
cost of computational burden, especially when sample sizes are
large.

In a collective test, because RVs are tested set by set (not vari-
ant by variant), how to select a RV set is critical and will signifi-
cantly affect the power. Although typically RVs are grouped and
selected by gene, there are many other ways to determine the RV
sets, for example, by chromosomal region, by exon, by functional
pathway, etc. The allele frequency cutoff can be fixed (e.g.,<0.01)
or a variable threshold method (Price et al., 2010) can be adopted.
Since there is no a gold standard for RV grouping and selection,
in practice it may need to try multiple ways based on different
hypotheses to optimize an analysis.

One of the most popular experiment designs for the RV asso-
ciation analysis is to compare two groups of subjects, such as case

and control groups, or two groups differentiating in a quantita-
tivelymeasurable trait (e.g., low vs. high blood pressure). Analysis
of data from such designs can be performed in either a simple way
that tests the enrichment of RVs in one group (vs. another group),
or a more sophisticate way that models the group assignment
as a binary outcome variable dependent on individual and/or
summarized RV variables as well as other confounding covari-
ates (e.g., age and gender) if necessary. Although most designs
and statistical methods were originally introduced for binary out-
comes from unrelated subjects, many of them have been extended
to quantitative traits and family data (Fang et al., 2012; Chen et al.,
2013; De et al., 2013; Ionita-Laza et al., 2013; Zhang et al., 2014).

Since the potential of power improvement via statistical meth-
ods is limited, the ultimate and most effective way of increasing
power yet relies on larger sample sizes, which can be realized
by either increasing the sample size in a single experiment, or
combining the results from multiple experiments into a meta-
analysis using recently developed methods (Hu et al., 2013; Lee
et al., 2013; Feng et al., 2014; Liu et al., 2014). Once an adequate
power is achieved and a significant, solid statistical association
between RVs and a disease has been identified, the associated
RVs can be very useful in many ways, such as biomarker design,
biological function validation, molecular mechanism discovery,
drug development, etc.
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