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Accumulating evidence indicates that DNA copy number variation (CNV) is likely to
make a significant contribution to human diversity and also play an important role
in disease susceptibility. Recent advances in genome sequencing technologies have
enabled the characterization of a variety of genomic features, including CNVs. This
has led to the development of several bioinformatics approaches to detect CNVs from
next-generation sequencing data. Here, we review recent advances in CNV detection
from whole genome sequencing. We discuss the informatics approaches and current
computational tools that have been developed as well as their strengths and limitations.
This review will assist researchers and analysts in choosing the most suitable tools for
CNV analysis as well as provide suggestions for new directions in future development.

Keywords: whole-genome sequencing, copy number variation, CNVs, computational modeling, structural varia-
tion (SV), next generation sequencing

Background

Rapid advances in genomic technologies over the past decade have revealed that CNVs makes an
important contribution to genetic variation in the human genome (Iafrate et al., 2004; Sebat et al.,
2004; Macdonald et al., 2014) and plays a role in an increasing number of human diseases, such
as autism (Pinto et al., 2010; Chung et al., 2014), schizophrenia (Castellani et al., 2014), major
depressive disorder (O’Dushlaine et al., 2014), epilepsy (Olson et al., 2014), and many others (Tan
et al., 2014). CNVs refer to a type of structural variation with abnormal copy number changes
involving DNA fragments that are typically longer than 1 Kb and results in gains (duplication or
insertional transpositions), losses (deletion), or complex rearrangements of the genome (Iafrate
et al., 2004; Feuk et al., 2006). On average, each individual has more than 1000 CNVs across the
genome, which accounts for ∼4 million bp (Conrad et al., 2010; Malhotra and Sebat, 2012; Abel
and Duncavage, 2013). CNVs can involve one or multiple genes and can present as a recessive or
dominant allele that disrupts the coding region or alters gene dosage (Zhou et al., 2011). CNVs can
also negatively impact the regulatory landscape by generating chimeric genes or by introducing
positional effects (Cook and Scherer, 2008; Chung et al., 2014).

Current NGS technologies generate billions of bases of accurate nucleotide sequences in short
reads (50–250 bp) using reversible sequencing chemistries (Bentley et al., 2008; Mardis, 2013)
rapidly expanding our ability to interrogate the genome. Several new tools have been developed

Abbreviations: AS, de novo assembly; CA, combined approach; CNV, copy number variation; HMM,HiddenMarkovmodel;
INDEL, insertion/deletion; NGS, next-generation sequencing; RD, read depth; RP, read-paired mapping; SR, split read; SV,
structural variant; WGS, whole-genome sequencing.
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to enable discovery of CNVs from NGS data (Zhao et al., 2013).
Each of these tools have different strengths and weaknesses in
their applicability and suitability for NGS data, and no single
tool is capable of identifying the full range of DNA variation.
Comparisons and evaluation of such tools are beginning to
emerge (Alkan et al., 2011; Abel and Duncavage, 2013; Zhao et al.,
2013; Alkodsi et al., 2014; Tan et al., 2014). Here, we summarize
the recent developments in the most widely used CNV detection
tools with specific focus on whole genome sequencing data, with
the goal of aiding researchers in choosing the most suitable tools
for their research needs.

Methods for CNV Detection

There are four main methods for detecting CNVs with NGS
data: RP, SR, RD, and assembly based (AS) methods (Alkan
et al., 2009; Medvedev et al., 2009; Yoon et al., 2009; Xi et al.,
2012; Duan et al., 2013; Liu et al., 2013; Zhao et al., 2013;
Tan et al., 2014). The schemas illustrated in Figure 1. Each
method has its own advantages and limitations. To take advan-
tage of the method’s different strengths, more recent tools are
resorting to a combinatorial approach (Hormozdiari et al., 2009;
Zhao et al., 2013) that combines two or more methods to facil-
itate more accurate CNV detection. We will discuss these four
methods and common applications of each in this section. A
brief summary of these methods and related tools are listed in
Table 1.

Read-Pair
The utility of NGS data for CNV detection was first demon-
strated by RP methods. RP methods compare the average insert
size between the actual sequenced read-pairs with the expected
size based on a reference genome. In paired-end sequencing,
the DNA fragments are expected to have a specific distribution
around insert size (Korbel et al., 2007). As such, the discor-
dance between mapped paired-reads whose distances are signif-
icantly different from the predetermined average insert size is
utilized by RP to identify CNVs. While RP methods can detect
medium-sized insertions and deletions from mapped data, they
are insensitive to small insertion, or deletion events, owing to
the difficulty in separating small perturbations in read-pair dis-
tance from the normal background variability (Medvedev et al.,
2009). Furthermore, RP methods are not applicable for detection
of CNVs in low-complexity regions with segmental duplication
(Zhao et al., 2013). Tools that use the RP method include PEMer,
Hydra, Ulysses, and BreakDancer. The relative advantages and
limitations of these methods are briefly discussed below.

PEMer
PEMer (Korbel et al., 2009) utilizes a clustering based strategy to
detect CNVs and is applicable to several different next-generation
DNA sequencing platforms, including Roche, Illumina, and
ABI. The clustering step combines paired ends that are likely
originated from the same SV into clusters. It also evaluates
different parameterizations, by applying different cluster sizes

FIGURE 1 | Four main methods for detecting CNVs with NGS data: (1) Read-pair (RP), (2) Split-read (SR), (3) Read-depth (RD), and (4) Assembly based
(AS) method.
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TABLE 1 | Copy number variation detection analysis tools for WGS data.

Name Language Reference Availability

RP: Read Paired

BreakDancer Perl/C++ Chen et al. (2009) http://gmt.genome.wustl.edu/packages/breakdancer/

PEMer Python/Perl Korbel et al. (2009) http://sv.gersteinlab.org/pemer/

Ulysses Python/R Gillet-Markowska et al. (2014) https://github.com/gillet/ulysses

SR: Spit Read

PRISM C Jiang et al. (2012) http://compbio.cs.toronto.edu/prism/

Gustaf C++ Trappe et al. (2014) http://www.seqan.de/projects/gustaf/

SVseq2 C++ Zhang et al. (2012) http://www.engr.uconn.edu/∼jiz08001/svseq2.html

Pindel C++ Ye et al. (2009) http://gmt.genome.wustl.edu/packages/pindel/

RD: Read Depth

BIC-seq Perl/R Xi et al. (2011) http://compbio.med.harvard.edu/Supplements/PNAS11.html

cm.MOPS R Klambauer et al. (2012) http://www.bioinf.jku.at/software/cnmops/

CNVnator C++ Abyzov et al. (2011) http://sv.gersteinlab.org/cnvnator/

CNV-seq Perl/R Xie and Tammi (2009) http://tiger.dbs.nus.edu.sg/CNV-seq/

CNVrd2 R Nguyen et al. (2014) http://www.bioconductor.org/packages/release/bioc/html/CNVrd2.html

ERDS C Zhu et al. (2012) http://www.utahresearch.org/mingfuzhu/erds/

RDXplorer Python/R Yoon et al. (2009) http://rdxplorer.sourceforge.net/

ReadDepth R Miller et al. (2011) https://github.com/chrisamiller/readDepth

SegSeq MatLab Chiang et al. (2009) http://www.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=182

AS: Assembly

Magnolya Python Nijkamp et al. (2012) http://bioinformatics.tudelft.nl/dbl/software

CA: Combined Approach

cnvHiTSeq Java Bellos et al. (2012) http://sourceforge.net/projects/cnvhitseq/

CNVer C++ Medvedev et al. (2010) http://compbio.cs.toronto.edu/CNVer/

Clever-sv C++ Marschall et al. (2013) https://code.google.com/p/clever-sv

DELLY C++/R Rausch et al. (2012) https://github.com/tobiasrausch/delly

Gindel C++ Chu et al. (2014) http://sourceforge.net/projects/gindel

Hydra-Multi C++ Lindberg et al. (2014) https://github.com/arq5x/Hydra

GenomeSTRiP Java/R Handsaker et al. (2011) http://www.broadinstitute.org/software/genomestrip/

GASVPro C++ Sindi et al. (2012) http://compbio.cs.brown.edu/projects/gasv/

LUMPY C++ Layer et al. (2014) https://github.com/arq5x/lumpy-sv

PSCC Perl Li et al. (2014) http://public.genomics.org.cn/BGI/PSCC/

SoftSearch Perl Hart et al. (2013) https://code.google.com/p/softsearch

SV Detect Perl Zeitouni et al. (2010) http://svdetect.sourceforge.net/Site/Home.html

and cutoffs for outlier identification. Owing to its modularized
framework such as mapping, filtering of low-quality reads, sig-
nature detection, and clustering, PEMer offers the feasibility of
amending particular modules to suite the user’s needs without
having to implement an entirely new SV discovery pipeline and
thus improvise an existing pipeline.

Ulysses
Ulysses (Gillet-Markowska et al., 2014) allows an accurate detec-
tion of low-frequency CNVs in large insert-size sequencing
libraries (Mate–Pair libraries) providing higher coverage of the
genome and thereby access the repeat-containing regions. It uses
statistics based on the relative coverage of candidate SVs to
achieve higher specificity.

BreakDancer
BreakDancer (Chen et al., 2009) contains two complemen-
tary algorithms: BreakDancerMax and BreakDancerMini.
BreakDancerMini uses a model-based Kolmogorov–Smirnov

test as a mapping algorithm and detects smaller indels (10–
100 bps) while BreakDancerMax uses a clustering-based
approach and reports deletions, insertions, inversions, and
intra and inter-chromosomal translocations. One limitation
of BreakDancer is that it only uses unique mapped reads and
discards reads with multiple mapping and therefore is not able to
detect CNVs in low complexity repetitive regions.

Split Read
Split Read method uses reads from pair end sequencing where
only one read of the pair has a reliable mapping and the other one
either completely or partially fails to map to the genome (Zhang
et al., 2011). The unmapped reads are a potential source of break-
points at the single base pair level. Mapping of reads that span
across a breakpoint of an SV provides the precise start and end
positions of the segments that are INDEL events. Split-read based
methods, including Pindel, Gustaf, SVseq2, and Prism, while
able to identify these breakpoints, have limited ability to identify
large-scale SVs. Prism, however, seems to substantially overcome
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this limitation by employing a modified Needleman–Wunsch
alignment algorithm (Jiang et al., 2012).

Pindel
Pindel (Ye et al., 2009) uses de novo alignment of the unmapped
reads to determine the exact sequence of an insertion, and there-
fore is capable of identifying break points of medium or large-
sized insertion of paired-end short reads that might be ignored
by other tools. However, since it does not use probabilistic models
to discriminate between alignment errors and true calls, a higher
false-positive rate can be observed (Abel and Duncavage, 2013).

Gustaf
Gustaf (Trappe et al., 2014) is based on multi-split SV detection
tool that detects all classes of SVs that are ≥30 bp length. The
multi-split alignment strategy can identify SV breakpoints with
base pair resolution. Gustaf uses the local aligner to detect par-
tial alignments of a read and stores these partial alignments in
a graph data structure so it can be used in the subsequent split-
graph construction. This feature gives Gustaf the ability to detect
SVs that are hard to classify including dispersed duplications and
translocations.

PRISM
Prism (Jiang et al., 2012) makes use of discordant pair-end clus-
ters to perform split-read mapping. The modified Needleman–
Wunsch (NW) algorithm provides better performance for the
base-level alignment of the SPs to achieve higher accuracy when
other variations (SNPs, Indels) exist. These functionalities lead to
faster run times as well as higher sensitivities at detection of large
CNVs.

SVseq2
SVseq2 (Zhang et al., 2012) supports INDEL calling from low-
coverage sequence data. SVseq2 infers a focal region, using the
discordant read analysis. It then searches for the occurrence of
the second segment within the focal region using a semi-global
alignment algorithm, which can lead to more accurate SV calls.

Read Depth (RD)
As the name implies, RD methods are based on the hypothesis
that there is a correlation between depth of coverage of a genomic
region and the copy number of the region (Teo et al., 2012). Based
on the study design, RD methods can be categorized into three
classes; single sample, paired case/control samples, and a large
population of samples. In the single sample category, as there
is no other subject available, the absolute copy number will be
reported; in presence of controls, the relative copies compared to
controls will be reported; and, in population based studies, the
overall mean of the RD will be used to detect CNVs (Zhao et al.,
2013). Compared to RP and SR, RD can detect the exact num-
ber of CNVs, as RP, and SR can only report the position of the
potential CNVs and not the counts. In addition, RD can work
better on large size CNVs, which are hard to detect with RP and
SR (Yoon et al., 2009). Estimating CNVs using RD method fol-
lows these steps. First reads are aligned to a reference genome
and RD will be counted using a predefined window. Then the
counts will be normalized to remove potential biases, mainly due

to GC content and repeat regions (Boeva et al., 2011; Janevski
et al., 2012), and a segmentation algorithm will be applied to
identify a contiguous set of windows having the same num-
ber of CNVs. Finally, the statistical significance of the calls will
be predicted and filtering will be applied (Janevski et al., 2012;
Zhao et al., 2013).

CNV-seq
CNV-seq (Xie and Tammi, 2009) uses the read coverage of the
data and calculates the best window size in which copy ratios
between the case and control are significantly different. Using
this window size its algorithm models the number of short reads
in a genomic region as following a Poisson distribution. The
Poisson distribution, however, might not be an optimal model in
many CNVs, and therefore, more sophisticated models might be
required (Xi et al., 2010).

BIC-seq
BIC-seq (Xi et al., 2011) uses a non-parametric model for detect-
ing CNVs from paired sequencing data. It uses a heuristic greedy
search procedure which is a more computationally efficient strat-
egy compared to other tools.

Cm.MOPS
cm.MOPS (Copy number estimation by a Mixture Of PoissonS;
Klambauer et al., 2012) is a CNV detection pipeline that models
the depths of coverage across multiple samples at each genomic
position. Using a Bayesian approach, it decomposes read varia-
tions across samples into integer CNVs and noise using mixture
components and Poisson distributions, respectively. The mul-
tiple samples approach increases statistical power and decrease
computational burden and the FDR in CNV detection.

CNVnator
CNVnator (Abyzov et al., 2011) uses the established mean-shift
approach (Wang et al., 2009) with additional corrections for
multiple-bandwidth partitioning and GC correction for more
accurate CNV detection. It is capable of detecting CNVs in var-
ious sizes, from a 500 bp window for 4–6× coverage, to a 30 bp
window for 100× coverage.

ERDS
ERDS (Estimation by Read Depth with SNVs; Zhu et al., 2012)
integrates RD with other information including paired end map-
ping and soft-clip signature, as well as GC correction and employ-
ing HMMat non-amplified regions to achieve more sensitive and
accurate CNVs. The soft-clipping process masks the unaligned
portion of a read and try to re-map it unambiguously to a differ-
ent genomic location, to identifying the second breakpoint for a
potential SV (Wang et al., 2011).

RDXplorer
RDXplorer (Yoon et al., 2009) is based on the event-wise test-
ing (EWT) algorithm and estimates CNVs in a non-overlapping
intervals (100 bp Windows) across an individual genome. The
EWT algorithm rapidly searches the entire genome for specific
classes of small events (significantly increased or reduced RD)
that meet criteria of statistical significance, and then clusters them
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into larger events. A–Z-score is then calculated based on the
number of reads mapped in each 100 bp window.

ReadDepth
ReadDepth (Miller et al., 2011) automatically sets an appropriate
size for a sliding window according to the mean number of reads
in each window. It does not require a reference sample, and uses a
robust statistical model that uses a negative-binomial distribution
to approximate an overdispersed Poisson distribution of the data.
It also includes multi-core architectures to parallelize the anal-
ysis process effectively, and it increases the resolution obtained
from low-coverage experiments using breakpoint information
from paired end sequencing to do positional refinement. RD
is also capable of discovering epigenetic changes by processing
bisulfite-treated reads.

SegSeq
SegSeq (Chiang et al., 2009) utilizes windows defined by a prede-
fined number of normal reads to detect breakpoints. It uses the
log ratio of the case versus control read counts as the statistic
for CNV detection. The latest version of SegSeq can be used for
analysis of different sequencing depths of 1–30×.

CNVrd2
CNVrd2 (Nguyen et al., 2014) first uses observed read-count
ratios to refine segmentation results in one population. Then, in
the next step, it applies a linear regression model to adjust the
segmentation scores between populations and uses a Bayesian
normal mixture model to cluster segmentation scores into groups
for individual CNV counts.

Assembly (AS)
In theory, all forms of genetic variation including CNVs can be
detected by AS of short reads, if the reads are long and accu-
rate enough. The AS methods first generate a contig/scaffold
that are then compared with the reference genome to discover
structural variation (Nijkamp et al., 2012; Teo et al., 2012).
However, ASmethods are less used in CNV detection due to their
overwhelming demand on computational resources. In addi-
tion, eukaryotic genomes contain a significant fraction of repeats
and segmental duplications which makes the AS methods less
accurate and more complex as they perform poorly in these
complex regions. Another issue with the AS methods is that
they are unable to handle haplotype sequences and therefore
only homozygous structure variations can be detected (Xi et al.,
2012).

Magnolya
Magnolya (Nijkamp et al., 2012) estimates CNVs from two or
more samples by utilizing a Poisson mixture model of contigs
assembled from sequencing data. This will be followed with a co-
assembly approach to allow de novo detection of CNV between
two individual genomes. The co-assembly approach generates a
single contig colored graph with different counts between sam-
ples which will be used to assign integer copy numbers to contigs.

Combined Approach (CA)
Each of the methods mentioned above has its own strengths and
limitations. While RD basedmethods are best suited for detecting
absolute copy number (Alkan et al., 2009) they suffer from lower
efficiency for determining small CNVs (<1 kb; Bellos et al., 2012).
Tools using RP, on the other hand, have low sensitivity for detect-
ing variation in repeating regions (Medvedev et al., 2009). This
seems to be the same issue with SR approaches as they can achieve
single-base-pair resolution but remain highly dependent on the
read length and are less reliable in repetitive regions (Bellos et al.,
2012). AS-based tools take advantage of not requiring a reference
genome, but they suffer from extensive computation and perform
poorly on repeat regions (Zhao et al., 2013). CA methods use
step-wise approaches to combine data from two or more sources.
In doing so, CA methods take advantage of the unique features
of multiple tools. For instance, RP methods can report accurate
breakpoints although their efficiency is low for large CNV regions
when detecting insertions longer than the insert size. RD meth-
ods, on the other hand, are more suited to detect large CNVS
but cannot report exact breakpoints. A combination of these two
methods would in essence enable detection of CNV regions with
exact breakpoints and spanning various length. As such, the false
positive rates observed with CA methods are much lower than
methods that build on either RP or RD alone. Currently, sev-
eral tools that utilize CA to identify CNVs are available. They are
briefly discussed below.

SVDetect
SVDetect (Zeitouni et al., 2010) is one of the first tools that
combined an RP approach and RD ratios between case and
control samples. It uses the discordant RP information to iden-
tify breakpoints and RD signals to identify aberrant genomic
fragments.

cnvHiTSeq
cnvHiTSeq (Bellos et al., 2012) uses an integrative approach by
combining outcomes from RD, RP, and SR to detect all CNV
classes even from low-coverage sequence data. It implements
an HMM framework to perform CNV segmentation. In addi-
tion, it utilizes LOESS smoothing and GC correction to mitigate
sequencing biases.

Clever-sv
Clever-sv (Marschall et al., 2013) combines SR and discordant RP
reads to call CNVs. It works best for calling genotypes of midsize
deletions at medium coverage.

CNVer
CNVer (Medvedev et al., 2010) combines RP and RD information
for CNV detection. It also implements an ambiguous mapping
strategy which does not rely on having uniquely best read map-
pings, and uses all good mappings for every mate pair which can
result in higher sensitivities in repeat and duplication regions.

DELLY
DELLY (Rausch et al., 2012) analyzes discordant RP first and
then attempts to strengthen the results with supporting SR. It
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enables to ascertain the full spectrum of genomic rearrangements,
including CNV events as well as balanced rearrangements.

GenomeSTRiP
GenomeSTRiP (Haraksingh and Snyder, 2013) combines sev-
eral sources of information contained in the sequence reads,
including discordant RP as a starting point and RD as a down-
stream filter. It can accurately call genotypes of relatively long
CNVs (≥200 bp). It is capable of working with large populations
(Genomes Project et al., 2010) and works best when data from at
least 20 individuals is analyzed together.

Gindel
Gindel (Chu et al., 2014) uses a support vector machine (SVM)
learning approach which combines multiple features extracted
from NGS data. These features include discordant RP, SR, span-
ning reads (reads mapped to a region that overlaps the indel), and
RD near the deletion.

GASVPro
GASVPro (Sindi et al., 2012) integrates RP and RD methods
via a Markov Chain Monte Carlo probabilistic model to achieve
improved specificity in detection of structural variation especially
in repetitive regions.

Hydra-Multi
Hydra-Multi (Lindberg et al., 2014) works with multi-sample to
detect SVs. Its algorithm begins by routing discordant alignments
from RP, followed by identifying candidate breakpoint clusters via
an efficient sorting strategy, and concludes with an AS method to
implement a greedy breakpoint reconstruction. Its sorting algo-
rithm enables multi-sample SV analysis of hundreds of genomes
in a very efficient way.

LUMPY
LUMPY (Layer et al., 2014) is a probabilistic model integrating in
parallel any or all of the three different signals, RP, SR, and RD,
from a genome single sample. In addition, LUMPY can incorpo-
rate sites of known variants, if provided, as a prior knowledge in
order to improve sensitivity.

PSCC
PSCC (population-scale CNV calling; Li et al., 2014) combines RP
and RD. It uses a two-step correction procedure (self-adjustment
with GC content and population based normalization) to remove
biases caused by local GC content and complex genomic charac-
teristics. PSCCuses a binary segmentation method to locate CNV
segments and a combined statistics test to ensure the best perfor-
mance with regard to false positive control, resulting in improved
specificity.

SoftSearch
SoftSearch (Hart et al., 2013) utilizes SR and RP strategies for
detecting SVs to increase sensitivity. It first identifies areas with
soft-clipping (Co-localized SR method) in the genome with dis-
cordant read pair information, then it extracts the read and mate
information directly from the aligned file, resulting in a fast, and
consistent run time with high sensitivity.

Considerations

Method Limitations
In recent years, the CA has become more popular due to the
fact that none of the four methods by themselves are sufficiently
comprehensive. There are pros and cons to each method with
regards to CNV detection depending on the underlying struc-
ture at the SV site (Alkan et al., 2011). SR can detect the exact
breakpoints of SVs. However, it is limited to the length of the
reads and NGS data shorter than 1 kb affect the accuracy and
precision. In addition, SR is currently reliable only in the unique
regions of the genome (Zhang et al., 2011). RP is able to iden-
tify almost all types of SVs, but it is unable to detect the exact
breakpoints with loose fragment size distributions. The accuracy
of RP methods is largely dependent on the insert size. While
small events can be missed with large-insert libraries, insertions
larger than the library insert size might be ignored (Le Scouarnec
and Gribble, 2012). Both RP and SR methods have poor perfor-
mance in regions enriched with duplications since they rely on
confident and independent mapping of each end (Yoon et al.,
2009; Li and Olivier, 2013). AS generates a long sequence from
the short reads, called contig/scaffold, that match the reference
genome. However, it has been shown that AS has a poor per-
formance against duplications or repeats (Alkan et al., 2011). In
the RP approach, resolving ambiguous mappings in repetitive
regions is challenging and accurate prediction of SV breakpoints
depends on fragment size distributions, which can result in costly
and complicated library construction (Medvedev et al., 2009). RD
is more reliable for regions with deletions and duplications and
can also count the number of CNVs. However, similar to RP, it
is difficult to identify the exact breakpoints in RD. Compared
with RP, it is anticipated that RD events are enriched in seg-
mental duplications (Yoon et al., 2009). Although RD is the only
method to accurately predict absolute copy numbers, the break-
point resolution is often poor (Alkan et al., 2009). All of the
limitations outlined above can result in discovery of only a subset
of SV/CNVs. This has prompted the recent development of algo-
rithms that integrate multiple methods to improve sensitivity and
specificity (Kidd et al., 2010; Alkan et al., 2011; Zhao et al., 2013).

Mappability and Coverage
In the RD approach the read alignment can introduce potential
bias. A significant number of reads may not be mapped uniquely
or mapped to multiple positions due to the presence of repeti-
tive regions in the reference genome and short read length of the
NGS technology. RD based methods that ignore these multiple
aligned reads (Chiang et al., 2009; Xi et al., 2011) perform poorly
in homologous genomic regions. Methods that assign an ambigu-
ous read to one of all possible positions perform better than those
using only uniquely mapped reads, but with higher false positives
(Abyzov et al., 2011). Integrated CA approaches such as Hydra,
ERDS, and SoftSearch mitigate this issue by employing a soft
clustering approach that improves the CNV detection sensitivity.

CNV Size and Distribution
Read depth-based methods uses a fixed window approach
to infer RD signal from reads to identify potential SVs.
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Larger windows can achieve higher confidence for CNV calls.
However, small CNVs are easy to miss and difficult for RDmeth-
ods to detect. Approaches that combine RP with RD and AS can
improve both sensitivity and specificity for CNV detection for
small CNVs (Tan et al., 2014). The library insert size is also an
important aspect of the CNV detection. Long insert sizes have
the advantage of detecting larger events with higher confidence,
while shorter insert sizes increase the sensitivity for smaller events
(Medvedev et al., 2009).

GC bias Normalization and Control Samples
Algorithms such as EWT that do not require control data,
detect CNVs by calculating deviations in coverage depth from
the sample’s mean depth (Yoon et al., 2009). However, many
factors, such as GC content, affect the coverage profile, and
therefore these biases must be corrected to provide adequate
specificity (Benjamini and Speed, 2012). GC content varies
along the genome and has been found to influence read cov-
erage on most sequencing platforms. In general, regions with
low or high GC content have low depth of coverage (Teo
et al., 2012). Methods designed for case-control comparisons
avoid this issue by matching the same region across multi-
ple samples by partitioning the genome into regions, calcu-
lating the depth of coverage ratio between case and control
for each region, and then partitioning the region into seg-
ments of equal copy number, using a variety of approaches,

including HMMs (Chiang et al., 2009; Xie and Tammi, 2009;
Ivakhno et al., 2010). These algorithms, because they rely on
the coverage ratio rather than the raw coverage profile, per-
mit finer mapping of CNV boundaries using, for instance,
mean-shift approaches from signal processing (Abyzov et al.,
2011).

Conclusion and Future Directions

Although NGS has led to marked improvement in the detec-
tion of structural variation, accurate detection of CNVs in a
computationally feasible manner continues to be a challenge.
The field still lacks a single informatics method that is appli-
cable to wide variety of structural DNA variations. Recent
studies have also observed inconsistencies in the output from
different platforms and analysis methods (Alkan et al., 2011;
Alkodsi et al., 2014; Tan et al., 2014). Consequently, a CA
has proven more effective in addressing the inadequacy of the
different methods/tools and has led to variant detection with
improved sensitivity and reliability. However, the development
of standard protocols, quality control, and benchmarking, and
extensive laboratory validations is required in order to cal-
ibrate existing CNV analytical tools and foster the develop-
ment of new algorithms for the next-generation of sequencing
technologies.
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