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Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes

from degradation and activation of DNA damage response. For this reason, telomeres

are essential to genome integrity. Chromosome ends are enriched in heterochromatic

marks and proper organization of telomeric chromatin is important to telomere stability.

Despite their heterochromatic state, telomeres are transcribed giving rise to long

noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA

molecules play critical roles in telomere biology, including regulation of telomerase activity

and heterochromatin formation at chromosome ends. Emerging evidence indicate

that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can

promote homologous recombination among telomeres, delaying cellular senescence

and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids

are involved in telomere length homeostasis of telomerase-negative cancer cells.

Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered

by dysfunctional telomeres. We discuss here recent developments on TERRA’s role in

telomere biology and genome integrity, and its implication in cancer.
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Introduction

Telomeres are nucleoprotein structures assembled at the extremities of eukaryotic chromosomes
that protect chromosome ends. By doing so, telomeres prevent chromosome ends from being
recognized as sites of DNA damage, protecting them from degradation and inappropriate recombi-
nation events due to erroneous activation of DNA repair pathways (Doksani and de Lange, 2014).
Telomeres are also required for the complete replication of genomic DNA. Indeed, eukaryotic
chromosomes are deemed to progressively shorten during cell divisions due to limitations of the
semiconservative DNA replication machinery which is unable to fully replicate the extremities of
linear DNA, a phenomenon known as the “end replication problem” (Hug and Lingner, 2006; Jain
and Cooper, 2010). In the absence of maintenance mechanisms chromosome ends erode, telomeres
become dysfunctional and are recognized as sites of DNA damage, leading to cellular senescence
or rampant genome instability and apoptosis (Deng et al., 2008). In most eukaryotes, telomeres
compensate for the end replication problem by recruiting the reverse transcriptase telomerase.
Telomerase uses the 3′ end of chromosomes as primer to elongate chromosome ends by reverse
transcription of the template region of its RNA moiety and in concerted action with the DNA
replication machinery (Greider and Blackburn, 1985; Hug and Lingner, 2006). While telomerase
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activity is detected in some highly proliferative tissues, not suffi-
cient amount of telomerase is expressed in human somatic cells
which enter replicative senescence upon a defined number of cell
divisions due to telomere erosion (Allsopp et al., 1992). Telom-
erase inactivation acts as a tumor suppressor mechanism as re-
expression of this enzyme in human fibroblasts allows to bypass
senescence, leading to cellular immortalization (Bodnar et al.,
1998). Accordingly, 90% of human cancers reactivate telom-
erase activity, resulting in stabilized telomere length (Kim et al.,
1994). For the reasons mentioned above, functional telomeres are
essential to genome integrity and cell viability.

In order to exert their functions, telomeres rely on a highly
conserved DNA structure which consists of a variable number of
telomeric repeats (TTAGGGn in mammalian cells) followed by
a single-stranded G-rich 3′ overhang. Electron microscopy and
super-resolution fluorescence imaging have shown that telom-
eric DNA forms higher order structures where the 3′ single-
stranded overhang invades the homologous double-stranded
region forming a telomeric loop (T-loop) (Griffith et al., 1999;
Doksani et al., 2013). T-loop formation is believed to sequester
the 3′ end of chromosomes, thereby preventing its recogni-
tion by the DNA damage machinery (de Lange, 2009; Doksani
et al., 2013). Indeed, while essential component of telomeres,
3′ overhang is also a general feature of DNA double strand
breaks (DSBs). Functional telomeres thus enable the cell to
discriminate the natural chromosome ends from the harmful
DSBs.

Telomeric DNA acts as docking site for telomere binding pro-
teins which regulate telomere homeostasis and mediate telomere
functions (de Lange, 2005). Inmammalian cells, the protein com-
plex shelterin is recruited at telomeres through the direct binding
of its subunits TRF1 and TRF2 to the double-stranded telomeric
DNA (Palm and de Lange, 2008). Telomere-bound TRF1 and
TRF2 allow the recruitment of the other shelterin components
TIN2, the TPP1/POT1 heterodimer, and Rap1 to chromosome
ends (Sfeir and de Lange, 2012). At telomeres, shelterin proteins
mediate distinct functions: TRF2 is required for T-loop forma-
tion and maintenance (Doksani et al., 2013), and for repression
of ATM-mediated DNA damage response (DDR) as well as non-
homologous end joining (NHEJ) (Karlseder et al., 2004; Denchi
and de Lange, 2007; Palm and de Lange, 2008). TRF1 has a
pivotal role in controlling replication of telomeric DNA (Sfeir
et al., 2009; Zimmermann et al., 2014) while POT1 associates
with TPP1 to bind the single-stranded 3′ overhang and repress
ATR-mediated DDR by preventing the recruitment of replication
protein A (RPA) (Denchi and de Lange, 2007). TIN2 is essen-
tial to the overall integrity of the shelterin complex as it links
TPP1/POT1 heterodimer to TRF1 and TRF2, and stabilizes TRF1
and TRF2 association to telomeric DNA (Takai et al., 2011; Fres-
cas and de Lange, 2014a,b). Rap1 interacts with TRF2 but its role
in telomere biology is still unclear (Kabir et al., 2014).

A conserved feature of telomeres is their enrichment in het-
erochromatic marks. Human and mouse subtelomeres are heav-
ily methylated through the activity of DNA methyltransferases
DNMT1, DNMT3a, and DNMT3b (Gonzalo et al., 2006; Schoeft-
ner and Blasco, 2010). Chromatin of mammalian telomeres is
also under-acetylated and enriched in histone H3 tri-methylated

at lysine 9 (H3K9me3) and H4K20me3 (Benetti et al., 2007).
These posttranslational modifications are mediated by the his-
tone methyltransferases (HMT) Suv39h and Suv4-20h. Loss of
HMTs or DNMs results in over-elongated telomeres, indicating
the important role of telomeric chromatin in telomere homeosta-
sis and stability (Schoeftner and Blasco, 2010). Consistent with
the highly conserved compacted state of chromosome ends, ear-
lier studies have shown that reporter genes integrated in proxim-
ity to yeast, flies, and mammalian telomeres are transcriptionally
silenced (Baur et al., 2001; Koering et al., 2002; Rusche et al., 2002;
Mason et al., 2008), a phenomenon called “telomere position
effect” or TPE.

In stark contrast with these findings and in defiance of
the longstanding belief that chromosome ends are transcrip-
tionally silenced, recent evidence has shown that telomeres
are transcribed by RNA polymerase II, giving rise to a class
of long noncoding RNAs containing telomeric repeats called
TERRA (Azzalin et al., 2007; Schoeftner and Blasco, 2008).
TERRA molecules have been detected in a variety of organ-
isms, including yeast, zebrafish, mouse and human, and are
believed to actively participate in the mechanisms regulating
telomere homeostasis and telomere function (Luke et al., 2008;
Schoeftner and Blasco, 2008). TERRA transcripts have been
involved in the regulation of telomerase, formation of hete-
rochromatin at telomeres and proper capping of chromosome
ends. Nevertheless, the mechanisms of action of telomeric non-
coding RNAs remain largely to be elucidated. In this review,
we discuss recent evidence on the emerging role of TERRA
acting at the interface between telomeric DNA and telom-
ere binding proteins to regulate telomere biology and genome
stability.

Telomeric Repeat-Containing RNA TERRA
in Telomere Biology

TERRA molecules are transcribed from the subtelomeric regions
toward the chromosome ends and consist of subtelomeric-
derived sequences and G-rich telomeric repeats (Azzalin et al.,
2007; Schoeftner and Blasco, 2008). TERRA promoter regions
have been identified at CpG islands present in a subset of human
telomeres in proximity to their telomeric repeats tract. Consis-
tently, DNA methylation at subtelomeric regions generally asso-
ciates with decreased expression of TERRA (Yehezkel et al., 2008;
Nergadze et al., 2009; Ng et al., 2009; Farnung et al., 2012).
Very recently, a second class of TERRA promoters located 5–10
kilobases away from the telomeric repeats of 10 distinct human
telomeres have been identified (Porro et al., 2014a). The presence
of different types of promoters likely contributes to the length
heterogeneity of TERRA transcripts. Several lines of evidence
indicate that modifications of the heterochromatic state of chro-
mosome ends regulate the expression of TERRA (Azzalin and
Lingner, 2008; Schoeftner and Blasco, 2008; Caslini et al., 2009;
Iglesias et al., 2011; Arnoult et al., 2012).Themechanisms regulat-
ing TERRA expression and TERRA biogenesis have been recently
reviewed elsewhere and will not be covered in this review (Azza-
lin and Lingner, 2014; Cusanelli and Chartrand, 2014; Maicher
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et al., 2014). Interestingly, while TERRA transcription has been
detected from all human and yeast telomeres analyzed so far, a
recent study indicates that TERRA is mainly transcribed from
only two telomeres in mouse (de Silanes et al., 2014). While it
cannot be formerly excluded that telomeric RNAs containing
only telomeric repeats are also expressed in mouse, this study
reveals that TERRA transcribed from a single telomere can asso-
ciate with multiple chromosome ends. This suggests that TERRA
can act in trans in mammalian cells and further supports the
view of TERRA as an essential player for the overall mainte-
nance of telomeres and/or telomere function (de Silanes et al.,
2014). In yeast, live cell imaging experiments have shown that
TERRA molecules preferentially localize with their telomere of
origin during S phase (Cusanelli et al., 2013). In this cellular con-
text, it has been proposed that TERRA expression participates in
telomerase-mediated re-lengthening of the TERRA transcribing
telomere (see below) (Cusanelli et al., 2013). Less is known on the
dynamics of TERRA localization in human cells where TERRA
transcripts associate with only a subset of chromosome ends at a
given time (Azzalin et al., 2007; Lai et al., 2013), while a fraction of
telomeric RNAs also resides within the nucleoplasm (Porro et al.,
2010), suggesting that TERRA molecules are not constitutively
associated with telomeres.

How do TERRA transcripts associate with chromosome
ends? Depletion of components of the nonsense mediated
RNA decay (NMD) pathway or members of the heterogeneous
nuclear ribonucleoprotein family (hnRNPs) which bind TERRA,
increases localization of TERRA at chromosome ends without
affecting its overall levels or stability (Azzalin et al., 2007; Lopez
de Silanes et al., 2010). These findings suggest that TERRA
molecules are actively displaced from telomeres and thus may
be recruited at chromosome ends through interaction with sta-
ble constituents of the telomeric structure. In line with this
view, it has been shown that TERRA associates with the shel-
terin components TRF1 and TRF2 (Deng et al., 2009b). This
interaction is mediated by different TRF2 domains, including
the amino-terminal GAR domain and carboxy-terminal myb
domain (Deng et al., 2009b). In different studies, a number of
other TERRA-binding proteins have been identified, including
the heterochromatin protein 1 (HP1), SUV39H1, andMORF4L2,
a component of the NuA2 histone acetyltransferase complex
(Deng et al., 2009b; Lopez de Silanes et al., 2010; Scheibe et al.,
2013; Porro et al., 2014a). Intriguingly, these proteins also local-
ize at telomeres. TERRA transcripts have been proposed to
promote or stabilize the recruitment of TERRA-binding pro-
teins at chromosome ends (Deng et al., 2009b; Arnoult et al.,
2012; Porro et al., 2014a). TERRA was also found to interact
with tri-methylated histone H3K9me3 and depletion of TERRA
molecules associates with a decrease in H3K9m3 and other het-
erochromatic marks at telomeres (Deng et al., 2009b). Alto-
gether, this evidence has suggested that TERRA participates in
heterochromatin formation at chromosome ends (Figure 1A)
(Deng et al., 2009b; Arnoult et al., 2012). These findings sup-
port the emerging role of TERRA acting as a scaffold molecule
to promote recruitment of proteins and enzymatic activities at
telomeres.

Connecting Telomere Biology and Genome
Integrity

The interaction of TERRA with shelterin components is not the
only mechanism through which TERRA molecules can associate
with telomeres. Recent evidence has established that endoge-
nous TERRA transcripts can base-pair with their template DNA
strand, forming RNA:DNA hybrid structures known as R-loops
(Balk et al., 2013; Pfeiffer et al., 2013; Arora et al., 2014; Yu
et al., 2014). In R-loop structures, the RNA transcript anneals
with the DNA template strand, displacing the complementary
non-template strand which remains unpaired (Aguilera and
Garcia-Muse, 2012). R-loops associated with G-rich sequences
are involved in transcription termination (Skourti-Stathaki et al.,
2011) and regulation of gene expression (Ginno et al., 2012).
Recent findings have revealed the important role of R-loop struc-
tures during class switch recombination at the immunoglobulin
heavy chains, where R-loops exceeding 1 kilobase in length are
detected (Yu et al., 2003). While R-loops occur in natural con-
text, they also pose a threat to genome integrity as their formation
associates with mutations, recombination, replication stalling,
and chromosome rearrangements (Aguilera and Garcia-Muse,
2012; Bermejo et al., 2012). For this reason, R-loop formation
is tightly controlled within the cell and hazardous R-loop struc-
tures are removed by the activities of different enzymes such as
RNase H (RNase H1 and 2) which degrades the RNA part of a
DNA-RNA hybrid (Aguilera and Garcia-Muse, 2012); helicases,
including Pif1 DNA helicase which is able to unwind DNA-RNA
hybrid structures (Boule and Zakian, 2007; Paeschke et al., 2013);
and the THO/TREX protein complex, initially identified for its
involvement in transcription and mRNA export (Rondon et al.,
2010); however, mutants of THO complex accumulate R-loop
structures (Huertas and Aguilera, 2003).

Recent evidence indicates that R-loops form at telomeres in
yeast and in mammalian cells (Balk et al., 2013; Pfeiffer et al.,
2013; Arora et al., 2014; Yu et al., 2014). In yeast, R-loops are
detected at telomeres inWT cells but their formation is repressed
by the endogenous RNase H1 and 2 enzymes and by the THO
complex. Accordingly, telomeric R-loops accumulate in a RNase
H1 and 2 double mutant strain (rnh1 rnh201) (Balk et al., 2013)
as well as in THO complex mutant strains (hpr1, thp2, and
tho2) (Pfeiffer et al., 2013; Yu et al., 2014) (Figure 2A). Inter-
estingly, accumulation of telomeric R-loops promotes homolo-
gous recombination at telomeres. In particular, a recent study
has shown that a telomerase-negative rnh1 rnh201 yeast strain
manifests a higher rate of telomere recombination thanWT cells,
which translates into a delayed onset of senescence in culture,
expected to occur at 60–80 generations in telomerase-negative
yeasts (Balk et al., 2013). The delay in senescence observed in
telomerase-negative rnh1 rnh201 strain is prevented by inactiva-
tion of RAD52, an essential regulator of homologous recombina-
tion (Wellinger and Zakian, 2012; Balk et al., 2013). Furthermore,
overexpression of RNH1 decreases telomere recombination and
anticipates senescence of telomerase-negative cells (Balk et al.,
2013). This evidence indicates that telomeric R-loops promote
Rad52-mediated homologous recombination among telomeres
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FIGURE 1 | Proposed functions of TERRA at functional and

dysfunctional telomeres. (A) TERRA expression promotes

heterochromatin formation at telomeres. TERRA interacts with several

proteins at telomeres including TRF2, H3K9me3, origin replication

complex 1 (ORC1), HP1, and MORF4L2 proteins. TERRA molecules

act as scaffold recruiting chromatin remodeling factors to chromosome

ends. (B) Expression of TERRA is required for proper capping of

telomeres. hnRNPA1 displaces RPA from telomeric single-stranded

overhangs. TERRA transcripts interact with hnRNPA1. TERRA-hnRNPA1

interaction removes hnRNPA1 from chromosome ends allowing POT1

to bind the telomeric single-stranded overhangs. (C) TERRA

participates to DNA damage response triggered by dysfunctional

telomeres. Depletion of TRF2 results in dysfunctional telomeres and

increased TERRA expression. TERRA interacts with lysine-specific

demethylase 1 (LSD1). Elevated TERRA levels in TRF2-depleted cells

promote nucleolytic processing of uncapped telomeres by favoring the

recruitment of a LSD1-MRE11 complex at telomeres (1). TERRA

molecules interact with SUV39H1 histone methyltransferase.

TERRA-SUV39H1 interaction promotes H3K9 methylation (H3K9me3) at

dysfunctional telomeres and chromosome end-to-end fusions (2).

(Lundblad and Blackburn, 1993; Wellinger and Zakian, 2012),
delaying senescence of telomerase-negative cells (Balk et al.,
2013). Similar results have been obtained in telomerase-negative
THO mutant strains, where accumulation of TERRA at telom-
eric chromatin and consequent formation of telomeric R-loops
promote recombination events among chromosome ends (Yu
et al., 2014). Interestingly, in telomerase-positive cells, the

THO complex also regulates chromosome end processing and
prevents interference with telomeric DNA replication by regulat-
ing TERRA expression and its association at telomeres (Pfeiffer
et al., 2013). These findings are consistent with a previous study
showing that TERRA overexpression can promote processing of
chromosome ends via the 5′–3′ exonuclease Exo1 (Pfeiffer and
Lingner, 2012).
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FIGURE 2 | Proposed roles of TERRA in telomere length homeostasis

of telomerase-negative and telomerase-positive cells. (A) In

telomerase-negative cells, TERRA molecules form DNA:RNA hybrids, or

R-loops, at telomeres. Telomeric R-loop formation is inhibited by RNase H1

and 2, and the THO complex in budding yeast, and is repressed by RNase

H1 in ALT cancer cells. Telomeric R-loops promote homologous

recombination among telomeres, which maintains telomere length

homeostasis in ALT cancer cells and delays senescence of

telomerase-negative yeast cells. (B) In telomerase-positive yeast cells,

TERRA transcripts promote the formation of telomerase clusters at short

telomeres in yeast. TERRA expression is induced when a telomere shortens

and TERRA transcripts accumulate in a single focus localizing at the nuclear

periphery. During S phase, a TERRA focus acts as a scaffold to bind and

aggregate telomerase molecules (TLC1) into a TERRA/T-Rec cluster.

TERRA/T-Rec cluster relocates to the short telomere expressing TERRA to

mediate telomere elongation.

In a recent study, Arora and colleagues reported the pres-
ence of telomeric R-loops in telomerase-negative human can-
cer cells (Arora et al., 2014). The majority of human tumors
reactivate telomerase activity to attain unlimited replicative
capacity, but 10–15% of cancers maintain their telomeres
in the absence of telomerase (Bryan et al., 1995). In these
cells, telomere length homeostasis is achieved by homologous
recombination-mediated mechanisms which, as in yeast, are
known as alternative lengthening of telomeres or ALT (Bryan
et al., 1995). While homologous recombination events among
telomeres are an accepted common feature of ALT processes
(Dunham et al., 2000; Conomos et al., 2013), the mecha-
nisms triggering telomere recombination remain to be defined.
Remarkably, Arora and colleagues have shown that ALT telom-
eres contain telomeric R-loop structures which play an essen-
tial role in telomere maintenance of ALT cells (Arora et al.,
2014). The authors show that telomeric R-loops are tightly reg-
ulated by RNase H1, which localizes at telomeres in ALT cells
but not in telomerase positive cells. Overexpression of RNase
H1 decreases telomere recombination rate and leads to telom-
ere shortening in ALT cells but not in telomerase-positive cells.

In line with this evidence, TERRA transcripts localize within
ALT-associated PML bodies (APBs) (Arora et al., 2014), dis-
tinct nuclear bodies of ALT cells where telomere recombination
is believed to occur (Yeager et al., 1999). TERRA expression
is induced in ALT cells (Ng et al., 2009; Arora et al., 2014)
and recent evidence indicate that while TERRA levels decrease
from S phase to G2 phase in telomerase-positive cancer cells
(Porro et al., 2010), TERRA foci significantly increase during S
phase and G2 in ALT cells (Flynn et al., 2015). Cell-cycle regu-
lation of TERRA depends on the chromatin-remodeling protein
ATRX, which loss or mutation correlate with ALT in human
cancer (Heaphy et al., 2011; Lovejoy et al., 2012; Schwartzen-
truber et al., 2012). Indeed, depletion of ATRX in telomerase-
positive cells also results in elevated TERRA levels and persistent
TERRA foci in G2/M, suggesting that ATRX may act at telom-
eres by regulating TERRA expression and localization during cell
cycle (Flynn et al., 2015). Altogether, these findings indicate that
TERRA plays a major role in the maintenance of ALT telomeres.
Telomeric R-loops thus represent novel players in telomere biol-
ogy regulating telomere function and telomere stability of ALT
cells.
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TERRA and DNA Damage Response at
Telomeres

TERRA transcripts have been proposed to participate in the
proper telomere capping that prevents activation of DDR at
chromosome ends. During telomeric DNA replication, exposed
single-stranded DNA (ssDNA) is bound by the ssDNA bind-
ing protein RPA which is required for activation of the ATR
checkpoint (Zou and Elledge, 2003; Verdun and Karlseder,
2006). The shelterin component POT1 acts in repressing ATR-
mediated DDR at telomeres and it is believed to antagonize
RPA for the binding to the telomeric ssDNA (Denchi and de
Lange, 2007). In vitro evidence suggests that TERRA plays a
role in the switch between RPA and POT1 at chromosome
ends (Flynn et al., 2011). In particular, TERRA directly inter-
acts with hnRNPA1 (Lopez de Silanes et al., 2010), which
can displace RPA from telomeric ssDNA in vitro (Flynn
et al., 2011). In this scenario, TERRA and hnRNPA1 coop-
erate to allow POT1 binding to telomeres at the expenses of
RPA displacement after DNA replication (Figure 1B) (Flynn
et al., 2011). It will be important to validate this mechanism
in vivo.

In line with this view, emerging evidence indicates that
altered TERRA expression or localization is involved in the
activation of DDR at telomeres. Indeed, partial depletion of
TERRA expressed from the single telomere 18 in mouse cells
leads to DDR activation at different chromosome ends and
widespread telomere dysfunction (de Silanes et al., 2014).
Furthermore, partial down-regulation of TERRA expression
(Deng et al., 2009b, 2012a) and unscheduled accumulation of
TERRA transcripts at telomeres associate with activation of DDR
at chromosome ends, with consequent formation of “telom-
ere dysfunction-induced foci” (TIF) (Lopez de Silanes et al.,
2010). Finally, depletion of TRF2, which activates the ATM
kinase pathway at telomeres and results in telomere fusions
through NHEJ (Takai et al., 2003; Denchi and de Lange, 2007),
leads to up-regulation of TERRA (Caslini et al., 2009; Porro
et al., 2014a,b). In this regard, the TRF2 homodimerization
domain (TFRH) is required for repression of TERRA tran-
scription (Porro et al., 2014a). Importantly, this domain is not
involved in TERRA binding. The involvement of the TFRH
domain in TERRA repression suggests that TRF2 may neg-
atively regulate TERRA transcription through its activity on
telomeric structure (Poulet et al., 2012; Porro et al., 2014a).
Porro and colleagues recently studied the role of TERRA at
dysfunctional telomeres in TRF2-deficient cells (Porro et al.,
2014b). The authors show that TERRA up-regulation corre-
lates with telomeric recruitment of the lysine-specific demethy-
lase 1 (LSD1) (Porro et al., 2014b). LSD1 directly interacts with
TERRA and MRE11 (Porro et al., 2014b), a subunit of the
MRE11/RAD50/NBS1 (MRN) complex required for the resec-
tion of the telomeric 3′ overhang to promote chromosome fusion
at dysfunctional telomeres (van Steensel et al., 1998; Deng et al.,
2009a). Interestingly, TERRA expression stabilizes LSD1-MRE11
association in vitro and in vivo (Porro et al., 2014b). These
findings suggest that increased expression of TERRA in TRF2-
depleted cells may contribute to the activation of NHEJ by

promoting MRE11 activity at uncapped telomeres (Figure 1C)
(Porro et al., 2014b).

In addition to their implication in telomere end processing,
a recent study indicates that TERRA transcripts can promote
changes in chromatin structure of uncapped telomeres (Porro
et al., 2014a). In particular, TERRA was shown to interact with
the histone methyltransferase SUV39H1 and promote methyla-
tion of histone H3K9 upon TRF2 depletion by enhancing telom-
ere association of SUV39H1. SUV39H1 is important for efficient
end fusions of TRF2-depleted telomeres (Bartocci et al., 2014;
Porro et al., 2014a). Furthermore, accumulation of H3K9me3 at
uncapped telomeres may serve as a docking site for the recruit-
ment of the Tip60/KAT5 acetyltransferase, which is required for
ATM acetylation and activation (Murr et al., 2006; Porro et al.,
2014a). Importantly, TERRA up-regulation upon TRF2 deple-
tion occurs independently of the DDR and it seems to be an
early event occurring in parallel or upstream of ATM activation
(Porro et al., 2014a). These findings indicate that TERRA can
actively participate in the DDR triggered by dysfunctional telom-
eres by promoting the association of telomere end processing and
chromatin remodeling factors at telomeres (Figure 1C).

TERRA and Telomerase

Ever since the discovery of TERRA, it was presumed that TERRA
transcripts can regulate telomerase activity (Schoeftner and
Blasco, 2008). The 3′ end of TERRA is indeed complementary
to the template region of telomerase RNA and telomerase asso-
ciates with TERRA transcripts in vivo, although it is not known if
TERRA binds the template region of hTR (Redon et al., 2010).
TERRA-mimicking oligonucleotides inhibit telomerase activity
in vitro (Schoeftner and Blasco, 2008; Redon et al., 2010). Nev-
ertheless, a role for TERRA as negative regulator of telomerase
in vivo is still unclear, since overexpression of TERRA has no
effect on telomerase activity in human cancer cells (Farnung et al.,
2012). In yeast, TERRA expression is induced by telomere short-
ening and TERRAmolecules organize telomerase activity at their
telomere of origin by acting as a scaffold to promote telomerase
nucleation and formation of telomerase recruitment clusters (or
T-Recs) (Figure 2B) (Gallardo et al., 2011; Cusanelli et al., 2013).
Accordingly, TERRA interacts with yeast telomerase RNA TLC1
in vivo and TERRA/T-Recs complexes preferentially localize to
TERRA-expressing short telomeres (Cusanelli et al., 2013). Fur-
ther studies in vivo will be required to understand the role of
TERRA in the regulation of telomerase in mammalian cells.

Concluding Remarks

It has become increasingly clear that TERRA transcripts actively
participate in the various functions of telomeres and in telom-
ere stability. Their expression and localization must be kept
in check as TERRA can contribute by different means to the
DDR triggered at dysfunctional telomeres, which poses a threat
to genome integrity. Beside a role for TERRA in tumor cells,
telomere dysfunction also occurs during replicative senescence
(d’Adda di Fagagna et al., 2003), suggesting that TERRA may
play a role in aging and age-related diseases. Dysfunction in
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TERRA expression is linked to diseases, like the immunodefi-
ciency, centromere instability, and facial anomalies (ICF) syn-
drome, a rare autosomal recessive immune disorder caused by
mutations in the DNA methyltransferase gene DNMT3b (Xu
et al., 1999). TERRA is overexpressed in primary cells of ICF
patients, possibly due to the hypomethylated state of their sub-
telomeric promoters (Yehezkel et al., 2008; Deng et al., 2010).
Other diseases, like telomeropathies, may be associated with
TERRA mis-regulation.

Major questions are still unanswered in the field and sev-
eral challenges lay ahead. First and foremost, a well-established
system to efficiently deplete total TERRA in cells remains
to be developed. Current approaches, using RNAi or anti-
sense oligonucleotides, only partially deplete TERRA levels.
As a role for TERRA as a scaffold molecule involved in the
recruitment and organization of enzymatic activities at telom-
eres is emerging, a major challenge will be to determine how
these various activities are organized by TERRA according to
the state of a telomere (i.e., capped vs. uncapped, short vs.
long).

Telomerase is an established key target for cancer
therapies (Harley, 2008). Yet recent evidence indicates that

telomerase-positive tumor cells can develop resistance to
telomerase-targeting cancer therapies by engaging ALT-mediated
mechanisms (Chen et al., 2010; Hu et al., 2012). TERRA is
induced in human and mouse tumors (Deng et al., 2012b)
and may act as regulator of telomerase (Cusanelli et al., 2013).
TERRA also plays a major role in telomere length homeostasis
in ALT cancer cells through formation of telomeric R-loops
(Arora et al., 2014). Targeting TERRA in tumor cells may impair
telomerase activity while also preventing the development
of ALT-mediated resistance mechanisms, making TERRA an
attractive therapeutic target.
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