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Results from numerous linkage and association studies have greatly deepened
scientists’ understanding of the genetic basis of many human diseases, yet some
important questions remain unanswered. For example, although a large number of
disease-associated loci have been identified from genome-wide association studies
in the past 10 years, it is challenging to interpret these results as most disease-
associated markers have no clear functional roles in disease etiology, and all the
identified genomic factors only explain a small portion of disease heritability. With the
help of next-generation sequencing (NGS), diverse types of genomic and epigenetic
variations can be detected with high accuracy. More importantly, instead of using linkage
disequilibrium to detect association signals based on a set of pre-set probes, NGS
allows researchers to directly study all the variants in each individual, therefore promises
opportunities for identifying functional variants and a more comprehensive dissection
of disease heritability. Although the current scale of NGS studies is still limited due to
the high cost, the success of several recent studies suggests the great potential for
applying NGS in genomic epidemiology, especially as the cost of sequencing continues
to drop. In this review, we discuss several pioneer applications of NGS, summarize
scientific discoveries for rare and complex diseases, and compare various study designs
including targeted sequencing and whole-genome sequencing using population-based
and family-based cohorts. Finally, we highlight recent advancements in statistical
methods proposed for sequencing analysis, including group-based association tests,
meta-analysis techniques, and annotation tools for variant prioritization.

Keywords: next-generation sequencing, genomic epidemiology, study design, statistical methods, genetic
etiology

Introduction

The rapid advancement of biotechnology has brought paradigm shifts in genetic/genomic epi-
demiology. From linkage studies to genome-wide association studies (GWAS) to the extensive
application of next-generation sequencing (NGS), technological developments have improved
study designs, deepened our understanding of disease etiology, and led to numerous scientific
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FIGURE 1 | Number of publications studying human traits using various techniques (1980–2014). Only the publications in core clinical journals or MEDLINE
are included. The vertical axis indicates the number of publications and the horizontal axis indicates different years. The three colors correspond to genetic linkage
studies, GWAS, and next generation sequencing, respectively.

discoveries (Figure 1). This can be seen in the study of Crohn’s
disease, an inflammatory bowel disease with prevalence 0.32% in
Europe and North America (Molodecky et al., 2012). Twin-based
epidemiological analysis first suggested that there is a genetic
component of Crohn’s disease (Molodecky et al., 2012); family-
based linkage studies then identified six loci associated to the
disease (Hugot et al., 1996; Cardinale et al., 2013); GWAS identi-
fied 163 loci at genome-wide significance level, which collectively
explain 13.6% of the phenotypic variance (Duerr et al., 2006;
Imielinski et al., 2009; Jostins et al., 2012); and re-sequencing
GWAS loci identified several causal variants with lowminor allele
frequencies (Momozawa et al., 2011; Rivas et al., 2011; Cardinale
et al., 2013; Ellinghaus et al., 2013; Hunt et al., 2013).

Twin-based epidemiological studies can be used to estimate
the broad-sense disease heritability, i.e., the amount of phe-
notypic variance that can be explained by all genetic factors,
through comparing phenotype concordance rate in monozy-
gotic and dizygotic twins (Veale, 1960). Linkage studies, which
combine information from family pedigrees and sparse genetic
markers, can be used to locate disease-associated loci on a very
rough scale (Nance et al., 1969; Greer et al., 1989; St George-
Hyslop et al., 1990; Dawn Teare and Barrett, 2005). GWAS
benefits from the array technology that allows millions of mark-
ers to be genotyped at reasonable cost and speed with high
accuracy. It has deepened our understanding of disease etiol-
ogy in multiple directions. First, since the first successful GWAS
was published Klein et al. (2005), GWAS has become widely
adopted and led to the identifications of a large number of
disease-associated genomic loci. As of February 20, 2015, 15,396
single nucleotide polymorphisms (SNPs) from 2,111 publications
have been documented in the GWAS Catalog (Welter et al.,
2014; Hindorff et al., 2015). Second, the associated loci discov-
ered from GWAS could serve as risk predictors for some dis-
eases, provided large enough GWAS discovery sample size (Wray
et al., 2008). Those genetic risk predictors, either used alone
or combined with traditional non-genetic risk prediction, have

the potential to improve risk-prediction accuracy, which might
benefit clinical diagnose and personalized treatment (Jostins
and Barrett, 2011). Third, dense genome-wide markers enable
a reasonable approximation of narrow-sense heritability (phe-
notypic variance explained by additive genetic factors) using
chip heritability (phenotypic variance explained by genotyped
SNPs; Speed et al., 2012; Furlotte et al., 2014). Moreover, valu-
able insight has been learned on the genetic etiology of many
diseases through analyzing the variance contribution of SNPs
from certain genomic regions, pathways, as well as variant groups
based onminor allele frequencies (Davis et al., 2013; Zaitlen et al.,
2014).

As fruitful as GWAS is, it still leaves many intriguing ques-
tions unanswered, top on which are the following two prob-
lems. The first problem is the difficulty in interpreting GWAS
results. This is partly due to our limited understanding of
genomic function, especially for non-coding regions, in which
considerably many disease-associated loci have been identified.
The correlation structure among neighboring variants, often
referred to as linkage disequilibrium (LD), also impacts our abil-
ity to interpret the results. In fact, it is the haplotype blocks
that a GWAS actually identifies, not the real functional vari-
ants (Cooper and Shendure, 2011). The second problem is the
missing heritability, usually referring to the large gap between
the proportion of the variance explained by significant SNPs
identified from GWAS and the estimated narrow-sense heri-
tability from twin and pedigree analysis (Manolio et al., 2009;
Witte et al., 2014). This has been partly resolved by estimating
the chip heritability using linear mixed models and restricted
maximum-likelihood estimation in genome-wide complex trait
analysis (Yang et al., 2010, 2011). However, a large part of
narrow-sense heritability still remains missing. One explana-
tion is the imperfect LD between tagged SNPs and causal
variants. Other potential contributors to missing heritability
include small insertions and deletions, large structural variants
(SVs; Frazer et al., 2009; Mefford and Eichler, 2009), epigenetic
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factors, gene-by-gene and gene-by-environment interactions
(Frazer et al., 2009), and phantom heritability (Zuk et al.,
2012). All these genetic and non-genetic factors may have sub-
stantial contributions to the etiology for some diseases and
disorders.

The rapidly developing NGS technology promises many
opportunities to answer some of these questions. Ultimately, it
has the potential to provide further biological insight into dis-
ease etiology, which may lead to important clinical applications
including disease prevention, diagnosis, and treatment. In this
review, we discuss why and how, and to which extent NGS tech-
niques can address the issuesmentioned above, i.e., zooming in to
identify more disease-associated variants or even the real causal
ones, and zooming out to recover the missing heritability. We
also summarize study designs, statistical methods for analyzing
sequencing data, current findings, and challenges.

Zooming In and Out: Identification of
Causal Variants and Dissection of
Disease Heritability

Next-generation sequencing can be used to identify not only
single nucleotide variants (SNVs), but also SVs and epigenetic
variations. SNVs are the easiest to call from sequencing data
compared to other variant types. Many methods have been pro-
posed to call SNVs with high accuracy from NGS data [e.g.,
GATK (McKenna et al., 2010), cortex (Iqbal et al., 2012), and
DISCOVAR (Weisenfeld et al., 2014)]. SVs in the human genome
include copy number variants, copy-number neutral (balanced)
translocations, and inversions of various sizes. Traditionally,
large SVs are studied using cytogenetics (Langer-Safer et al., 1982;
Schrock et al., 1996), while small SVs require finer technolo-
gies such as array comparative genomic hybridization (CGH; de
Ravel et al., 2007). A number of methods have also been devel-
oped to call SVs from sequencing data, including re-sequencing
and de novo assembly methods such as MultiBreak-SV (Ritz
et al., 2014), GASV (Sindi et al., 2009), LUMPY (Layer et al.,
2014), DELLY (Rausch et al., 2012), cn.MOPS (Klambauer et al.,
2012), as well as methods reviewed in Medvedev et al. (2009),
Tan et al. (2014). Epigenetic variations are the modifications
on DNA or chromatin without altering the DNA sequence.
Before NGS, detection of epigenetic variations relies on PCR
assays (Herman et al., 1996), DNA methylation profiling arrays
(Bibikova et al., 2006; Schumacher et al., 2006), and ChIP-
chip (Buck and Lieb, 2004). Now, with the help of NGS, epi-
genetic variations can be detected with ultra high resolution.
Moreover, it has become possible to detect allele-specific epi-
genetic variations through ChIP-seq and bisulfite sequencing
(Meissner et al., 2005; Kerkel et al., 2008; Park, 2009; Schalkwyk
et al., 2010). Since many types of genomic and epigenetic
variations can be detected with improved coverage and accu-
racy using sequencing data, NGS has the potential to partly
recover the missing heritability. Therefore, a more comprehen-
sive view of the decomposition of phenotypic variance is expected
from applications of NGS in genetic epidemiology. However,
although the variant-calling accuracy of structural and epigenetic

variations has been significantly improved, it is still relatively
low compared to that of SNVs, especially for earlier sequencing
technology with shorter reads. It is also particularly challeng-
ing to call SVs using whole-exome sequencing (WES) com-
pared with whole-genome sequencing (WGS). In this review,
we focus on the detection of causal SNVs using NGS tech-
nology. Issues related to SVs and epigenetic variations can be
found elsewhere (Medvedev et al., 2009; Meaburn and Schulz,
2012).

By its study design, GWAS works ideally under the common-
disease common-variant (CDCV) hypothesis (Visscher et al.,
2012). However, the CDCV hypothesis may not hold for many
common diseases as recent studies have suggested a substan-
tial contribution of rare variants to many diseases and traits, as
reviewed in Gibson (2012). GWAS will likely fail to detect sig-
nals from rare variants in these cases unless the effect size is
very large or the causal variants are in strong LD with geno-
typed markers. With data generated from NGS, researchers
can identify more signals in two situations. First, if GWAS
does detect the signal (likely to be weak) due to LD struc-
tures, the implicated genomic regions can be re-sequenced to
uncover the candidates of causal variants. Second, if the dis-
ease risk is driven by rare variants independent from the geno-
typed SNVs, then GWAS will completely miss the signal. In this
case, WES or WGS could be used to scan the exome or the
genome and detect rare-variant associations in a hypothesis-free
manner.

Instead of using LD to detect signals near the probed SNVs,
NGS allows researchers to study all the SNVs in each indi-
vidual directly. However, it will also reveal an overwhelmingly
large number of rare variants, most of which have no func-
tional relevance. Therefore, it is non-trivial to identify the causal
variants even after accurate variant calling. Moreover, due to
the relatively high cost of sequencing compared to other tech-
nological options today, most sequencing studies do not have
a very large sample size to have adequate statistical power to
detect signals through traditional univariate statistical tests. In
order to tackle this problem, various strategies in terms of
study designs and statistical models have been proposed and
implemented. The first strategy is targeted sequencing, includ-
ing WES and candidate-gene studies. This type of studies usually
significantly reduces the cost of sequencing so that larger sam-
ples may be analyzed. The second strategy is to focus on a
certain type of variants that are more likely to be causal by
properly choosing the control group. One example is to use
family-trio data to identify de novo mutations that only exist
in affected children but not in healthy parents (Xu et al., 2011,
2012; Gauglerl et al., 2014; Muona et al., 2014). Finally, sta-
tistically sound methods have also been proposed, including
group-based association tests (Lee et al., 2014), meta-analysis
techniques for sequencing data (Evangelou and Ioannidis, 2013;
Lee et al., 2014), and bioinformatics tools for genome anno-
tation (Cooper and Shendure, 2011; Ward and Kellis, 2012b;
Hou and Zhao, 2013), to extract most information from the
data. These statistical methods are crucial when applying NGS
in population-based association studies. All these strategies are
discussed below.
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Application of NGS Under Various
Study Designs

Next-generation sequencing has brought great success to many
different types of studies. First, in terms of cohort type, some
studies use family-based data (Vissers et al., 2010; Fromer et al.,
2014; Iossifov et al., 2014) while others collect data from unre-
lated individuals (Hunt et al., 2013; Morrison et al., 2013). Sample
sizes are also highly variable in different studies, with extreme
cases as small as one individual (Lupski et al., 2010) or as large
as tens of thousands subjects (Hunt et al., 2013; De Rubeis et al.,
2014). Finally, in terms of sequencing target, WGS, WES, and
candidate-gene sequencing all have been applied. Although cost
and budget are important factors in choosing a study design, it
is crucial to choose the most appropriate study design according
to the underlying genetic etiology in order to make meaning-
ful scientific discoveries. For example, tissue-specific diseases
may indicate a possible contribution from somatic mutations
(Stratton, 2009); diseases that are highly detrimental yet have
high prevalence, e.g., autism disorder, may be implicated in causal
de novo mutations; and common diseases tend to have more
complicated genetic etiology than monogenic diseases, usually
involving a large number of genetic factors with small effect
individually. Prior knowledge of diseases can guide researchers
to make the best use of NGS when designing studies. In this
section, we review some pioneer research with different study
designs.

Targeted Sequencing and Whole-Genome
Sequencing
Due to the still high cost of WGS, targeted sequencing is more
commonly used as a cost-effective study design. Popular options
includeWES using exome-capturing technologies and candidate-
gene studies where only a set of preselected genes (e.g., genes close
to significant loci identified in GWAS) is sequenced. Although
WES misses the entire non-coding genome and sometimes part
of the coding regions, numerous scientific discoveries have been
made using WES (Majewski et al., 2011). The synthetic associ-
ation hypothesis (Dickson et al., 2010) provides the theoretical
support for re-sequencing GWAS candidate genes in search of
causal rare variants. The greater interpretability for variants in the
coding regions, the increased statistical power due to less severe
multiple testing and the larger sample size due to the much lower
cost altogether make WES and candidate-gene studies popular
choices.

Re-sequencing GWAS loci of autoimmune diseases have
yielded rich positive results (Hunt et al., 2013). By re-sequencing
the GWAS significant loci of Crohn’s disease, deleterious or pro-
tective variants with low frequencies have been identified in
multiple genes, e.g., IL23R and NOD2 (Momozawa et al., 2011;
Rivas et al., 2011). By re-sequencing 55 ulcerative colitis GWAS
loci in 200 cases and 150 controls, variants with low frequencies
were detected in CARD9, IL23R, and RNF186 (Beaudoin et al.,
2013). However, re-sequencing 25 GWAS loci in a very large
sample (24,892 cases for six autoimmune disease phenotypes and
17,019 controls) did not yield a supportive result for the synthetic
association (Hunt et al., 2013). The contribution of rare variants

in coding regions is negligible compared with that of common
variants. Notably, although this study has a very large sample size,
only the exons of 25 GWAS loci were re-sequenced. Therefore,
the contribution of rare variants to Crohn’s disease still awaits
further assessment with genome-wide screening.

Relatively fewer studies use population-based WGS for com-
plex disorders or traits due to the high cost. However, sev-
eral pioneer studies have demonstrated the potential of WGS
in understanding the genetic architecture of complex diseases,
especially for discovering the contribution of rare variants and
variants in non-coding regions. For example, the CHARGE con-
sortium (Psaty et al., 2009) performedWGS on 962 individuals to
study the levels of high-density lipoprotein cholesterol (HDL-C)
and it was found that common (MAF > 0.01) and rare variants
(MAF < 0.01) explain about 61.8 and 7.8% of HDL-C level vari-
ance, respectively (Morrison et al., 2013). As the sequencing cost
continues to drop (now less than $1000 per genome at 30x cov-
erage with the announcement of Illumina Hiseq X Ten system),
we can expect more population-based WGS studies in the future.
Results from those studies may greatly deepen our understanding
of disease architecture, due to their unparalleled coverage of the
human genome.

Rare Diseases and Common Complex
Diseases
Next-generation sequencing can be applied to study both rare
diseases and common diseases. For rare monogenic diseases,
causal variants may be identified even with a small sample size.
However, it remains challenging to identify causal alleles for most
common diseases as well as some rare diseases with genetic het-
erogeneity (McClellan and King, 2010), which typically require a
larger sample size.

Whole-exome sequencing and WGS allow a revisit to mono-
genic diseases that are traditionally studied using linkage anal-
ysis, and bring the opportunities of finding genetic causes for
intractable patients with no previously known causes.Many novel
causal variants have been identified, as reviewed in Bamshad
et al. (2011), Ku et al. (2011), Dewey et al. (2012). For exam-
ple, gene SH3TC2 was found to contain causative alleles for
Charcot-Marie-Tooth disease using WGS on one patient (Lupski
et al., 2010); WES of four patients identified a causal gene
OHODH for Miller syndrome (Ng et al., 2010). These results
demonstrate the power of NGS in identifying causal variants
for monogenic diseases even with very small sample size. There
are certain complications, though, caused by potential unnoticed
environmental risk factors (Weatherall, 2001) and existence of
functionally redundant paralogs of disease genes (Chen et al.,
2013).

Not all rare diseases have such a simple genetic structure
as monogenic diseases do. Rare diseases are usually diagnosed
or defined by symptoms, whereas the same symptom can be
induced by different mechanisms. In fact, some rare diseases
are a group of diseases manifesting similar symptoms. The
identification of causal variants for those diseases generally
requires larger sample sizes than monogenic diseases. Muona
et al. (2014) recently found a causal de novo mutation in gene
KCNC1 for progressive myoclonus epilepsy (PME), a group of
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rare disorders, through WES on 110 unrelated patients (Muona
et al., 2014). By doing WGS on 50 patients, Gilissen et al.
(2014) discovered major genetic causes for severe and genet-
ically heterogeneous intellectual disability that affects 0.5% of
newborns.

Genetic heterogeneity can have many faces for common dis-
eases. Individuals with the same disease may have different causal
variants from the same gene or different genes in the disease
pathway(s). These variants can be common or rare, coding or
non-coding. On the other hand, individuals with the same causal
genetic factors may not manifest the same phenotype due to
incomplete penetrance, interaction with other genetic, epigenetic,
or environmental factors. All of these scenarios may exist simul-
taneously among patients of a complex disease, making it difficult
to characterize the genetic etiology. GWAS can only identify
common variants with reasonable effect sizes, which are usually
non-causal. NGSmay help in this situation as a tool to screen rare
variants. One successful application is for neurodevelopmental
disorders.

Whole-exome sequencing has achieved great success for de
novo mutation detection in neurodevelopmental disorders such
as autism spectrum disorder (O’Roak et al., 2011, 2012; Iossifov
et al., 2012, 2014; Neale et al., 2012; Sanders et al., 2012; Hamilton
et al., 2013; De Rubeis et al., 2014; Robinson et al., 2014), mental
retardation (Vissers et al., 2010; Gilissen et al., 2014; Wen et al.,
2014), and schizophrenia (Awadalla et al., 2010; Girard et al.,
2011; Xu et al., 2011, 2012; Fromer et al., 2014; McCarthy et al.,
2014; Purcell et al., 2014). Causal de novomutations for these neu-
rodevelopmental disorders are not randomly distributed in the
genome, as converging evidence has pointed to their enrichment
in synaptic, transcriptional and chromatin remodeling genes (De
Rubeis et al., 2014; Fromer et al., 2014; McCarthy et al., 2014;
Wen et al., 2014). These studies not only identified de novo causal
rare variants, but also demonstrated how large their contribu-
tions are to neurodevelopmental disorders, which brings new
insight into the genetic etiology. For example, according to twin
studies, autism disorder has an estimated broad-sense heritability
of over 0.9 (for the narrow phenotype of autism), while GWAS
loci can only explain a small part of the heritability (Freitag,
2007). A recent WES study on more than 2500 simplex fami-
lies showed that 12% of autism diagnoses can be explained by
13% of de novo missense mutations, and 9% of autism diag-
noses can be explained by 43% of de novo likely gene-disruption
mutations (Iossifov et al., 2014). Another study, using a Swedish
sample, confirmed the substantial contribution of de novo muta-
tions to individual autism liability, but also pointed out that
population-wise, their contribution to autism liability is only
2.6%, accounting for a very modest proportion of the estimated
narrow-sense heritability 52.4%, which is mostly contributed by
common variation (Gauglerl et al., 2014). Notably, although con-
tribution from de novo mutation to population-level phenotypic
variation is small compared with common variants, de novo
mutations are very important for individual phenotype, and thus
detecting those causal de novo mutations is important and may
lead to improvements in disease risk prediction and personalized
treatment. Moreover, the fact that the detected de novo muta-
tions tend to come from certain pathways further reveals the

pathological mechanisms of those disorders, which may lead to
novel treatment strategies.

Statistical Methods to Detect Rare
Variant Association

Effects of rare variants vary across different diseases. Even if
there is a substantial contribution from rare variants, it remains
challenging to detect rare variant associations due to low sta-
tistical power. Many statistical methods have been proposed
to increase the signal or reduce the noise in testing variant-
disease association using sequencing data. We group these
methods into three general categories: group-based associa-
tion test, meta-analysis, and functional annotation. However,
despite using very different techniques, these three categories
are closely related to each other and are often used in
combination.

Group-Based Association Tests
The major strategy used in GWAS analysis is to evaluate each
SNP individually with a univariate statistic. However, standard
individual variant tests are underpowered to detect rare variant
effects due to the low minor allele frequency (MAF) unless effect
sizes or sample sizes are very large. Moreover, rare variant asso-
ciation studies usually involve extreme multiple testing due to
the large number of rare variants in each individual. Pelak et al.
(2010) reported about 3.5 million SNVs per genome using WGS
on 20 samples. This further reduces the power when type-I error
is controlled. Therefore, many group-based association tests that
assess the cumulative effects of multiple variants have been pro-
posed for sequencing studies. For simplicity, we describe these
strategies for the analysis of a single genomic region, e.g., a gene.

The earliest collapsing methods, also known as burden tests
(e.g., CAST Morgenthaler and Thilly, 2007), collapse all rare
variants in a genomic region into a single variable. This can
be done either through an indicator of whether an individual
has any rare variants, or through summing up the total number
of rare alleles (Morris and Zeggini, 2010). Both schemes com-
pletely ignore the effect of common variants and weight all rare
variants equally, independent of their allele frequency. Several
weighted sum tests (WSTs) generalize these ideas and suggest
weighting variants according to their frequencies (Madsen and
Browning, 2009; Price et al., 2010). In this way, contributions
from both common and rare variants are incorporated. Different
WST approaches use different weighting schemes, but in general,
they all down-weight common variants and up-weight rare ones.
The variable threshold (VT) approach generalizes burden tests in
another direction (Price et al., 2010). Instead of using a pre-fixed
threshold for rarity, the VT approach computes the test statistics
over a series of reasonable thresholds τ, and adaptively chooses
the τ that maximizes the test statistic.

None of the methods discussed so far allow variants to influ-
ence the phenotype in different directions. Variants with similar
MAF are also assumed to have similar effect sizes. The adaptive
summation (aSUM) approach is the first method that distin-
guishes protective variants from deleterious ones (Han and Pan,
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2010). The flexibility is further improved by kernel-based meth-
ods, e.g., sequence kernel association test (SKAT;Wu et al., 2011).
Similar to theWSTs, SKAT also incorporates a weighting scheme,
but both the weight and the kernel can be modified based on
the prior knowledge of disease etiology. No matter what kernel
or weighting scheme is used, the score test guarantees the type-
I error being well-controlled. Appropriate choices would simply
increase the power. Other than that, both magnitudes and direc-
tionality of the associations are estimated from data instead of
pre-fixed, which again introduces great flexibility.

Burden tests and the kernel-based variance-component tests
have very different model assumptions. However, Lin and Tang
(2011) developed a general regression framework for rare variant
association testing that unifies existing methods including WST,
VT, and SKAT. Lee et al. (2012) also generalized the variance-
component testing framework used in SKAT by incorporating
correlation structure into the random effect so that the burden
test and the original SKAT both become special cases of this
general framework.

Finally, although rare variants are more likely to be causal
because of selection pressure, common variants could still have
substantial effects in some diseases. Therefore, it would be wise
to combine the effects of common and rare variants using a sta-
tistically justified framework. Right after CAST came out, the
combined multivariate and collapsing (CMC) method (Li and
Leal, 2008) improved CAST by collapsing variants into subgroups
based on their allele frequencies, and then applying a multivari-
ate test. More recently, Ionita-Laza et al. (2013) used the similar
idea to generalize SKAT. Different weights and kernels are cho-
sen for common and rare variants. Then, several combination
approaches can be implemented to test for the combined effect
(Ionita-Laza et al., 2013).

After years of exploratory research, scientists have acquired a
rich collection of methods to test for group-based association.
However, each method has its unique assumptions and limita-
tions. For example, if a large proportion of rare variants are
causal at the same direction, burden tests will be the most power-
ful; if a genomic region consists of a mixture of deleterious and
protective variants, SKAT should become the superior choice.
Although general frameworks have been proposed, those models
often include more parameters and use more degrees of freedom.
Currently, large-scale sequencing studies are still costly, so the
sample size is often not very large. Whether the general and flexi-
ble frameworks could work well in such circumstances remains to
be thoroughly investigated using empirical data (Liu et al., 2014).
In practice, researchers should choose the statistical method tai-
lored to the most reasonable assumptions according to the prior
knowledge of disease etiology.

Meta-Analysis
Meta-analysis is a statistical method for pooling results from
multiple independent studies. It essentially increases the sample
size by incorporating summary statistics rather than relying on
individual-level data from different studies, which is an impor-
tant feature since individual-level data usually cannot be shared
due to policies and ethical concerns. While its basic idea orig-
inated back to the 17th century (Plackett, 1970), meta-analysis

is still a popular approach in biomedical research, especially in
genomic studies where limited sample size is often a key limiting
factor for significant discoveries. Numerous meta-analysis meth-
ods and software have been developed for GWAS [e.g., METAL
(Willer et al., 2010) and GWAMA (Mägi and Morris, 2010)].
These methods have enjoyed a great success, with hundreds of
GWAS meta-analyses being published (Panagiotou et al., 2013).
A comprehensive comparison of these meta-analysis methods is
reviewed elsewhere (Evangelou and Ioannidis, 2013).

There are three major meta-analysis strategies for individual
variants: approaches based on p-values or Z scores, fixed-effects
models, and random-effects models. It would be natural to extend
these approaches for group-based tests in sequencing studies
(Table 1). In fact, approaches based on p-values or Z scores can be
applied to group-based association tests directly using Fisher’s or
Stouffer’s methods (Fisher, 1934; Stouffer et al., 1949). However,
these methods are unable to deal with the heterogeneity among
studies or to estimate the overall effect size. Moreover, they have
been shown to be less powerful than fixed-effects models in both
simulation and real data analysis (Liu et al., 2013, 2014). In 2013,
several groups independently developed score-based fixed-effects
models that incorporate diverse types of group-based associa-
tion tests (Lee et al., 2013; Tang and Lin, 2013; Liu et al., 2014).
Traditional meta-analysis approaches for single variant associa-
tions usually involve the estimation of single-variant effect that
is not stable for rare variants. Methods based on score statistics
avoid this issue because it only requires fitting the null model.
Another advantage of score-based procedure is that it does not
require different studies to have the same set of variants. This is
crucial for sequencing analysis because very rare variants are not
guaranteed to exist in all the cohorts being studied. Moreover,
these meta-analysis approaches have been shown to be numeri-
cally equivalent to the mega-analysis using individual-level data.
Finally, Hu et al. (2013) further extended the fixed-effects models
based on a key observation that the multivariate score statistic as
well as the corresponding information matrix can be recovered
from test statistics for single variants. This adds more flexibil-
ity into the meta-analysis framework because only statistics for
individual variants need to be shared. However, this simplifi-
cation is valid only under the assumption of additive mode of
inheritance.

Fixed-effects models assume the genetic effects to be the
same in different studies. In contrast, random-effects models
test for the heterogeneous genetic associations by allowing the

TABLE 1 | A list of meta-analysis software for group-based association
tests.

Name Website Reference

RAREMETAL http://genome.sph.umich.edu/
wiki/RAREMETAL

Feng et al. (2014)

MASS http://dlin.web.unc.edu/software/
MASS

Tang and Lin (2013)

MetaSKAT http://www.hsph.harvard.edu/xlin/
software.html

Lee et al. (2013)

MAGA http://web1.sph.emory.edu/users/
yhu30/software.html

Hu et al. (2013)
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genetic effects to vary across studies. Traditional random-effects
meta-analysis models test for the mean effect of genetic vari-
ables (DerSimonian and Laird, 1986). Although it reflects the
heterogeneous nature, this type of methods tend to be less pow-
erful than fixed-effects models (Evangelou and Ioannidis, 2013).
Han and Eskin (2011) improved the discovery power of random-
effects models by testing for the joint null hypothesis of the
absence of any genetic effects and between-study variance. Tang
and Lin (2014) extended the same idea to random-effects group-
based meta-analysis while using the score-based framework. Lee
et al. (2013) also proposed a random-effects model. It demon-
strated comparable discovery power in simulations compared to
the method developed by Tang and Lin (2014).

Functional Annotation
Genomic functional annotation is crucial for prioritizing vari-
ants and interpreting results in association studies. This is espe-
cially helpful for predicting causal variants among a group of
SNVs with strong LD. With the help of appropriate annota-
tion tools, both random and systematic noise in the data can
be greatly reduced. There are some techniques that use special
study design or simple filtering rather than statistical models
to incorporate functional annotations. For example, in terms
of study design, we have discussed that WES is sometimes
more preferred than WGS. One consideration is that variants
in the protein-coding regions are more likely to be functional.
In terms of variant-filtering procedures, various pipelines have
been developed to focus on a certain type of variants such as
non-synonymous SNPs or frame-shifting insertions and dele-
tions (Vissers et al., 2010; Xu et al., 2011; Kim et al., 2012;
Reumers et al., 2012). These variant filters suffer from a high
chance of missing real causal candidates by enforcing variants to
satisfy every screening condition. In contrast, well-justified sta-
tistical methods allow incorporating diverse types of information
to collectively evaluate the functional potential of variants. Here,
we focus on the statistical tools that predict functional genomic
variants.

Methods for predicting deleterious variants in the protein-
coding regions are the richest of the available approaches.
Numerous tools have been developed to serve this purpose,
including SIFT (Ng and Henikoff, 2001), PolyPhen (Ramensky
et al., 2002; Adzhubei et al., 2010), MutationTaster (Schwarz et al.,
2010), SAPRED (Ye et al., 2007), and SNPs3D (Yue et al., 2006),
among others. Most of these methods are statistical classifiers
using both evolutionary and biochemical information of pro-
teins as annotation features (Cooper and Shendure, 2011). The
major differences among these tools are the choices of train-
ing data, covariates, and classification methods. Compared with
the “mysterious” non-coding regions in the human genome,
researchers have gained a much deeper understanding of the
protein-coding regions through tracing the functional mech-
anisms in transcription and translation. Therefore, it is not
surprising that some covariates (e.g., amino acid properties
and protein structural information) are informative for pre-
dicting deleteriousness of variants in coding regions. The pos-
itive training data are usually collected from large databases
for pathogenic variants [e.g., OMIM (Hamosh et al., 2005) and

ClinVar (Landrum et al., 2014)], while some matched benign
variants are used as the negative training set. Finally, sta-
tistical classification methods (e.g., naïve Bayes classifier and
support vector machine) are trained on the training data
using collected covariates. The informative covariates, the gold-
standard training data, and the statistically justified classification
frameworks altogether guarantee the predictive ability of these
tools.

Compared to the well-understood coding regions, the non-
coding regions in the human genome are much less explored.
However, it has been established that ∼98% of the human
genome is non-coding DNA (Elgar and Vavouri, 2008). About
95% of known variants within sequenced genomes and nearly
90% of the significant variants from GWAS lie outside of protein-
coding regions (Hindorff et al., 2009). All these pieces of evi-
dence, as well as the expected wide applications of WGS in
the near future, suggest that the scope of the annotation tools
should be extended to the whole-genome. Several tools have
been developed, including HaploReg (Ward and Kellis, 2012a),
RegulomeDB (Boyle et al., 2012), CADD (Kircher et al., 2014),
and GWAVA (Ritchie et al., 2014; Table 2). Among these tools,
HaploReg and RegulomeDB are more of databases than pre-
diction tools. They both offer well-designed user interfaces that
present many useful annotation data collected from different
sources such as the ENCODE project (Dunham et al., 2012). The
users need to judge the functional potential of variant candidates
based on these annotations by themselves. CADD and GWAVA
are similar to the deleteriousness prediction tools developed for
coding regions. CADD is based on support vector machine, while
GWAVA uses the random forest algorithm. Large consortia such
as the ENCODE project have generated a vast amount of reg-
ulatory information for the human genome (Dunham et al.,
2012). Among those, information of the transcriptional bind-
ing sites, histone modification, DNase I hypersensitivity, DNA
methylation, and many others all have the potential to serve as
predictive covariates in non-coding functional annotation tools.
However, current supervised-learning-based methods still suffer
from potentially biased training data due to our limited knowl-
edge of non-coding functional mechanism. Therefore, methods
based on unsupervised learning may be advantageous at this early
stage, but no such method has been proposed yet.

Integrating functional annotations in causal variant detection
is a very active research field with many challenging open ques-
tions. While this review was in preparation, a new non-coding

TABLE 2 | A list of tools for annotating variants in non-coding regions.

Name Website Reference

HaploReg http://www.broadinstitute.org/
mammals/haploreg

Ward and Kellis (2012a)

RegulomeDB http://regulome.stanford.edu Boyle et al. (2012)

FunSeq2 http://funseq2.gersteinlab.org Fu et al. (2014)

GWAVA http://www.sanger.ac.uk/sanger/
StatGen_Gwava

Ritchie et al. (2014)

CADD http://cadd.gs.washington.edu Kircher et al. (2014)

FATHMM-MKL http://fathmm.biocompute.org.uk Shihab et al. (2015)

Phen-Gen http://phen-gen.org Javed et al. (2014)
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variant functional prediction method based on multiple ker-
nel learning was published (Shihab et al., 2015). Here we only
introduced some of the existing tools that are closely related
to sequencing study. It is worth noting that researchers should
choose the most appropriate annotation tool based on the sci-
entific hypothesis. For example, in cancer studies, methods that
predict regulatory somatic mutations will probably be favored
(Khurana et al., 2013; Fu et al., 2014).When the phenotypic infor-
mation is available, methods that integrate phenotype-specific
gene prioritization may be advantageous (Sifrim et al., 2013; Javed
et al., 2014; Singleton et al., 2014).

Discussion

In the last 10 years, GWAS has transformed genetic epidemi-
ology to genomic epidemiology. More than 2,000 GWAS have
been done for almost all known complex diseases, leading to
the identification of a vast number of disease-associated genomic
loci. Despite these discoveries, more and more people have real-
ized the limitations of this experiment design. In this review,
we discussed some of the well-known issues in GWAS anal-
ysis, including missing heritability and lack of interpretability.
Recent advances of the next generation sequencing technol-
ogy have made sequencing faster, more affordable and more
accurate. These technological advances as well as the success
of pioneer sequencing studies strongly suggest that NGS has
the potential to lead genomic epidemiology into a new era.
It allows systematic assessment of rare SNVs as well as many
other diverse types of genomic and epigenetic variations using
hypothesis-free whole-genome scans. Large consortia and pro-
grams have also been formed, e.g., the 1000 Genomes Project
Consortium (Genomes Project et al., 2012) and the NHGRI
Genome Sequencing Program (GSP), in this mission of decod-
ing the variations of human genome using NGS technologies.
All these advances would bring biological insight and benefit
scientific researches.

Besides its benefits to the basic science, NGS also has a
bright future in clinical applications. For example, WES iden-
tified a missense mutation in a 15-months child patient with
symptoms similar to Crohn’s disease. Based on this, the child
received proper diagnosis and treatment, which would other-
wise be intractable (Worthey et al., 2011). Notably, clinical cases
like this also benefit scientific research as novel causes of dis-
orders are revealed in the process. Programs that use NGS to
aid diagnosis have been launched, e.g., “3Gb-testing” project
(Boccia et al., 2014). As sequencing technologies become more

mature and affordable, we expect the potential of NGS to be fully
realized as a bridge between clinical applications and research
progresses.

Although the future of NGS is very promising, many chal-
lenges still remain. First, although the cost of generating sequenc-
ing data continues to drop, it is still substantially greater than
the cost of more traditional technologies. Currently, sequenc-
ing cost ranges from 500 (70-fold WES) to 1000 dollars (30-fold
WGS) per sample, which is nearly 10 times greater than using
high-quality microarrays. Apart from the cost of data genera-
tion, the demanding requirement of sample recruitment, data
storage, and downstream processing all act as barriers to sam-
ple size and statistical power (Sboner et al., 2011). Moreover,
some issues such as the optimal combination of sequencing depth
and sample size can only be answered using empirical data,
and are still far from being fully understood. When designing
NGS-based studies, researchers should take all these factors into
consideration in order to choose the most appropriate study
design. Finally, finding causal variants from the overwhelmingly
large number of background mutations is a great challenge. In
large population-based WGS studies, the number of SNVs that
appear at least once can easily go beyond 10 million. This leads
to extreme multiple testing problems for which any traditional
statistical procedure is likely to be underpowered. We have dis-
cussed several categories of novel statistical methods designed
for sequencing analysis, including group-based association tests,
meta-analysis approaches, and annotation tools for variant prior-
itization. But these do not cover all aspects of statistical methods
that can be used in sequencing studies.With the popularization of
next generation sequencing, we expect to see a boom in novel and
powerful statistical approaches, amazing scientific discoveries, as
well as clinical breakthroughs.
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