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The unanticipated widespread occurrence of stable hybrid DNA/RNA structures (R-loops)
in human cells and the increasing evidence of their involvement in several human
malignancies have invigorated the research on R-loop biology in recent years. Here we
propose that physiological R-loop formation at CpG island promoters can contribute to
DNA replication origin specification at these regions, the most efficient replication initiation
sites in mammalian cells. Quite likely, this occurs by the strand-displacement reaction
activating the formation of G-quadruplex structures that target the origin recognition
complex (ORC) in the single-stranded conformation. In agreement with this, we found
that R-loops co-localize with the ORC within the same CpG island region in a significant
fraction of these efficient replication origins, precisely at the position displaying the highest
density of G4 motifs. This scenario builds on the connection between transcription and
replication in human cells and suggests that R-loop dysregulation at CpG island promoter-
origins might contribute to the phenotype of DNA replication abnormalities and loss of
genome integrity detected in cancer cells.

Keywords: R-loops, CpG islands, ORC, G-quadruplex, DNA replication origins

R-loops are three-stranded nucleic acid structures formed upon the hybridization of an RNA strand
to a complementary DNA strand. This RNA/DNA hybrid displaces the second DNA strand into
a looped out state, giving this class of structures their name. In vivo, R-loops can be generated by
RNA polymerase II transcribing a C-rich DNA template such that a G-rich transcript is produced.
Although the mechanism through which R-loops are generated is still unclear, the prevalent model
postulates that the newly synthesized RNA strand, upon leaving the RNA exit channel of the traveling
RNA polymerase complex, competes with the non-template DNA strand for re-annealing to the
template DNA strand. Once formed, R-loops are stable, as RNA/DNA interactions are thermody-
namically far more stable than the corresponding DNA/DNA duplexes (Roberts and Crothers, 1992).

R-loops were first detected in vivo at prokaryotic ORIs (Masukata et al., 1987; Baker and Kornberg,
1988; Masukata and Tomizawa, 1990; Carles-Kinch and Kreuzer, 1997), the mitochondrial origin
of replication (Xu and Clayton, 1996), the immunoglobulin class-switch region in activated B cells
(Yu et al.,, 2003), and in yeast cells mutant for mRNA metabolism genes (Huertas and Aguilera,
2003). More recently, genome-wide approaches to measure R-loops showed that these nucleic acid
structures are widespread in the human genome, being prevalently formed at promoter 5'- and
terminator 3’-end regions of several genes (Ginno et al., 2012, 2013). R-loops are involved in
multiple cellular processes including transcription repression, transcriptional termination, DNA
methylation and histone modifications, as well as DNA replication and immunoglobulin class switch
recombination. Importantly, unprogrammed R-loop formation or R-loop dysregulation can promote
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DNA damage and genome instability that may lead to human dis-
eases, placing this nucleic acid structure at the center of very active
research in recent years (see the excellent reviews, by Aguilera and
Garcia-Muse, 2012; Groh and Gromak, 2014; Skourti-Stathaki
and Proudfoot, 2014). Curiously, the aspect of R-loop biology that
has been overlooked in recent investigations is their role in DNA
replication initiation, which was actually the first biological func-
tion ascribed for R-loops more than 30 years ago. In this article,
we revisit this issue and propose that, in human cells, persistent R-
loop formation can play a role in replication origin specification
likely through exposing and activating replication signals that
are functional only in the single-stranded conformation by the
strand-displacement reaction.

R-loops and Initiation of DNA Replication

The earliest evidence for a role for R-loops in initiation of DNA
replication came from studies in the late 1980’ on Escherichia
coli plasmid ColEL In this system, a transcript initiated from an
upstream promoter forms a persistent hybrid with the template
strand within specific origin elements (Dasgupta et al., 1987;
Masukata and Tomizawa, 1990). The hybridized RNA is cleaved
by RNAse H and then serves as a primer for DNA synthesis by
DNA polymerase I (Itoh and Tomizawa, 1980). In the absence of
RNAase H, the persistent DNA-RNA hybrid indirectly activates
subsequent DNA synthesis instead of providing a primer as it
occurs in the presence of the enzyme (Masukata et al., 1987). In
both situations, the DNA-RNA hybrid activates DNA synthesis
by displacing the non-transcribed DNA strand, thus exposing
potential recognition sites of a helicase/primase that can simulta-
neously drive the replication fork forward and synthesize primers
for the lagging strand (Marians, 1992). Importantly, the formation
of the persistent hybrid between the RNA and the template DNA
is necessary for ColEI replication. In particular, the interaction
between the dC stretch in the DNA template strand and the rG
stretch in the RNA is essential for the formation of the stable R-
loop (Masukata and Tomizawa, 1990). Interestingly, the efficiency
of persistent hybrid formation depends on the rate of elongation
of the transcript, suggesting that its success requires the formation
of a particular DNA-RNA structure at a particular time during
transcription (Masukata and Tomizawa, 1990).

Another long-known example of R-loop-mediated DNA syn-
thesis occurs early during bacteriophage T4 infection (Mosig,
1987). Several putative origins of replication have been identified
in T4 and the best characterized (oriF and oriG) consist of two
components: a middle-mode promoter and a downstream DNA
unwinding element (DUE; Carles-Kinch and Kreuzer, 1997). In a
first step, transcription initiates from the promoter; in a second
step, a persistent DNA-RNA hybrid is formed within the DUE
region, providing the primer for leading-strand synthesis at the
3’end generated either by RNA polymerase or by RNAse cleavage.
Alternatively, the R-loop structure allows T4 primase to synthe-
size RNA primers on the single-stranded non-template strand
(Belanger and Kreuzer, 1998). It is possible that either mechanism
can be used to prime leading-strand DNA synthesis depending
on protein availability as reported for plasmid ColEI replication
(Dasgupta et al., 1987; Masukata et al., 1987). The finding that

non-origin plasmids are efficiently replicated in vitro by the T4
replisome, providing they carry a preformed R-loop within the
DUE region, strongly implies that the R-loop itself supplies the
signal for replisome assembly (Kreuzer and Brister, 2010).

Mitochondrial DNA replication at the leading-strand origin
is also coupled to transcription through the formation of an R-
loop (Chang and Clayton, 1985; Chang et al., 1985). The critical
features of this origin are conserved from Saccharomyces cere-
visiage to humans and include a promoter and a downstream
short GC-rich cluster. In vitro transcription studies demonstrated
that a short rG-dC sequence is the only necessary and sufficient
cis element required for stable hybrid formation, although its
efficiency depends on transcription by mtRNA polymerase and
close proximity of the site of transcription initiation to the GC-
rich cluster (Xu and Clayton, 1995). Once made, the RNA of
the R-loop can serve as an effective primer for elongation by
POLG, the mtDNA polymerase. These findings are reminiscent
of those described for ColEI replication (Masukata et al., 1987),
indicating that stable R-loop formation depends on C-rich clusters
on template DNA. Additionally, the highly conserved nature of
this essential template sequence element suggests that its role in
stabilizing R-loop formation is ancient and likely pervasive in
mitochondrial genomes (Xu and Clayton, 1995). More recently,
an unorthodox mechanism of mtDNA replication involving long
stretches of preformed RNA hybridized to the template-lagging
strand has been described (Reyes et al., 2013). These long tracts of
RNA are not products of on-going transcription and are therefore
not directly related to the R-loops discussed here.

Replication of the E coli chromosome can also initiate by a
mechanism involving R-loops in RNAse HI knock-out cells (Asai
and Kogoma, 1994), and likely in wild-type cells under certain
specific conditions such as entry into stationary phase or replica-
tion after DNA damage (Hong et al., 1996; Camps and Loeb, 2005;
Wimberly et al., 2013). During this alternative mode of replication,
named constitutive stable DNA replication (cSDR), RNAse HI-
deficient cells initiate oriC-independent replication from multiple
chromosomal sites termed oriKs. This results in global alterations
of replication fork migration patterns, frequently in the opposite
direction to normally initiated oriC synthesis and converging
replication forks meeting in unusual places around the chromo-
some (Maduike et al., 2014). Notably, E. coli cells with a reduced
capacity to remove R-loops display SOS constitutive phenotypes
and an increase in hotspots for homologous recombination at the
chromosomal terminus region flanked by the Ter sites (Nishitani
et al., 1993; Horiuchi et al., 1994; Hong et al., 1995). It should
be noted, however, that R-loop formation during cSDR occurs by
transcript invasion, in contrast to the co-transcriptional R-loops
generated in ColE1 replication (Kogoma, 1997).

Replication Origin Specification
in Eukaryotes

In eukaryotic genomes, DNA synthesis initiates from multiple
replication origins. Accurate duplication of the genetic material
depends on a reliable mechanism that ensures that any given
origin fires at most once per cell cycle by restricting “licensing”
to late mitosis and “activation” to S phase. At the anaphase to

Frontiers in Genetics | www.frontiersin.org

April 2015 | Volume 6 | Article 158


http://www.frontiersin.org/Genetics/
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

Lombrana et al.

Replication initiation and R-loops in human cells

telophase transition the origin recognition complex (ORC) is
recruited to replication origins; then, licensing rapidly occurs
through the loading of the double hexameric minichromosome
maintenance (MCM) complex together with other proteins such
as Cdc6 and Cdtl to form the pre-replication complex (pre-
RC). Activation occurs when the pre-RC is converted to the
pre-initiation complex (pre-IC) by the assembly of several repli-
cation factors facilitating the switch of the MCM complex to the
active CMG (Cdc45-MCM-GINS) helicase during S-phase. The
formation of the pre-IC depends on two protein kinases, cyclin-
dependent kinase (CDK) and Dbf4-dependent kinase (DDK) that
would ultimately trigger the unwinding of the origin DNA and
the establishment of bidirectional replication forks (Siddiqui et al.,
2013; Tanaka and Araki, 2013; and references therein). Replication
initiation has been recently reconstituted in vitro with purified
replication proteins, thus defining the initiation factors required
for regulated eukaryotic DNA replication (Yeeles et al., 2015).
Since there are far many more licensed ORIs than activated in
each S phase, this is interpreted as a fail-safe mechanism used by
cells to cope with replication stress (Ge et al., 2007; Ibarra et al,,
2008). While the role of ORC in the pre-RC assembly at replication
origins is conserved among various eukaryotes, the mechanism
of origin recognition by ORC seems different across eukaryotic
species (Bell et al., 2013). For example, ORC can be targeted to
replication initiation sites by sequence-specific interaction as for
S. cerevisiae (Marahrens and Stillman, 1992), or by non-specific
binding to AT-rich sequences as for Schizosaccharomyces pombe
or Drosophila (Kong and DePamphilis, 2001; Vashee et al., 2003).
In addition, interactions can occur through sequence-specific
binding proteins as for Drosophila and at certain loci in rat and
human cells (Beall et al., 2002; Minami et al., 2006; Thomae et al.,
2008), or through RNA-binding as in the case of 26T RNA during
rDNA amplification in Tetrahymena thermophila (Mohammad
et al., 2007) or during Epstein-Barr virus replication (Norseen
et al., 2008).

Although no DNA replication activity similar to E. coli cSDR
has been found in eukaryotes, transcription activity is strongly
associated with initiation of DNA replication in mammalian sys-
tems. Specifically, genome-wide maps of replication origins in
mouse and human cells showed that the most efficiently activated
and more conserved origins across all cell types examined are
those associated with CpG island promoters (Sequeira-Mendes
et al., 2009; Cayrou et al., 2011; Besnard et al., 2012; Picard et al,,
2014). Intriguingly, these genomic analyses revealed that a G-rich
repeat element with the potential to form G-quadruplex structures
(G4) was present in most of the replication origins in mouse
and human cells (Besnard et al., 2012; Cayrou et al,, 2012). The
role of G4 structures in origin specification is not clear, however,
recent evidence demonstrated that some G4 motifs could stim-
ulate replication initiation (Valton et al., 2014). An interesting
possibility is that G4 structures could mediate ORC recruitment to
initiation sites. This notion is supported by in vitro binding assays
demonstrating that the human ORC has affinity for G4 motifs
through a specific domain in the ORC1 protein. Notably, ORC1
affinity for G4 motifs is almost negligible on double-stranded
DNA but it is highly increased when G4 motifs are present on
RNA or single-stranded DNA (Hoshina et al., 2013). As many

CpG island promoters are prone to R-loop formation upon tran-
scription (Ginno et al.,, 2012, 2013), this could provide a possible
mechanism by which single-stranded G4 structures are formed
within the origin region early during the cell cycle generating a
potential substrate for ORC1 binding by the end of mitosis. To test
this possibility, we analyzed the co-occurrence of ORC1 binding
sites and R-loops at CpG island-origin regions in human cells.

Association of ORC1 Binding Sites
and R-loops in Human Cells

As mentioned above, CpG island origins are the most conserved
and highly-efficient origins in the mammalian genome, as deter-
mined by the increased levels of associated short nascent strands
(SNS) detected either by array hybridization signals (Sequeira-
Mendes et al., 2009; Cayrou et al., 2011) or by sequencing read
depth relative to the length of the origin (Besnard et al., 2012;
Picard et al.,, 2014). Consistent with their higher firing activity,
37% of the ORC1 binding sites identified genome-wide in HeLa
cells were associated with CpG island promoters, and their corre-
sponding ORC1-ChIP signal was significantly stronger (Dellino
et al., 2013). Nevertheless, the large majority of the non-CpG
island origins identified by SNS-Seq do not co-localize with ORC
sites (Dellino et al., 2013; Picard et al., 2014). We therefore selected
for our study the subset of CpG island promoters enriched in SNS
(Besnard etal., 2012) that were positive for ORC1 binding (Dellino
et al., 2013) in datasets derived from the same cell line. This set
of CpG island-origins (1,661 from a total of 9,864 TSS-associated
CpG island promoters identified at the UCSC database-hg19),
although very restrictive, confidently comprises bona-fide highly
efficient constitutive replication origins. Notably, this core of CpG
island-origins display the highest density of G4 motifs (Picard
et al., 2014), supporting the notion that G4 motifs can play a role
in the control of origin selection in the human genome.

CpG island promoters, regardless of their enrichment in CpG
dinucleotides, remain unmethylated in normal tissues (Illing-
worth and Bird, 2009). The majority of these unmethylated CpG
island promoters show significant strand asymmetry in the distri-
bution of guanines and cytosines, a property known as GC skew
(Ginno et al,, 2012, 2013). The Chédin lab found that nearly 75%
of CpG island promoters (35% of al human promoters) displayed
a positive GC skew, signifying that the non-template strand for
transcription has an excess of G over C residues (Ginno et al.,
2012). To test whether GC skew confers the ability to form R-
loops upon transcription, the authors performed a genome-wide
identification of R-loop by DRIP-Seq (DNA-RNA immunoprecip-
itation with the R-loop-specific $9.6 antibody coupled to deep-
sequencing). A total of 4,181 DRIP-Seq peaks were identified in
two complementary assays of DNA fragmentation, from which
nearly 40% (n = 1571) mapped to GC-skewed CpG island promot-
ers (Ginno etal., 2013). We chose this stringent DRIP peak dataset
to study the association between R-loops and ORCI1 binding sites.
We found that 30% (n = 485) of the CpG islands displaying R-
loops showed ORC1 binding just upstream of their TSS, compared
with the 6% expected by chance (Figure 1A). ORCI and DRIP
signals overlap with each other precisely at the 1 kb GC-skewed
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FIGURE 1 | Association between R-loops and ORC1-binding sites at
CpG island-origins in human cells. (A) Venn diagrams illustrating the
association between R-loops (defined as consensus DRIP peaks in Ginno

et al., 2013) and ORC1-binding sites at origin regions (defined by intersecting
ORC1 binding sites from Dellino et al., 2013 with SNS-Seq data from Besnard
etal., 2012) at CpG island promoters in human cells (UCSC database hg19).
See text for details. Alignment of the DRIP-Seq or SNS-Seq reads to the hg19
build was carried out using BWA (Li and Durbin, 2009), and peak calling was
done using MACSV2 (Zhang et al., 2008). For DRIP-seq, peaks were called
using all mapped reads, enforcing a greater than fivefold enrichment above

B
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input as described (Ginno et al., 2012). (B) Distribution of ORC1-binding sites
(orange lines), DRIP peaks (blue lines) and G4 motifs (red lines) at the
CpG-island origin set defined in (A). Composite profiles were generated by
plotting hits per base over 6 kb for 485 CpG island regions centered at their
TSS (defined as the 5’-end of RefSeq genes) normalized by the total hits over
the whole genome. G4 positions were determined applying Quadparser on
hg19 and specifying a loop size of 1-7 nucleotides between 4 tracks of GGG
or CCC (Huppert and Balasubramanian, 2005). The green line represents the
localization of the GC-skewed region of the analyzed CpG islands from Ginno
et al. (2012).

footprint defined for this set of CpG islands (Ginno et al., 2012;
Figure 1B). It should be noted that the exact localization of the
R-loops could not be extrapolated from the DRIP profiles as the
resolution of the DRIP-Seq depends on the distribution of the
restriction sites used to fragment the genome at each of the CpG
islands analyzed.

These overlaps likely represent a great underestimate giving
the fact that DRIP profiling experiments and origin mapping
experiments were performed in different cell types (Ntera2 cells
versus Hela cells), as well as the extremely stringent criteria used
in selecting the significant regions from the various datasets for
the analysis. Indeed, visual inspection of the sequencing reads on
the UCSC genomic browser showed that many of the CpG island-
origins defined by SNS enrichment displayed an ORCI signal just
below the threshold of significance. Similarly, several of the ORC1
positive CpG islands co-localize with R-loops defined in one set
of DRIP data, but not in the other, due to the non-overlapping
distribution of the cleavage sites of the restriction enzymes used
to fractionate the genome in the two experiments analyzed. Nev-
ertheless, these analyses show that R-loops co-localize with ORC1
binding sites within the same CpG island region at a fraction
of the most efficient replication origins in human cells. More
importantly, G4-motifs enrichment parallels the ORC1 signal at
this CpG island-origin set (Figure 1B), consistent with the idea
that G4 structures can mediate ORC recruitment to these specific
sites.

By which mechanism could R-loops mediate ORC recruitment?
The simplest possibility is that R-loop formation facilitates the
generation of G4 structures on the displaced single-stranded

non-template DNA strand that can target the ORC. Another
possibility is that the ORC could be directly tethered to G4
structures formed on the RNA component of the hybrid. Indeed,
EBNA1-ORC binding during EBV replication occurs through G-
rich RNA and this binding is disrupted by G4-interacting drugs
(Norseen et al., 2009). Finally, it is also possible that the ORC
can bind hybrid G4 structures formed between the G-rich RNA
and the G-rich displaced DNA strand generated by the R-loop.
These hybrid G4 structures occur at the DNA replication leading-
strand origin (OriH) in mammalian mitochondria and seem to
regulate transcription termination at the replication-priming site
(Wanrooij et al., 2012; Zheng et al., 2014). Any of these possible
scenarios fulfill the affinity requirements described for ORCI
in in vitro assays (Hoshina et al., 2013) and would imply that
G4 structures should persist through mitosis to mediate ORC
recruitment. G4 structures formed on the displaced DNA strand
could, in turn, stabilize the R-loops (Aguilera and Garcia-Muse,
2012) and possibly inhibit nucleosome assembly at those sites
(Wong and Huppert, 2009). Interestingly, we recently reported
that ORC1 binding sites at efficient CpG island origins in human
cells occupy the position marked by unstable nucleosome particles
composed by H3.3/H2A.Z double-histone variants (Lombrana
etal,, 2013). Altogether, this suggests that stable R-loop formation
at CpG island promoters could contribute to the generation of a
permissive environment for ORC recruitment by, on one hand,
exposing single-stranded DNA or RNA G4 structures and, on
the other hand, by facilitating the assembly of labile nucleosome
particles at those sites, thus preventing these regions from being
occupied by adjacent stable nucleosomes or non-specific factors.
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It is worth mentioning that the group of CpG island promoter-
origins analyzed here mainly comprises strong promoters driving
high transcriptional outputs mapping on gene-poor chromo-
somes (Ginno et al., 2013). As gene-poor genomic regions tend to
be depleted from replication origins (Besnard et al., 2012; Picard
etal.,, 2014), it is tempting to speculate that R-loop-mediated ORC
recruitment, or G1-formed R-loops, could be one of the multiple
factors influencing the choice of origins to be fired to initiate
DNA synthesis during S-phase (Renard-Guillet et al., 2014). This
mechanism could be especially relevant at this subset of CpG
islands as a means to increase the probability of firing within
genomic environments otherwise scarce in replication initiation
sites. Indeed, replication origin paucity has been proposed as
a major cause of the increased instability observed in common
fragile sites in human cells (Letessier et al., 2011; Ozeri-Galai
etal., 2011). Another interesting consideration is that CpG island
firing activity during S phase generates short re-replicated DNA
fragments (Gomez and Antequera, 2008) precisely derived from
the position occupied by labile nucleosome particles where the
ORC binds (Lombrana et al., 2013). Whether this phenomenon is
related to R-loop formation or whether R-loop dysregulation can
lead to extensive overreplication and genomic instability awaits
elucidation.

The above scenario is consistent with the view that DNA
replication origins in mammals are not unique entities with
defined properties (Antequera, 2004; Gilbert, 2010; Méchali, 2010;
Sequeira-Mendes and Gomez, 2012). On the contrary, increasing
evidence suggests that the origin structure consists of redundant
binding sites made accessible to the ORC by local chromatin
conformation associated with gene transcription, including R-
loop formation. This opportunistic coupling of DNA replication
initiation to transcription presents the advantage that it links DNA
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