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Robust temporal and spatial patterns of cell types emerge in the course of normal

development in multicellular organisms. The onset of degenerative diseases may result

from altered cell fate decisions that give rise to pathological phenotypes. Complex

networks of genetic and non-genetic components underlie such normal and altered

morphogenetic patterns. Here we focus on the networks of regulatory interactions

involved in cell-fate decisions. Such networks modeled as dynamical non-linear systems

attain particular stable configurations on gene activity that have been interpreted as

cell-fate states. The network structure also restricts the most probable transition patterns

among such states. The so-called Epigenetic Landscape (EL), originally proposed by

C. H. Waddington, was an early attempt to conceptually explain the emergence of

developmental choices as the result of intrinsic constraints (regulatory interactions)

shaped during evolution. Thanks to the wealth of molecular genetic and genomic studies,

we are now able to postulate gene regulatory networks (GRN) grounded on experimental

data, and to derive EL models for specific cases. This, in turn, has motivated several

mathematical and computational modeling approaches inspired by the EL concept,

that may be useful tools to understand and predict cell-fate decisions and emerging

patterns. In order to distinguish between the classical metaphorical EL proposal of

Waddington, we refer to the Epigenetic Attractors Landscape (EAL), a proposal that is

formally framed in the context of GRNs and dynamical systems theory. In this review we

discuss recent EAL modeling strategies, their conceptual basis and their application in

studying the emergence of both normal and pathological developmental processes. In

addition, we discuss how model predictions can shed light into rational strategies for cell

fate regulation, and we point to challenges ahead.
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1. Introduction

The progressive loss of potency from pluripotent stem cells to mature, differentiated cells, as well
as the reproducible emergence of spatiotemporal patterns through the course of development has
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been always perceived as strong evidence of the robustness and
deterministic nature of development. The explanation of such
a robust process has puzzled researchers for many years. For a
long time, although not always stated explicitly, the prevailing
paradigm in developmental biology was supported on two fun-
damental paradigms: (1) a mature cell, once established, displays
an essentially irreversible phenotype; and (2) the developmen-
tal process is controlled by a “program” as a genomic blueprint
following a simplistic linear scheme of causation in an essen-
tially deterministic fashion. Experimental and theoretical studies
in the last decade have challenged these assumptions. It has been
shown that a differentiated state of a given cell is not irreversible
as previously thought, and that in fact, it is possible to repro-
gram differentiated cells into pluripotent states with a plethora
of protocols in plants and animals (Grafi, 2004; Takahashi and
Yamanaka, 2006; Takahashi et al., 2007; González et al., 2011).

Overall, a growing body of empirical evidence now supports
intrinsic physical processes as a fundamental source of order
instead of deterministic pre-programmed rules (Huang, 2009;
Mammoto and Ingber, 2010). Although these observations have
just recently shift the focus of study in developmental biology and
biomedical research, the new evidence is in line with the pro-
posals that early theoretical biologists posited decades ago (see,
for exampleWaddington, 1957; Goodwin, 1963; Kauffman, 1969,
1993; Goodwin, 2001). C. H. Waddington was one of the first to
point out that the physical implementation of the information
coded in the genes and their interactions imposes developmental
constraints while forming an organism. Waddington’s heuristic
model of the epigenetic landscape (EL) was a visionary attempt
to consolidate these ideas in a conceptual framework that enables
the discussion of the relationship between genetics, development,
and evolution in an intuitive manner. Waddington’s proposal
was inspired in a formal dynamic systems approach, nonetheless
(Waddington, 1957; Gilbert, 1991; Slack, 2002).

Nowadays in the data-rich, post-genomic era the EL has
been consolidated as a useful conceptual model for the discus-
sion of the mechanistic basis underlying cellular differentiation—
particularly trans-differentiation and reprogramming events
(Alvarez-Buylla et al., 2008; Enver et al., 2009; Fagan, 2012;
Ladewig et al., 2013). This field has become particularly active due
to its potential medical applications using stem cells systems biol-
ogy as a means for discovering efficient reprogramming or thera-
peutic strategies by combining mathematical and computational
modeling with experimental techniques (MacArthur et al., 2008,
2009; Roeder and Radtke, 2009; Huang, 2011; Zhou and Huang,
2011). Recently, though, numerous critiques to Waddington’s
original model have been presented in light of the dynamical
plasticity of differentiated cells (see, for example Balázsi et al.,
2011; Ferrell, 2012; Furusawa and Kaneko, 2012; Garcia-Ojalvo
and Arias, 2012; Sieweke, 2015). In this review, we claim that
the formalization of the EL in the context of the study of the
dynamical properties of GRNs enables a formal framework which
provides the necessary flexibility for a model to be both: (1)
consistent with the observed inherent plasticity of developing
cells and (2) formally derived from the uncovered regulatory
underpinnings of cell-fate regulation. It is thus important to note
that this GRN associated EL model is not to be confused with

the literal, metaphorical model presented by Waddington, which
some authors have associated only to the static diagrammatic
proposal originally put forward (West-Eberhard, 2003). In order
to highlight such distinction, here we will refer to the EL model
associated with the dynamics of GRNs as the epigenetic attractors
landscape (EAL).

The conceptual distinction between the classical EL and the
EAL proposed here, as well as its relevance as a consistent model
for the prevailing theories of differentiation is going to be exposed
by the authors elsewhere. In this contribution we instead focus
on the mathematical approaches which have been developed to
derive an EAL as an extension of the conventional dynamical
analyses of experimentally grounded GRN models. Importantly,
we deliberately use the generic term EAL to refer to a group of
dynamical models which are quite diverse in mathematical prop-
erties and structure, however we do so for phenomenological rea-
sons: all the approaches try to formally tackle the phenomenon of
cellular differentiation taking the classical EL model as a concep-
tual basis. Given the current relevance of such a modeling exer-
cise applied to molecular networks involved on processes such as
stem cell differentiation (Li andWang, 2013), tissue morphogen-
esis (Alvarez-Buylla et al., 2010), and carcinogenesis (Choi et al.,
2012; Wang et al., 2014); and the fact that different approaches
have been proposed in order to reach similar goals (Huang, 2009,
2012; Zhou et al., 2012), we hope that the present integrative
review may prove useful for a wide range of biological applica-
tions. Our main objective is 2-fold: (1) to help different research
groups attempting to formalize the EAL to reduce the gap exist-
ing between current different approaches and (2) to contribute to
shape a common and formal discussion ground on EAL models
among experimentalists and theoretical biologists. Accordingly,
we have decided to favor conceptual clarity over technicalities
through the text, and to point to original references where more
detail is available if necessary. We apologize for the theoretically
oriented reader for the lack of mathematical formality.

1.1. The Dynamical-Systems View of Cell Biology
The modern picture of the EL is framed in the context of GRN
dynamics (Kauffman, 1969; Mendoza and Alvarez-Buylla, 1998;
Huang, 2012), and its theoretical basis is a dynamical-systems
perspective. From here on we will refer to this view of the EL
model as the EAL. Under dynamical-systems framework a cell is
considered a dynamical system, assuming that its state at a certain
time can be described by a set of time-dependent variables. As
a first approximation, it is commonly assumed that the amount
of the different proteins within the cell or, for practical reasons,
the levels of gene expression (i.e., expression profiles) are suffi-
cient to describe such state (Huang, 2013). Thus, the expression
profile is conventionally taken as the set of variables represent-
ing the state of the cell; each gene in the cell’s GRN representing
one variable (see Figure 1). Mathematically, the set of variables is
represented as a state vector given by x(t) = [x1(t), x2(t)..., xn(t)]
for a GRN with n genes. Given such specification, it is useful to
imagine an abstract space termed the state space of the system.
In the context of GRNs the state space comprises all the theoret-
ically possible states a cell can exhibit; each point in this abstract
space represents one particular expression profile (Figure 1B).
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FIGURE 1 | From experimental data on gene function and interactions

to a dynamic gene regulatory network and epigenetic landscape

model. (A) The architecture of a GRN is proposed given available

experimental molecular data; the state of the network is specified as a gene

expression profile or gene on/off (1/0) configuration for the case of

continuous or discrete state models, respectively. Boolean or differential

equations are used, respectively. (B) The complete set of possible states

define a continuous (above) or discrete (below) state space, where each

state corresponds to a point; changes in gene expression during

developmental dynamics manifest as trajectories in this abstract space (here

depicted as arrows). (C) In an intuitive characterization of an EL, an

“elevation” value U(x) is associated to each network state x. The association

of “elevation” values to network states, or more generally, the quantitative

characterization of their relative stability is the ultimate goal of EL modeling

efforts. For illustrative purposes, the EL is depicted here as a hypothetical

low-dimensional projection.

Furthermore, it is assumed that the cell state at a certain time and
the cell state at a later time are connected by a state trajectory in
a causal way.

Mathematically, the current cell state is a function or a
more general mapping of the initial state and certain additional
parameters. The connection between cell states can be formally
expressed by a dynamical equation,

x(t + δt) = F(x(t),u, δt), (1)

where F represents the map that connects one state with the
immediately previous sate (F is also known as the transition
map), x(t) denotes the state at a certain time t, and u stands for
the vector of additional parameters. Both the time increments
δt and the state variables xi(t) can be either continuous or dis-
crete, depending on the chosen mathematical formalism. Within
the cell, the map F is implemented by the architecture of the
GRN, which specifies both the topology of the network and the
nature and form of the corresponding gene regulations (Huang,
2009). Because of globally conditioned gene behavior due to
mutual gene regulatory interactions, through the causal connec-
tions between cell states, the GRN imposes dynamical constraints
and limits the permissible behavior of the cell. Of special interest

are the transient and emergent stable configurations that the cell
may attain as a result. The existence of the dynamical map F

expresses the causality of the cellular developmental process and
the mechanistic character of GRN dynamical models.

One of the most salient and impressive features of GRNs is the
existence of a small number of stationary or quasi-stationary gene
configurations within the state space (Kauffman, 1969). Given a
specific GRN, a set of cell states satisfy the constraints imposed by
the GRN; that is, each of these cell states is connected to itself by
the map F (i.e., x∗ = F(x∗,u)). When these steady states (x∗) are
also resilient to perturbations, that is, if they return back to the
steady state after being kicked away by state variations either of
intrinsic or external origin, we refer to them as attractors. In the
case of quasi-stationary states, if a set comprised of several indi-
vidual states repeats in a cyclic manner it corresponds to a cyclic
attractor. All other states are either unstable or form part of tran-
sitory trajectories channeled toward one of these attractor states.
The theory posits that attractor states correspond to the observ-
able robust cell phenotypes, cell types, or cellular processes; and
that these emerge as a natural consequence of the dynamical con-
straints imposed by the underlying GRN (Huang and Kauffman,
2009; Huang, 2013). For a more formal definition of attractors in
dynamical systems theory see (Fuchs, 2013a).
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1.2. Extending GRN to EAL Models
The postulation of experimentally grounded GRN dynamical
models, their qualitative analysis and dynamical characterization
in terms of control parameters, and the validation of predicted
attractors against experimental observations has become a well-
established framework for the study of developmental dynamics
in systems biology—see, for example: (Mendoza and Alvarez-
Buylla, 1998; Von Dassow et al., 2000; Albert and Othmer, 2003;
Espinosa-Soto et al., 2004; Huang et al., 2007; Graham et al.,
2010; Sciammas et al., 2011; Hong et al., 2012; Jaeger and Crom-
bach, 2012; Azpeitia et al., 2014). The qualitative analysis of the
dynamics of GRNmodels is well-suited for the study of the spec-
ification of cell fates as a result of the constrains imposed by the
associated GRN. This conventional analysis includes the iden-
tification and local characterization of attractor states, and the
comparison of these predicted cell-type configurations with the
ones that are actually observed in the corresponding biological
system (Figures 1A,B).

If one is interested in studying the potential transition events
among the already characterized stable cellular phenotypes, how-
ever, several difficulties arise. Standard analysis of dynamical sys-
tems, which focuses on the existence and local properties of a
given attractor, fail to capture the main problem which is con-
cerned with the relative properties of the different attractors
(Zhou et al., 2012). In deterministic GRN models, given cer-
tain values for the related control parameters, the system under
study always converges to a single attractor if initialized from the
same state, and once it attains such steady-state it remains there
indefinitely. In contrast, during a developmental process, cells
change from one stable cell configuration to another one in spe-
cific temporal and spatial or morphogenic patterns. Additional
formalisms are needed in order to explore questions regarding
how cells in the course of differentiation transit among avail-
able given attractors, or the order in which the system con-
verges to the different attractors given an initial condition; as well
as to predict how these mechanisms can be altered by rational
strategies.

1.2.1. EAL Modeling Goals
The need for extending GRN dynamical models beyond stan-
dard local analysis is related with the interest in addressing
the following—and similar—questions. Conceptually, given an
experimentally determined GRN, how can we explain and pre-
dict both specific “normal” and altered cellular differentiation
events or morphogenic patterns? Is it possible to control the
fate of differentiation events through well-defined stimuli? Can
we deliberately cause altered morphogenic patterns by means of
either genetic, physical, chemical or other type of environmental
perturbations? Or formally, given a specific dynamical mapping
x(t + δt) = F(x(t),u, δt), and its associated state space, how can
we study the conditions under which a transition event occurs
among the attractor states x∗? Is there a reproducible pattern
of transitions? Can we alter the expected pattern through spe-
cific external control perturbations u? To what extent are the
observed robust and altered temporal or spatial morphogenetic
patterns emergent consequences of the GRNs? The extension of
GRN dynamical models and their analysis in order to address

these and similar questions has shown to be a fruitful area of
research in recent years (Han and Wang, 2007; Alvarez-Buylla
et al., 2008; Wang et al., 2010b, 2014; Choi et al., 2012; Qiu et al.,
2012; Villarreal et al., 2012; Zhou et al., 2012; Li and Wang, 2013;
Zhu et al., 2015). The conceptual basis for most of these efforts is
the EAL.

1.3. Deterministic EAL Models from Genetic
Circuits
1.3.1. An Introductory Toy Model
A quite simple auto-activating single-gene circuit, a basic model
of cell differentiation induction, is exposed in Ferrell (2012) as a
conceptual tool to discuss some difficulties regarding Wadding-
ton’s EL. In this work an EAL is mathematically described by
a potential function. In dynamical systems theory, besides the
state space approach explained briefly above, there is another
way to visualize the dynamics of a system, but applicable only
if the system is simple enough: the potential function (Strogatz,
2001; Fuchs, 2013a). The potential is a function V(x) which (in
one-dimensional systems) fulfills the relation given by:

dx

dt
= f (x) = −

dV(x)

dx
, (2)

i.e., f (x) is the negative derivative of the potential, which can be
found by direct integration:

V(x) = −

∫

f (x)dx. (3)

Such a function defines an attractor landscape for the given
dynamical system, and its plot graphically represents the dynam-
ics of the system (Figure 2). Specifically, minima of the potential
correspond to fixed-point attractors (e.g., cell types), and max-
ima correspond to unstable fixed-points. The motion, i.e., the
state trajectories are given by the gradient lines (the lines of steep-
est descent of the potential). The trajectories are attracted by the
minima of the potential. This corresponds to an intuitive, direct
derivation of the EAL: a “height” value is associated to each of
the points in the state-space in a way that those regions corre-
sponding to attractors will have a lower value than that of the
other transitory states (Figure 2C). Conceptually, the rolling ball
of Waddington’s EL will represent the state of a differentiating
cell moving from higher to lower regions in state space. Thus,
the calculated heights of the different attractors are expected to
reflect their developmental potential in a hierarchical way: the
lower height the lower potential for differentiation.

All one-dimensional systems have a potential function, but
most two- or higher-dimensional systems do not (Fuchs, 2013a).
This means that one could only apply this method if the cell is
represented by a single-gene (single variable) circuit. Further-
more, note that here the EAL plays the role of a “toy” model
useful in conceptual discussions, a role quite relevant (see Fer-
rell, 2012) but similar to that of the original metaphorical pro-
posal of Waddington. In this review we devote more attention
to the application of EAL models to real specific developmental
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FIGURE 2 | The derivation of a potential function to visualize the

epigenetic landscape and the dynamics of a system. (A) The

causal connection between the state of the system (an auto-activating

gene circuit) at a certain time and its state at a later time is modeled

by a differential equation. (B) Attractors in rate-balance analysis. The

blue dotted line and the red curve represent respectively a linear

degradation rate, and a non-linear synthesis rate for the circuit’s gene;

the restrictions imposed by the circuit to the systems dynamics are met

when both rates are balanced. The states that meet this balanced

condition are stationary, and if stable (filled circles), are denoted as

attractor states x*. Circles represent stationary states. (C) The potential

function. The attractor states x* lie at the bottoms of valleys (minima).

The trajectories starting from unstable, transitory states are attracted by

the minima of the potential. The relative stability of the left (right)

attractor with respect to the other is lower (higher) as quantified by the

lower (higher) barrier height between them.

processes with explanatory and predictive purposes that gener-
ally involve n-dimensional GRN. Thus, a more “realistic” sub-
network model incorporating several transcription factors in a
modular structure is necessary in such cases. The application of
the integration-based potential function approach, however, can-
not be applied to cases with a higher number of genes. Also, one
should be cautious when postulating the existence of a potential
for living systems in strict sense: a cell is an open non-equilibrium
thermodynamical system, and its dynamics in general does not
follow a gradient (since the transition rate between two given
attractor states is not path-independent). For details, see (Zhou
et al., 2012; Huang, 2013). For this reason authors use the term
“quasi-potential” when speaking about cellular dynamics from a
system-dynamics point of view (see below).

In the general case, the dynamics of continuous-time models
of GRNs is given by more general types of autonomous differen-
tial equations (DEs). The time evolution of the cell state x(t) is
commonly modeled by the system of DEs:

dxi(t)

dt
= Fi(x1, x2, ..., xf ,u), (4)

where i = 1, 2, ..., n for a GRN of n genes. A dynamics defined by
such a general DE is a special form of the map in Equation (1). In
general, the functions F in the continuous-timemodel for cellular
dynamics (Equation 4) are non-linear, and cannot be analytically
integrated and derived from a gradient. Numerical approaches
have been proposed to draw a deterministic “quasi-potential” for

two-gene circuits (see, for example Bhattacharya et al., 2011). In
what follows we focus on medium size GRN modules, where
neither the direct integration nor the numerical deterministic
approach are applicable. We start with the simplest models of
GRN dynamics.

1.4. Stochastic EAL Models from Boolean GRNs
The first computational model envisioned for the simulation and
analysis of the dynamic behavior of GRNs was the Boolean Net-
work (BN) model (Kauffman, 1969, 1993). This model has been
extended to model various developmental processes in the con-
text of the EAL (Han andWang, 2007; Alvarez-Buylla et al., 2008;
Ding andWang, 2011; Choi et al., 2012; Flöttmann et al., 2012). A
BN models a dynamical system assuming both discrete time and
discrete state. This is expressed formally with the mapping:

xi(t + 1) = Fi(x1(t), x2(t), ..., xf (t)), (5)

where the set of functions Fi are logical propositions expressing
the relationship between the genes that share regulatory interac-
tions with the gene i, and where the state variables xi(t) can take
the discrete values 1 or 0 indicating whether the gene i is active or
not at a certain time t, respectively. An experimentally grounded
Boolean GRN model is then completely specified by the set of
genes proposed to be involved in the process of interest and the
associated set of logical functions derived from experimental data
(Azpeitia et al., 2014). A dynamics defined by such a mapping is
a special form of the map in Equation (1).
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1.4.1. Attractor Transition Probability Approach to

Explore the EAL
As stated above, in a deterministic framework, once a cell state
corresponds to an attractor, it will remain there indefinitely.
The set of conditions that lead to each attractor comprise the
attracting basin. Under stochastic fluctuations, the borders of
attractor regions in state space may be reached and may be
crossed, leading to transitions from one attractor to another
one (Ebeling and Feistel, 2011). Thus, the implementation of
an stochastic dynamical model opens the opportunity to study
signal-independent transitions among attractors. There are sev-
eral approaches to include stochasticity in dynamical models.
One approach is based on the idea of introducing transition
probabilities. As discussed above, when studying cellular devel-
opmental dynamics, the transitions of interest are those among
attractor states. Can these transitions be studied in terms of
probabilities? Indeed, since Boolean GRN can be extended to
include stochasticity and transition probabilities among attrac-
tors can then be estimated. Several ways to include stochasticity
in a Boolean GRN model have been proposed (Garg et al., 2012).
One way is the so-called stochasticity in nodes (SIN)model. Here,
a constant probability of error ξ is introduced for the deter-
ministic Boolean functions. In other words, at each time step,
each gene “disobeys” its Boolean function with probability ξ .
Formally:

Pxi(t+1)[Fi(xregi(t))] = 1− ξ,

Pxi(t+1)[1− Fi(xregi(t))] = ξ.
(6)

The probability that the value of the now random variable xi(t+1)
is determined or not by its associated logical function Fi(xregi (t))
is 1− ξ or ξ , respectively.

Alvarez-Buylla and collaborators used this extended BN
model to explore the EAL associated with an experimentally
grounded GRN (Alvarez-Buylla et al., 2008) (see below). In a BN
model the set of possible states is finite. Specifically, due to its
binary state character the state space of a Boolean GRN with n
genes has a size of 2n and is composed by the set of all possi-
ble binary vectors of length n (see Figure 3A). By simulating a
stochastic one-step transition, according to the model in Equa-
tion (6) and the mapping in Equation (5), and starting from each
of all the possible states in the system for a large number of times,
it is possible to estimate the probability of transition from an
attractor i to an attractor j as the frequency of times the states
belonging to the basin of the attractor i are mapped into a state
within the basin of the attractor j. For detail see (Azpeitia et al.,
2014). In Alvarez-Buylla et al. (2008), the authors followed this
simulation approach to estimate a transition probability matrix
5 with components:

πij = P(At+1 = j|At = i), (7)

representing the probability that an attractor j is reached from an
attractor i (Figure 3B). Once the set of attractors is known and
the transition probabilitymatrix is estimated, it is straightforward
to implement a discrete time Markov chain model (DTMC) and

obtain a dynamic equation for the probability distribution (for
details, see Allen, 2010):

PA(t + 1) = 5PA(t), (8)

where PA(t) is the probability distribution over the attractors
at time t, and 5 is the transition probability matrix previously
estimated. This equation can be iterated to simulate the tempo-
ral evolution of the probability distribution over the attractors
starting from a biologically meaningful initial distribution. The
extension of a Boolean GRN in order to apply this approach
is quite simple and intuitive; however, there is a limitation that
impedes its general applicability: as the size of the GRN grows, it
becomes difficult to exhaustively characterize the attractor’s land-
scape associated with the GRN in terms of the emergent attractors
and its corresponding basins of attraction. If the dynamics of the
Boolean GRN is not exhaustively characterized, the correspond-
ing transition probabilities among attractors cannot be estimated
using the proposed approach. Additionally, other implementa-
tions of stochasticity within BN models have been discussed
(Garg et al., 2012). Additional examples should be worked out
with such various approaches to test which is more practical and
if all yield equivalent results.

1.4.2. Probabilistic Landscape (Quasi-potential)

Approach
Han and Wang proposed a different approach in order to extend
a BN model. Their goal was to first estimate the one-step transi-
tion probabilities among all the possible states in the state space
and not just among given attractors (Han and Wang, 2007). For
this, they implemented a variation of the BN that was previously
proposed by Li and collaborators (Li et al., 2004) and which has
been called the threshold network formalism (Thompson and
Galitski, 2012). In this model, the structure of the network is
formally represented with an adjacency matrix C, whose com-
ponents cij indicating the nature and strength of the interaction
from the gene j to gene i. The dynamic mapping for this BN
model takes the form:

xi(t + 1) =







































1,
∑

j

cijxj(t)+ bi > 0,

0,
∑

j

cijxj(t)+ bi < 0,

xi(t),
∑

j

cijxj(t)+ bi = 0,

(9)

where bi is a parameter representing the ground state of the gene
i: its state in the absence of regulation. The set of parameters
(i.e., bi and cij) can be chosen to force the dynamics of the BN
to be consistent with those of a BN with a specific set of logi-
cal propositions (for details, see Supplementary Material in Choi
et al., 2012). The mapping in Equation (9) can be conceptualized
as follows: if the total input of a gene in the network is positive
(activation), negative (repression) or zero; the future state of the
gene will be active, inactive or unchanged from its previous state,
respectively. Here, the total input of a gene is the sum of the pre-
vious states of the genes regulating it. The characterization of the
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FIGURE 3 | Stochastic epigenetic landscape models from Boolean

dynamics. (A) A simple mutual-inhibition circuit is modeled as a Boolean

network: discrete temporal evolution and binary (0,1) state variable. The

discrete state space corresponds to the set of binary vectors (here 4 possible

states) and is partitioned by two basins of attraction. (B) There are 4(22 )

possible transitions among the two attractors. A 2× 2 transition probability

matrix specifies the probability of each possible transition. (C) Han and Wang

proposed the use of a sigmoidal function of the total regulatory input (Ri) to

calculate the probability of a one-step state transition of one gene i (Han and

Wang, 2007). A specific value of the function (vertical red dotted line) gives

the probability of the gene i becoming active (left) or inactive (right), given its

regulatory input (Ri) in the current time. (D) There are 16(22 × 22 ) possible

transitions among the 4(22 ) possible states. A 22 × 22 transition probability

matrix specifies the probability of each possible transition.

entire attractor’s landscape can then be done through numeri-
cal iterations of this dynamical map as long as the network has
a moderate size.

Han and Wang extended the deterministic BN model into a
probabilistic framework by introducing a transition probability
matrix. However, if the interest is focused on the computation of
the probability of transition from one state to another state for
each of the 2n possible phenotypes in state space, then it is neces-
sary to introduce a transition probability matrix with the proba-
bility of all possible transitions and not just among attractors. In
order to make such computation feasible, Han and Wang intro-
duced a simplification: they assumed that the one-step transition
probability of one state to another can be expressed as the prod-
uct of the probability of each gene in the network being activated
or not, given the state of the network in the previous time (for
details, see Han and Wang, 2007, and Supplementary Material in
Choi et al., 2012). Formally:

πkj = P(x(t+ 1) = k|x(t) = j) =
n

∏

i=1

P(xi(t+ 1)|x(t) = j), (10)

where j and k represent two different cell states and can take
values from [1, ..., 2n]; n is the number of genes in the network.
The factorized transition probabilities are calculated by inserting

a non-zero regulatory input (
∑n

j= 1 cijxj(t) + bi(t) 6= 0) as the
argument of a sigmoidal function whose range spans from 0 to 1,
which is to say:

P(xi(t + 1) = 1|x(t) = j) =
1

2
±

1

2
tanh



µ

n
∑

j= 1

cijxj + bi



 .

(11)
In the case of no input (i.e.,

∑n
j= 1 cijxj(t)+bi = 0) a small-valued

parameter d is introduced:

P(xi(t + 1) = xi(t)|x(t) = j) = 1− d.

Hence, in this approach, the probability that a gene iwill be active
(1) at a future time t + 1 will be closer to one as long as its total
input at the previous time t is high. Similarly, the probability of
being inactive (0) at the future time will be closer to 1 as long as
the regulatory input is low (see Figure 3C). On the other hand, if
there is no input to the gene, the probability of no change from
its previous state is close to 1, and the closeness depends on the
parameter d, a small number representing self-degradation. Intu-
itively, these rules ensure that the state of a gene will flip only if
its total input is large enough.
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After having calculated these probabilities, the general idea is
then to use this information to obtain an appropriate “height”
measure for each of the 2n states. With this in mind, the interest
is first in calculating a steady-state probability distribution PSS(x).
This stationary probability distribution is analogous to stationary
configurations in the deterministic case; however, in the stochas-
tic framework, the probability of being in any particular state,
rather than the state of the system, is what is kept invariant along
time. In other words, when this stationary distribution is reached,
the probability of observing a cell in a particular state does
not change. Intuitively, one would expect that attractors would
have a higher probability of being reached than transitory states.
Thus, from a landscape perspective, the potency of differentiation
and height should be inversely related with the probability. The
approach that has been followed is to associate this PSS(x) with a
height value.Wang has proposed that the probability distribution
for a particular state P(xi) = exp[U(xi)], and from this expres-
sion thenU(xi) = − ln P(xi), where i = 1, ..., 2n. This functionU
has been termed the (probabilistic) quasi-potential (Huang, 2009,
2012; Wang et al., 2010b)]. How are the “quasi-potential” and the
steady-state probability formally related to each other is still an
open research area (Zhou et al., 2012) (see below).

The key point which has been emphasized by Wang and
coworkers is that, although there is (in general) no potential
function directly obtainable from the deterministic equations for
a given network, a generalized potential (or “quasi-potential”)
function can be constructed from its probabilistic description.
This generalized potential function is inversely related to the
steady-state probability (Wang et al., 2006; Han andWang, 2007;
Lapidus et al., 2008). For the case of the extended BN model,
once the transition matrix is calculated, the information of the
steady-state probabilities can be obtained by solving a discrete set
of master equations (ME) for the network (Han andWang, 2007).
The so-called ME is a dynamical equation for the temporal evo-
lution of a probability distribution (for details, see Haken, 1977;
Gardiner, 2009). In discrete form it is written as:

∂

∂t
P(xi) =

∑

j

WjiP(xj)−
∑

j

WijP(xi), (12)

where we usedWij to denote the transition probabilities resulting
from Equation (11). The difference between this dynamical equa-
tion and the one discussed in the previous section is that here the
time variable is treated as a continuous one. In general, it is quite
complicated to analyze MEs. In the case of this model, one ME is
obtained for each of the 2n states. Han andWang propose to ana-
lyzed the whole set of equations following a numerical (iterative)
method starting from uniform initial conditions Pxi (t0) = 1/2n

and iterating the system until a stationary distribution is reached
(Han and Wang, 2007).

1.5. Stochastic EAL Models from Continuous
GRNs
As in the case of the deterministic BN model revised above, a
general deterministic system of DEs used to describe a GRN can
be extended in order to include stochasticity. Such continuous

models may be more appropriate to approach certain biological
processes. The most intuitive extension considers the introduc-
tion of driving stochastic forces. In this approach, Equation (4) is
extended to:

d xi(t)

dt
= Fi(x,u)+ ξi(t), (13)

where ξi(t) is the ith component of a driving stochastic force with
zero mean value (i.e., < ξi(t) >= 0). This description, the so-
called Langevin equation, is frequently used to model cellular
dynamics under stochastic fluctuations (Hoffmann et al., 2008;
Wang et al., 2010b; Villarreal et al., 2012; Li and Wang, 2013).

Although intuitively simple at first sight, the consideration of
a randomly varying quantity affecting the dynamics of the sys-
tem implies several conceptual issues that should be considered
in some detail. Any single cell will follow an erratic trajectory
in state space, and its developmental dynamics will make each
realization different even if it starts from exactly the same initial
condition. Under this stochastic scenario, two equivalent perspec-
tives to study the stochastic dynamics can be considered. On the
one hand, the analysis could be focused on trajectories described
by Langevin-type equations, which describe the developmental
dynamics of a single cell (Figure 4A). On the other hand, as the
stochastic forces ξi(t) vary from cell to cell in an ensemble (pop-
ulation) of cells, the state x(t) will also vary from cell to cell at
any given time. One therefore may ask for the probability P(x, t)
to find the state of a cell in a given state interval of the state
space or, equivalently, for the frequency of cells in the ensem-
ble whose states are in that state interval. In the latter situation,
the focus shifts from the dynamics of the state of one cell to the
dynamics of the distribution over the states in a given ensemble
of cells. Indeed, an equation for the temporal evolution of this
distribution P(x, t) can be constructed, and this corresponds to
the so-called Fokker-Plank equation (FPE):

∂P

∂t
= −

∑

i

∂

∂xi
[Ai(x)P]+

1

2

∑

i,j

Qi,j(x)
∂2

∂xi∂xj
P. (14)

In mathematical terms, the corresponding process is known as a
diffusion process, a mathematical model for stochastic phenom-
ena evolving in continuous time; the vector A(x) is known as
the drift vector and the matrix Q(x) as the diffusion matrix (for
details, see Risken, 1984; Gardiner, 2009; Fuchs, 2013b). The FPE
describes the change of the probability distribution of a cell state
during the course of time (Figure 4B). Conceptually, the latter
modeling perspective can be interpreted as the temporal evolu-
tion of a cloud (ensemble) of cells diffusing across the state space
following both attracting and stochastic forces (see Huang, 2010
for a conceptual perspective).

The stochastic nature of the trajectories also produce quali-
tatively richer dynamics in state space. For example, if one is
interested in the developmental connection between one spe-
cific initial cell state and one specific final cell state—for exam-
ple, two different given attractors—there is no longer a single
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FIGURE 4 | Different approaches to study continuous-time

stochastic models of the epigenetic landscape and developmental

dynamics. (A) A continuous-time stochastic (diffusion) model is driven by a

drift (deterministic) component F and an stochastic (Noise) force. The

graph shows 10 different realizations of the stochastic dynamics of the

same, single cell starting form exactly the same initial condition (red dot).

This realizations perspective corresponds to the Langevin equation

description. The right histogram represents an approximation of the

corresponding distribution over the realizations. (B) The picture represents

the time evolution of a hypothetical probability distribution. A population of

cells initially presents a narrow distribution centered at an intermediate state

value: most cells have an intermediate state and no individuals show an

extreme (low or high) value. As time evolves the shape of the distribution

changes—gets wider—, and the population reaches lower and higher

values. This perspective corresponds to the Fokker-Planck equation

description. (C) A cell can follow different paths (gray dotted lines) to reach

a final state xf starting from an initial state x0. A finer quantitative

characterization of the specific transition from state x0 to state xf in terms

of highly probable paths and difficulty of differentiation processes can be

gained by means of calculating a dominant path (red line) for the transition

using a path-integral formalism. For simplicity, the cell state is represented

by one variable x in all three cases.

possible path connecting them. Instead, the same final cellu-
lar phenotype can be reached following different paths in state
space (Figure 4C). This situation raises yet additional interesting
issues: are all the paths equally probable? Is there a dominant path
for such a transition from one attractor to another one? Physicists
have proposed the so-called path-integral formalism in order to
tackle these and similar questions (Wio, 1999). Specifically, one
may want to answer what is the probability of starting from an
initial cellular phenotype at a certain time and ending in another
cellular phenotype at a future time. The conceptual basis of this
strategy is based on the idea of calculating an average trajectory
(e.g., integrating over the possible paths). The calculated aver-
aged path corresponds to the dominant path that the underlying
process is expected to preferentially follow (Figure 4C).

Given the intuitive appeal of a landscape perspective to general
dynamics, the existence of a potential or “potential-like” func-
tion associated with diffusive systems has been an intensive focus
of study in theoretical physics and applied mathematics. Ao and
co-workers have proposed a transformation that allows the defi-
nition of a functionU(x) which successfully acquires the dynami-
cal meaning of a potential function. The corresponding approach

has been applied successfully to study several biological systems
such as the phage lambda life cycle (Zhu et al., 2004), and the car-
cinogenesis processes, Ao et al. (2008), Wang et al. (2013, 2014),
and Zhu et al. (2015) from a landscape perspective. This trans-
formation has also been discussed recently in the context of gen-
eral methods for the decomposition of multivariate continuous
mappings F(x) and their associated quasi-potentials (Zhou et al.,
2012). From the available decomposition methods, the one that
has been applied the most to specific developmental processes is
the potential landscape and flux framework proposed by Wang
et al. (2008). In this framework, the continuous dynamical map-
ping F(x) is decomposed into a gradient part and a flux, curl part
(for details, see Wang, 2011). This approach has been applied, for
example, to the study of the yeast cell cycle [Wang et al. (2006,
2010a)]; a circadian oscillator (Wang et al., 2009); the generic
processes of stem cell differentiation and reprogramming (Wang
et al., 2010b; Xu et al., 2014); and neural differentiation (Qiu et al.,
2012). Recently, this method has been applied in the context of
the differentiation and reprogramming of a human stem cell net-
work (Li and Wang, 2013). Here we further discuss the latter as
a diffusion landscape approach to study stem cell differentiation.
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Although the technical details of decomposition methods for dif-
fusive systems from a landscape perspective are out of the scope
of the present review, we point the reader to Ao (2004), Kwon
et al. (2005), Yin and Ao (2006), Ao et al. (2007), Ge and Qian
(2012), Zhou et al. (2012), and Lv et al. (2014) for further details.

To summarize this section: when a stochastic component with
specific properties is introduced in a continuous-time dynami-
cal model of developmental dynamics, the behavior of the sys-
tem can be studied from different, mathematically equivalent
perspectives. One of the perspectives could be more appropri-
ate than the others, given the biological question of interest; the
different perspectives complement each other, nonetheless. It is
important to note that the three approaches mentioned above
(e.g., Langevin, FPE, and path-integral) although just recently
introduced in systems biology (Wang et al., 2010b, 2011; Villar-
real et al., 2012; Zhang and Wolynes, 2014; Wang et al., 2014);
are actually well-established tools in non-equilibrium statisti-
cal mechanics and the stochastic approach to complex systems
(Haken, 1977; Lindenberg and West, 1990; Gardiner, 2009).

1.6. From EAL Models to Biological Insights
1.6.1. EL Exploration in Flower Morphogenesis
Alvarez-Buylla and collaborators applied the attractor transition
probability approach (Equations 5–8 and Figure 3B) to explore
the EAL explained above in order to study flower patterning
shared by most angiosperms or flowering species (Alvarez-Buylla
et al., 2008). In flowering plants, a floral meristem is sequen-
tially partitioned into four regions from which the floral organ
primordia are formed and eventually give rise to sepals in the out-
ermost whorl, then to petals in the second whorl, stamens in the
third, and carpels in the fourth whorl in the central part of the
flower. This spatiotemporal pattern is widely conserved among
angiosperms. Can the temporal pattern of cell-fate attainment
be explained by the interplay of stochastic perturbations and the
constraints imposed by a non-linear GRN? Starting from the pre-
viously characterized Boolean GRN of organ identity genes in the
A. thaliana flower (Espinosa-Soto et al., 2004), and applying the
stochastic approach described in Equations (5–8), the authors
showed that the most probable order in which the attractors
are attained is, in fact, consistent with the temporal sequence in
which the specification of corresponding cellular phenotypes are
observed in vivo. The model provided, then, a novel explanation
for the emergence and robustness of the ubiquitous temporal pat-
tern of floral organ specification, and also allowed predictions on
the population dynamics of cells with different genetic configura-
tions during development (Alvarez-Buylla et al., 2008). Note that
in this approach, through the calculation of transition probabili-
ties among attractors, it is possible to explore the EAL associated
with a GRN. It also constitutes a new approach to understand-
ing a morphogenic process and also implies that GRN topologies
could have, in part, evolved in response to noisy environments.
In the same contribution, the authors also showed that a stochas-
tic continuous approximation of the GRN under analysis yielded
consistent results. Importantly, in this study it was argued that the
fact that observed patterns of cell-fate transitions could be signif-
icantly constrained by GRN in the context of noisy perturbations
does not excludes the relevance of deterministic signals.

1.6.2. From Probabilistic Landscapes to Putative

Cancer Therapies
The probabilistic landscape (quasi-potential) approach has been
applied to two specific processes: cell cycle regulation (Han and
Wang, 2007), and DNA damage response (Choi et al., 2012). In
the former case, the focus was on the global robustness prop-
erties of the network. Here we discuss the biological implica-
tions derived from the latter case. Choi and collaborators applied
this BN probabilistic landscape approach (Equations 9–12 and
Figures 3C,D) to study state transition in a simplified network
of the p53 tumor suppressor protein. The analysis of this net-
work from an EAL perspective allowed the systematic search for
combinatorial therapeutic treatments in cancer (Wang, 2013).
Given the network, key nodes and interactions that control p53
dynamics and the cellular response to DNA damage were identi-
fied by conducting single node and link mutation simulations;
as a result, one network component, the molecule Wip1, was
identified as one of the critical nodes. The flexibility of the BN
model also enabled the specification of a MCF7 cancer cell by
fixing the state of three nodes of the “normal” network in the
course of simulations (for details, see Choi et al., 2012; Wang,
2013). Having specified two different network models, it was pos-
sible to compare the dynamics and associated quasi-potential
of both normal and cancer cells in the absence and presence
of DNA damage. Previous experimental observations indicated
that prolonged p53 activity induces senescence or cell death; this
behavior was shown to result from the inhibition of the interac-
tion between the molecules Mdm2 and p53 caused by the action
of the small molecule Nutlin-3 (Purvis et al., 2012). Using the
model, Choi and collaborators predicted that neither Wip1 nor
Mdm2-p53 interaction mutation alone were sufficient to induce
cell death for MCF7 cancer cells in the presence of DNA damage;
furthermore, the model provided a mechanistic explanation for
this behavior: the effect of each of this perturbations alone is not
enough tomove the system out of an specific attractor’s basin. But
the simultaneous application of the two perturbations may drive
cancer cells to cell death or cell senescence attractors. These the-
oretical predictions were then validated using single-cell imaging
experiments (Choi et al., 2012; Wang, 2013).

This study illustrated in an elegant way how cancer therapeu-
tic strategies can be studied in mechanistic terms using a compu-
tational EALmodel. It must be pointed out that this result opened
the door to the rational design of system dynamics cancer thera-
peutical techniques, in contrast to trial and error and reductionist
approaches that have dominated the biomedical field up to now
(Huang and Kauffman, 2013).

1.6.3. A Diffusion Approach to Study the EAL
The three perspectives to study continuous-time stochastic mod-
els of developmental dynamics briefly described above and rep-
resented in Figure 4 have been applied to understanding actual
developmental cases from an EAL point of view. For example,
Villarreal and collaborators recently proposed a procedure to
construct a probabilistic EAL by calculating the probability dis-
tribution of stable gene expression configurations arising from
the topology of a general N-node GRN (Villarreal et al., 2012).
In this approach, the focus of study is the temporal evolution
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of the distribution over state space (Equation 14 and Figure 4B)
starting from a position centered on a specific attractor con-
figuration. Intuitively, the proposed framework predicts how a
cloud of cells distributed over a particular attractor will diffuse
in time to the neighboring regions (attractors) in state space,
given a specific GRN (which constraints the state trajectories).
The method has been applied to the case of early flower mor-
phogenesis (see subsection above); and its behavior, in both wild
type and mutant conditions. The authors recovered patterns that
are in agreement with the temporal developmental pattern of flo-
ral organs attainment in A. thaliana and most flowering species
(Alvarez-Buylla et al., 2008; Villarreal et al., 2012). The AEL per-
spective has recently also given important insights into the prob-
lem of carcinogenesis trough the quantitative implementation of
the molecular–cellular network hypothesis by Ao and co-workers
(for details, see Wang et al., 2014; Zhu et al., 2015).

1.6.4. Cell Fate Decisions in the Human Stem Cell

Landscape
Recently, Li and Wang adopted the diffusion approach to study
a previously published human stem cell developmental network
(see Chang et al., 2011) composed of 52 genes (Li and Wang,
2013). In this study they showed how the three perspectives rep-
resented in Figure 4 can complement each other in the study
of cellular differentiation: (1) through the numerical analysis
of the Langevin-like equations for the complete network they
acquired a landscape directly from the statistics of the trajecto-
ries of the system (Equation 13 and Figure 4A); (2) by means
of approximations they studied the evolution of the probabilistic
distribution and obtained an steady-state distribution (Equation
14 and Figure 4B); and (3) using the path-integral formalism
(Figure 4C) they calculated the dominant paths (Wang et al.,
2011). The obtained paths were interpreted as the biological paths
for differentiation and reprogramming (Li and Wang, 2013). As
Li and Wang showed, from the results of the three perspectives
it is possible to quantitatively describe the underlying EAL. One
then may be interested in how the EAL changes in response to
specific perturbations.

A general question in stem cell research concerns the underly-
ing mechanisms that explain the known reprogramming strate-
gies, which commonly consist on combining perturbations to
specific transcription factors. Li and Wang systematically tested
which genes and regulatory interactions imply the greatest alter-
ations to the quantitative properties of the EAL (e.g., height
values and transition rates) when perturbed. Interestingly, sev-
eral biological observations associated with the manipulation of
the so-called Yamanaka factors (Oct3/4, Sox2, Klf4, c-Myc)—the
transcription factors considered the core regulators in the induc-
tion of pluripotency—were consistent with the observed mod-
eling results. For example, simulated knockdown perturbations
to these factors consistently increased (lowered) the probabil-
ity (height) of the differentiation state. On the other hand, the
path-integral formalism allowed them to show how specific per-
turbations to these factors cause the differentiation process to
be easier or harder in terms of the time spent during transi-
tions and the characteristics of the differentiation paths. Over-
all, this study presented an important contribution toward the

mechanistic, dynamical explanation of the characterized repro-
gramming strategies in terms of the properties of the underlying
EAL.

1.7. Concluding Remarks
An overall strategy for the practical implementation of what
we call EAL models comprises four steps: (1) establishment
of an experimentally grounded GRN; (2) characterization of
the attractor (and quasi-potential) landscape through dynamical
modeling; (3) computational prediction of cell state responses to
specific perturbations; and (4) analysis of the prevailing paths of
cell fate change. The first step (1) is already a well-established
research problem that includes expert curation of experimental
data and/or statistical inference. In this review we focused on
the second step and presented examples of how steps (3) and (4)
can be achieved once a EAL model is effectively constructed. As
shown here, there are several ways to implement an EAL model
starting from a GRN. The specific choice should be made consid-
ering the properties of the network and the associated questions
of interest.

The methodologies reviewed here are mostly well-suited to
approach the problem of differentiation and temporal cell-fate
attainment in a mechanistic setting. The observed behavior
results from constraints given by the joint effect of non-linear
regulatory interactions and the inherent stochasticity prevalent
in GRN. The actual physical implementation of these generic
mechanisms in a multicellular system would necessarily imply
additional sources of constraint and spatially explicit, multi-level
modeling platforms. Tissue-level patterning mechanisms such as
cell-cell interactions; chemical signaling; cellular growth, pro-
liferation, and senescence; in addition to mechanic and elastic
forces at play in cells, tissues and organs, inevitably impose phys-
ical limitations which in turn affect cellular behavior. This would
thus imply non-homogenous GRNs with contrasting additional
chemical and physical constraints, that in a cooperative manner
underlie the emergence of positional information and morpho-
genetic patterns. Given this fact, the next logical step to extend
EAL and associated dynamical models would be to account for
these physical processes in an attempt to understand how cel-
lular decisions occur during tissue patterning and not just in
cell cultures. Although some progress has been presented in this
direction (see, for example Barrio et al., 2010, 2013), the problem
remains largely open, specially in terms of explicitly considering
the constrains imposed by the underlying GRN and EAL.

From a theoretical perspective, a further challenge would be
to carefully evaluate the assumptions implicit in the EAL mod-
els. For example, the adoption of the diffusive perspective briefly
explained above—which is often taken as a standard in stem
cell systems biology—implicitly assumes certain properties about
the forces driving the temporal evolution of the system (Linden-
berg and West, 1990). Are these conditions universally met by
developmental systems? Recent interesting work is starting to
suggest the biological relevance of additional constraints such
as state-dependent fluctuations (Pujadas and Feinberg, 2012;
Weber and Buceta, 2013), as well as time-dependent dynamical
behavior (Mitra et al., 2014; Verd et al., 2014). In both cases,
a dynamically changing EAL is proposed as a potentially more
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accurate description of developmental processes than its static
counterpart.

Overall, the application of the methodologies discussed in this
review to specific developmental processes has shown the practi-
cal relevance of dynamical models consistent with the conceptual
basis of the classical EL and the fundamental role of the con-
straints imposed by the GRN interactions. The different EAL
modeling approaches are useful to answer specific questions and
can complement each other. So far, EAL models have shown
to be an adequate framework for understanding stem cell dif-
ferentiation and reprogramming events in mechanistic terms;
and are also starting to show promise as the basis for rational

cancer therapeutic strategies, as well as other interesting issues
in developmental biology and evolution.
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