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Hidden among the crowd: differential
DNA methylation-expression
correlations in cancer occur at
important oncogenic pathways
Adrián Mosquera Orgueira *

Independent Researcher, Ordes, Spain

DNA methylation is a frequent epigenetic mechanism that participates in transcriptional

repression. Variations in DNA methylation with respect to gene expression are constant,

and, for unknown reasons, some genes with highly methylated promoters are sometimes

overexpressed. In this study we have analyzed the expression and methylation patterns

of thousands of genes in five groups of cancer and normal tissue samples in order

to determine local and genome-wide differences. We observed significant changes in

global methylation-expression correlation in all the neoplasms, which suggests that

differential correlation events are frequent in cancer. A focused analysis in the breast

cancer cohort identified 1662 genes whose correlation varies significantly between

normal and cancerous breast, but whose DNAmethylation and gene expression patterns

do not change substantially. These genes were enriched in cancer-related pathways and

repressive chromatin features across various model cell lines, such as PRC2 binding and

H3K27me3 marks. Substantial changes in methylation-expression correlation indicate

that these genes are subject to epigenetic remodeling, where the differential activity

of other factors break the expected relationship between both variables. Our findings

suggest a complex regulatory landscape where a redistribution of local and large-scale

chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic

hotspots that modulate cancer-specific gene expression.
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Introduction

DNA methylation is a repressive epigenetic phenomenon that occurs at CpG dinucleotides
(Saxonov et al., 2006). These dinucleotides frequently form CpG-rich clusters known as CpG
Islands, which are located near the promoter of 72% of the genes (Saxonov et al., 2006). The methy-
lation status of the promoter is widely accepted to exert a repressive effect on proximal gene expres-
sion (Klipp, 2009; Han et al., 2011; Vanderkraats et al., 2013; Szulwach and Jin, 2014). However,

Abbreviations: DCG, Differentially Correlated Gene; cDMR, cancer-specific Differentially Methylated Region; TSS, Tran-

scription Start Site; PMD, Partially Methylated Domain; HMD, Heavily Methylated Domain; PRC2, Polycomb Repressive

Complex 2; LAD, Lamina-Associated Domain; EI, Euchromatin Island; SCNA, Somatic Copy Number Aberration; TF, Tran-

scription Factor; TFBS, Transcription Factor Binding Site; bp, base pair; LOI, Loss of Genomic Imprinting; HNSCC, Head and

Neck Squamous Cell Carcinoma; SAM, Significance Analysis for Microarrays; FDR, False Discovery Rate; Wilcox, Wilcoxon

Rank Sum Test.
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the effect of DNA methylation on gene expression varies with
respect to its location and the genotype of the individual (Bell
et al., 2011; Lou et al., 2014; Wagner et al., 2014). For example,
CpGs inside gene bodies are more positively correlated with gene
expression than promoter-associated CpGs (Lou et al., 2014), and
CpGs in the vicinity of CpG islands (known as CpG island shores)
are enriched in tissue and cancer-specific differentially methy-
lated regions (cDMRs) when compared with CpG islands (Doi
et al., 2009).

The effect of DNA methylation on gene expression is an
active field of research and various mechanisms have been
described. Notably, DNAmethylation is coupled to histone mod-
ifications through methyl-binding and methyl-insensitive factors
(Szulwach and Jin, 2014). Histone deacetylase repressor com-
plexes are targeted to methylated regions, whilst the MLL fam-
ily of histone methyltransferases and the histone demethylase
JHDM1a preferentially bind to demethylated DNA (Szulwach
and Jin, 2014). Extensive research on epigenetics has been
devoted to disentangle the role that DNA methylation plays
in cancer (Ghavifekr et al., 2014). This has led to terms such
as “hypermethylated” and “hypomethylated” referring to genes
whose methylation changes significantly between tumor and nor-
mal tissues. However, there is evidence indicating that genes
with heavily methylated promoters can be intensely expressed
(Guillaumet-Adkins et al., 2014), whilst partially methylated
genomic regions and long-range hypomethylated domains con-
tain silenced genes in various cancer types (Berman et al., 2011;
Hansen et al., 2011; Hon et al., 2012). DNA methylation stability
is known to be lost in cancer (Hansen et al., 2011), but we found
no studies addressing the potential differences and functional

FIGURE 1 | Schematic representation of the reasoning behind this

study. (A) DNA methylation is an epigenetic modification known to modulate

gene expression. (B) In this study, we decided to identify significant

differences between tumor and normal tissues in their gene expression

correlation with DNA methylation; as well as the epigenetic factors that can

explain this behavior.

implications of differential gene-expression correlation with
DNA methylation between tumor and normal tissues.

In this research, we studied the global and gene-by-gene pat-
terns of differential gene expression-methylation in a set of pub-
lically available tumor-normal datasets (Figure 1). This revealed
interesting differential patterns of correlation in cancer. In order
to further explore the importance of these differences, we calcu-
lated gene-level statistics in normal and cancerous breast, which
detected thousands of breast Differentially Correlated Genes
(hereafter known as DCGs). Functional annotation and compar-
ison of this list of genes with pathways, ontology and transcrip-
tion factor (TF) binding regions reported by the Encode Project
Consortium (ENCODE Project Consortium, 2012) provided evi-
dence for consistent enrichments in cellular processes and chro-
matin modifications. The repressive effect of DNA methylation
on transcription is a well described phenomenon (Saxonov et al.,
2006), and we try to address the nature and implications of these
findings on our understanding of epigenetics and cancer biology.

Methods

A pipeline of the methodology used in this section can be con-
sulted in Figure 2.

Data Source and Pre-processing
Five tumor-normal datasets from the Gene Expression Omm-
nibus (GEO) (Barrett et al., 2013) with gene expression and
methylation data available were downloaded (Table 1) (Kresse
et al., 2012; Selamat et al., 2012; Fertig et al., 2013; Kim
et al., 2013; Terunuma et al., 2014). Although gene expression
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arrays from GEO submissions are already normalized, we cre-
ated box plots to confirm it. Methylation arrays were either
Illumina 27K (Bork et al., 2010) or Illumina 450K (Sandoval
et al., 2011). We used R for our computations (R Core Team,
2012). Beta values were converted to M-values before normal-
ization. Datasets were quantile normalized with the function
normalize.quantiles implemented in the package preprocessCore1.

1Bolstad, M. B. preprocessCore: A Collection of Pre-processing Functions. R

package version 1.18.10.

FIGURE 2 | Pipeline specifying the most important steps of the

methodology used to discover DCGs and downstream analysis.

In order to obtain a comparable list of correlations, we aver-
aged the CpG intensity methylation for each gene within each
experiment and separately for cancer and normal tissue samples.
We compared the methylation-expression of those genes repre-
sented in all experiments. In the case of gene expression datasets,
probes matching to the same genes were averaged so that only
one vector of expression intensities was kept per gene. Only those
genes that had expression and methylation measures in all the
datasets were kept. Differential expression and methylation anal-
ysis were performed with Significance Analysis for Microarrays
(SAM) (Tusher et al., 2001). SAM was run with 10,000 permu-
tations and significance was selected by tuning the 1 value to
approximately a 5% False Discovery Rate (FDR). Methylation
Coefficients of Variation (a.k.a. CVs) were calculated with a mod-
ified version of the classic formula that uses interquartile ranges
(a.k.a. IQR) and themedian instead of the standard deviation and
the media.

Gene Expression-Methylation Correlation
Analyses
We calculated Pearson’s and Spearman’s correlations between
methylation and gene expression intensity separately in each
tumor-normal dataset and in both cases and controls. The
Wilcoxon Signed Rank Test was used to search significant dif-
ferences in correlation values between tumor and normal sam-
ples at the genome-wide level. Signed Pearson’s correlation value
is known not to directly bear on the size of the correlation
coefficients (Goodwin and Leech, 2006), but in order to ana-
lyze differences in absolute correlations we managed potential
indirect biases introduced by differences in the sample-size by
randomly shuffling the datasets in the biggest group (cancer
group) to the length of the smaller group (normal group). In
each case we calculated the correlations genome-wide and per-
formed the Wilcoxon Signed Rank Test 1000 times. P-values for
differential absolute correlation genome-wide were calculated as
the mean of the 1000 P-values obtained by random shuffling,
and the mean estimates were calculated similarly. Otherwise,
when no sample difference existed (e.g., in the Lung Adenocar-
cinoma cohort) we calculated differences in absolute correlations
as though they were signed correlations. Although about 300
genes from the X chromosome were included, we observed that
excluding them from the analysis did not change the results at
all. In order to explore the biological plausibility of the analy-
sis, we also tested the significance in correlation differences at the

TABLE 1 | Origins of the data.

Sample type Source Number of controls Number of cases Total number

Bladder cancer GSE37817 (Kim et al., 2013) 6 18 24

Breast cancer GSE39004 (Terunuma et al., 2014) 8 57 65

Head and Neck Squamous Cell Carcinoma GSE33232 (Fertig et al., 2013) 25 44 69

Lung Adenocarcinoma GSE32867 (Selamat et al., 2012) 57 57 114

Osteosarcoma GSE36004 (Kresse et al., 2012) 6 19 24

Total 102 195 297

Each line includes the type of sample, its GEO identification code, the number of cases and controls, and the total number of samples.

Frontiers in Genetics | www.frontiersin.org 3 May 2015 | Volume 6 | Article 163

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Mosquera Orgueira Differential gene methylation-expression correlations in cancer

gene level between tumor and normal samples in three datasets,
namely lung adenocarcinoma, head and HNSCC and breast can-
cer. For this, we applied Fisher’s transformation to Spearman’s
Rank correlations. P-values were adjusted for the FDR.

Determination of Differentially Correlated Genes
DCGs are those genes whose expression and DNA methylation
patterns significantly differ in cancer when compared with nor-
mal tissues. We calculated DCGs in two datasets (namely lung
adenocarcinoma and HNSCC) based on the expression-average
methylation correlation values for each gene. Fisher’s transforma-
tion was applied to Pearson’s and Spearman’s correlation values
and the P-values were calculated accordingly (Mudholkar, 2006;
Myers and Sirois, 2006). Since the breast cancer methylation was
analyzed with the Illumina 450K platform, this group included
a greater number of inspected CpGs per gene. In this case, we
calculated the combined Stouffer’s P-value for all CpGs inside
each gene in order to improve our use of methylation informa-
tion (see Section Chromatin and Transcription Factor Binding
Enrichment). This method discovered a much larger number
of DCGs.

Gene Ontology (Ashburner et al., 2000), Pathways Commons
(Cerami et al., 2011), and Cytoband enrichment analysis were
performed with the WEB GESTALT tool (Wang et al., 2013).
Transcription Factor Binding Sites (TFBS) and InterPro Protein
Domain (Jones et al., 2014) enrichment analysis were performed
in the GenCodis web browser (Tabas-Madrid et al., 2012). We
used our own custom background, representing all the genes
that were studied. Pathways analysis of the KEGG (Kanehisa,
2013) database was performed for significant miRNAs with the
DIANA-miRPath tool (Vlachos et al., 2012). We used the “gene
union” option, which calculates the union of targeted genes by
the chosenmiRNAs. This list was then used as input for pathways
analysis.

Chromatin and Transcription Factor Binding
Enrichment
We wished to determine whether DCGs overlapped with any
known chromatin feature. With this purpose we first annotated
the genomic coordinates of each gene using the biomaRt package
(Durinck et al., 2009). Then, we collected epigenetic data from
H1 human Embryonic Stem Cells (H1hESC), B-lymphocytes
(Gm12787), hepatocellular carcinoma (HepG2), and human
mammary epithelial cells (HMEC) cell lines and uploaded it to
The Genomic Hyperbrowser (Sandve et al., 2010). These tracks
were composed of the Chip-seq peak calls released following (1)
the Encode Uniform Processing Pipeline, (2) the Chromatin State
Segmentation based on Hidden Markov Models (HMM), (3) the
Uniform DNAse 1 Hypersensitivity tracks, and (4) the histone
modification tracks released by the Encode Analysis Working
Group (AWG) and the Broad/MGH Encode Group, respectively.
Those genomic segments whose expression-methylation changed
significantly (at maximum FDR of 5%) between tumor and nor-
mal samples were labeled as case, and those whose correlation did
not change significantly were chosen as controls. We applied the
“Preferential Overlap” function of The Genomic Hyperbrowser,
with (1) a minimal number of Monte Carlo samples of 1000, (2)

a global FDR value of 0.001, (3) an alternative hypothesis of an
overlap greater than expected, and (4) a null model that pre-
serves segments of both tracks and permutes case and control
assignment sequences on chip-seq tracks. Duplicate and triplicate
tracks (e.g., tracks measuring the genomic binding occupancy
of the same transcription factor) were handled by combining
their P-values using the Stouffer’s Z-score method. This test is
a meta-analytic method closely related to the Fisher’s combined
probability test used to combine the result of several indepen-
dent tests bearing the sample null hypothesis. Stouffer’s test is
sensitive to consistent departures from the null hypothesis, while
Fisher’s method is more sensitive to occasional departures from
the null hypothesis (Abelson, 1995). Finally, P-value adjustment
for multiple testing was performed on four separate batches of
tracks according to their origin: Encode’s Uniform Pipeline TF
Chip tracks, Encode’s Chromatin State Segmentation tracks, AWG
DNAse 1 Hypersensibility tracks and Broad/MGH Encode Group
histone modification tracks. P-values were corrected with the FDR
method.

Generalized Additive Models Regression
In order to determine the relationship between expression-
methylation Spearman’s correlations and the distance to the
closest TSS, we studied such relationships in the breast can-
cer cohort. Methylation in this study was performed with Illu-
mina 450k arrays, which are suitable for genome-wide analysis.
Briefly, we fitted generalized additive models (GAM) (Wood,
2011) with correlation as the dependent variable. GAM mod-
els allow for non-parametric or semi-parametric fits between the
variables of interest, thus leading to better local fits. This is espe-
cially important when variables are known to have non-linear
and changing relationships between them. We applied Fisher’s
transformation to the correlations, so that they follow approxi-
mate normal distributions. Smooth terms were calculated with
the smoothing “s” option of the “gam” function in the mgcv R
package (Wood, 2011). The thin plate regression spline “tp” was
used, which is a low rank isotropic smoother of any number
of covariates. Smoothing parameter estimation of the indepen-
dent variable (absolute TSS distance) was calculated with the
Generalized Cross Validation (GCV) method. Penalized regres-
sion models gain computational efficiency by choosing a rel-
atively small basis, known as k. By default, we set this value
to 20. Although variations in the basis have a small impact on
the model, we ensured that k-values were not so small to cause
over-smoothing by using the “gam.check” function. P-values were
computed by randomly re-shuffling 20,000 times in order to cal-
culate the null distribution of the differencing variance estimator.
Low P-values may indicate that the basis dimension is too low.
We confirmed that all models had approximately normal resid-
uals and that the values of the estimates divided by the resid-
ual variance (a.k.a k-index) were close to 1. Plots were created
with the ggtools function implemented in the ggplot2 R package
(Wickham, 2009).

Literature Search
We used PubMed (McEntyre and Lipman, 2001) to search for
most of the bibliography cited in this paper.
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Results

Gene Expression Correlation with Average
Methylation Intensity
We evaluated the relationship between DNA methylation and
expression across more than 6200 genes in all the tumor and
normal tissue samples (Supplementary Table 1). We observed
significant differences of absolute Pearson’s correlation in all the
five study groups (10% FDR; Table 2 and Figure 3). Spearman’s
correlation reduced the level of significant datasets to 4 of 5 (10%
FDR), since in this case the breast cancer dataset was not signifi-
cant (Q-value = 0.214; Table 2). Notably, most of these absolute
values were higher in normal tissues than in cancer, except for
the Lung Adenocarcinoma dataset. Similarly, the signed corre-
lation values revealed significant Pearson’s and Spearman’s dif-
ferences between tumor and normal samples in all study cohorts
(FDR <0.1%; Table 2 and Figure 3). Four of these groups had
a more positive correlation in normal samples, and in the Blad-
der Cancer cohort the contrary holds. These results suggest that
common correlation differences exist in cancer tissues.

Differentially Correlated Genes in Lung
Adenocarcinoma and HNSCC
By applying Fisher’s transformation to Spearman’s correlations
in the lung adenocarcinoma and HNSCC cohorts we discovered
genes whose average methylation-gene expression correlation
varies significantly between tumor and normal samples (a.k.a.
DCGs). In the case of lung adenocarcinoma, we found 43 DCGs
at a 10% FDR (Supplementary Table 1), and 16 at a 5% FDR.

The most significant finding was that of CD40 (Q-value= 3.36×
10−4), whose Spearman’s correlation was much more negative in
adenocarcinoma samples (rho = −0.66) than in matched nor-
mal controls (rho= 0.25), and whose expression was significantly
higher in normal samples (P-value = 2.82 × 10−4). Remark-
ably, the other top findings were CEACAM5 (Q-value = 0.016),
MYEOV, SLMAP, and TM4SF18 (Q-value = 0.017), CD300LG
(Q-value= 0.02), and ENOSF1,MFAP5, PKIA, SFRP1, and ZFP3
(Q-value= 0.026). In the case of HNSCC we found 15 genes sig-
nificant at a 10% FDR (Supplementary Table 1), five of which
hadQ-values below 0.05. These were IL12RB2, PTHLH, SLC7A11
(Q-value = 0.013), SERPINB7 (Q-value = 0.029), and CRAT (Q-
value = 0.046). Of particular interest is the fact that FGF11 was
present in the two DCGs lists (lung adenocarcinoma Q-value =
0.037, HNCC Q-value = 0.053), which is an important finding
when considering that the methylation array platform in these
two cases was the same (Illumina 27K). Moreover, this gene
remained nearly significantly differentially correlated in breast
cancer at a 5% FDR (Q-value = 0.067; vide infra). Overall, the
correlation tendency of DCGs was more negative in cancer than
in normal samples. About 67% and 80% of these genes had signif-
icantly lower correlations in lung adenocarcinoma and HNSCC;
respectively.

We combined all the significant genes in the two lists (10%
FDR) and performed gene ontology analysis versus its own back-
ground. This revealed significant enrichments of the selected 58
genes in the following biological processes.: “cellular response
to radiation” (Q-value = 2.01 × 10−2), “convergent extension
involved in axis elongation” (Q-value = 2.92 × 10−2), “negative

TABLE 2 | Correlation results in the 5 tumor-normal datasets.

Bladder Breast Lung HNSCC Osteosarcoma

(A) PEARSON’S CORRELATION RESULTS

Absolute estimate 0.053 0.023 −0.022 0.013 0.029

Absolute mean P-value 1.98× 10−12 0.061 1.72× 10−35 0.033 6.2× 10−4

FDR Q-value 4.95× 10−12 0.061 8.65× 10−35 0.041 1.00× 10−3

1000 random permutations on datasets of equal size

Positive values are higher in normal samples

Estimate −0.046 0.053 0.044 0.024 0.06

P-value 6.35× 10−10 2.20× 10−16 2.20× 10−16 1.09× 10−9 7.59× 10−15

FDR Q-value 7.93× 10−10 5.50× 10−16 5.50× 10−16 1.09× 10−9 1.26× 10−14

(B) SPEARMAN’S CORRELATION RESULTS

Absolute Estimate 0.023 −0.006 −0.018 0.009 0.033

Absolute Mean P-value 0.0082 0.21 1.43× 10−26 0.061 8.04× 10−7

FDR Q-value 0.014 0.21 7.15× 10−26 0.077 2.01× 10−6

1000 random permutations on datasets of equal size

Positive values are higher in normal samples

Estimate −0.036 0.049 0.038 0.018 0.055

P-value 2.37× 10−7 2.20× 10−16 2.20× 10−16 7.51× 10−7 8.69× 10−13

FDR Q-value 2.96× 10−7 5.50× 10−16 5.50× 10−16 7.51× 10−7 1.44× 10−12

(A) Person’s correlations for absolute correlation (upper table) and signed correlation (lower table) differences. Reported estimates are the mean of the 95% CI obtained after calculating

correlations in 1000 random subsets of the same population size. (B) Spearman’s correlations for absolute (upper table) and signed (lower table) correlation differences. Reported

estimates are the mean of the 95% CI.
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FIGURE 3 | Pearson’s correlation between DNA methylation and gene

expression in five different types of cancer-normal tissues. (A) Reported

estimates are the mean of the 95% CI obtained after calculating signed

Spearman’s correlations in 1000 random subsets of the same population size.

Asterisks indicate significant differences at a 10% FDR. (B) Same as above for

signed Pearson’s correlation values.

regulation of non-canonical Wnt receptor signaling pathway” (Q-
value = 2.92 × 10−2), “negative regulation of planar cell polarity
pathway involved in axis elongation” (Q-value = 2.01 × 10−2),
“negative regulation of endopeptidase activity” (Q-value= 2.01×
10−2), “negative regulation of B cell apoptotic process” (Q-value=
4.68 × 10−2), and “negative regulation of peptidyl-tyrosine phos-
phorylation” (Q-value= 2.68×10−2) (Supplementary Figure 1).
Significant enrichments in two protein interaction modules
were also observed. The first one contains two DCGs (namely
ZC3H11A and CRAT; Q-value = 0.019) and is related to
“fatty acid beta-oxidation using acyl-CoA oxidase,” “peroxisomal
matrix” and “C-acetyltransferase activity” processes. The sec-
ond one contains five DCGs (namely CD40, NOX4, EDARADD,
BCL10, IL1R2; Q-value = 0.039) and is related to “regulation of
interferon-beta production,” “CD40 receptor complex,” and “tumor
necrosis factor receptor superfamily” processes.

Focused Analysis on Breast Cancer
In order to further determine the potential impact that DCGs
have in cancer, we decided to investigate the distribution of
expression-methylation Spearman’s correlations in the breast
cancer dataset, since this dataset is based on a high-density
array of CpG methylation probes. For this, we used Fisher’s
transformed Spearman’s correlation values, which are distributed
normally and allow calculating P-values for differences in
correlations. The Stouffer test was used to combine all P-
values into a single, gene-level P-value. The presence of sig-
nificant autocorrelation between CpG correlations can increase
the Type I error of the Stouffer test. Using the Mantel test,
we observed no significant autocorrelation within 200 and
1000 base pairs from the closest TSS (10% FDR). Similarly,

no significant autocorrelation was observed between CpGs
falling further than 1000 base pairs upstream and downstream
from the closest TSS (10% FDR). Thus, we can reasonably
assume that the Type I error is not artificially inflated in this
study.

DNA Methylation Correlation with Gene Expression

as a Function of Transcription Start Site distance
We created a GAM model to inspect the relationships between
CpG methylation intensity and proximal gene expression as
a function of the distance to the closest TSS. The model
showed that CpGs in the immediate vicinity of the closest TSS
showed negative correlations with gene expression in both can-
cer and normal samples, but this pattern was the inverse in
more distant points (Figure 4A; Supplementary Figures 2, 3).
For example, we found that approximately from 5000 bp to
the closest TSS until 400,000 bp the model was consistent with
more positive than negative correlations in both cancer and
normal tissues, reaching points of high statistical significance.
Very curiously, a zoom into the first 5000 bp from the TSS
revealed that the two models are similar but the cancer model
was slightly more negative during the first 2000 bp (Figure 4B;
Supplementary Figures 4, 5). Although the difference was small,
the 95% confidence intervals of both normal and cancer sam-
ples do not overlap in this region, and the T-test confirmed
a significantly more positive correlation in normal samples (P-
value = 5.99 × 10−69, 95% CI [0.017, 0.021]), whilst outside
this 5000 bp region the correlations did not show such a strong
effect (P-value = 0.021, 95% CI [7.00 × 10−4, 9.00 × 10−4]).
We defined the correlation ratio as the ratio of correlation Z
scores (Normal Z score/Cancer Z score). We observed that within
the first 5000 base pairs the ratio is significantly more nega-
tive than outside this region (Wilcoxon Rank Sum Test P-value
= 2.06 × 10−18, 95% CI [−0.204, −0.129], mean value within
5000 bp = 0.166, mean outside 5000 bp = 0.39), indicating that
correlation values are more divergent and that more correla-
tion sign shifts exist within the 5000 bp than outside (42.00% vs.
39.88%).

Determination of Expression-Methylation

Differentially Correlated Genes in Breast Cancer
In order to characterize those genes with changing expression-
methylation correlations, we combined one-tailed Fisher’s P-
values at the gene level and identified groups of genes
whose correlation patterns varied between cancer and normal
cases significantly. We observed 1662 DCGs at a 5% FDR
(Supplementary Table 2). Notably, no correlation was observed
between the P-values and the number of CpGs covering each
gene (Spearman’s correlation = 0.004 and −0.004, P-value =

0.633 for the lists of genes more positively and more negatively
correlated in cancer vs. normal, respectively). However, a sig-
nificant enrichment of DCGs vs. background genes in GC con-
tent was observed (P-value = 2.91 × 10−19, Wilcox), which is
an inherent bias due to the Stouffer test and the characteristics
of the methylation arrays. The top DCGs can be consulted in
Tables 3, 4.
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FIGURE 4 | GAM regression of breast correlations as a function of

absolute distance to the closest TSS. (A) GAM regression of Fisher’s

Z-Transformed Spearman’s Correlations vs. absolute TSS distance. The blue

and the red lines are the regressions of correlations in cancer and normal

breast, respectively. Dark gray areas indicate 95% CI. Turquoise and light

green dots are Z-correlations in cancer and normal breast, respectively. (B)

Same as the previous section but focused in the 5000bp region from the

closest TSS. (C) GAM regression of DCGs with lower correlations in cancer

than in normal breast. The blue and red regression lines correspond to

normal and cancer breast, respectively. Pink dots indicate Spearman’s

correlation Z-scores in normal breast. (D) Same as in the previous section for

those DCGs with higher correlations in cancer than in normal breast.

TABLE 3 | Top 20 genes in the list of DCGs with higher correlation in

breast cancer.

Gene name Stouffer’s Number of FDR Bonferroni

P-value CpGs

DOK7 0 72 0 0

CACNA1H 0 185 0 0

IRX4 0 183 0 0

ZIC4 0 91 0 0

PXDNL 0 15 0 0

CLCN7 0 64 0 0

LMF1 0 256 0 0

GPT 0 28 0 0

NARS 0 14 0 0

MUC5B 0 72 0 0

ARHGEF7 0 46 0 0

FLRT2 0 18 0 0

KRT85 0 12 0 0

OSBPL8 0 14 0 0

NID2 1.44× 10−15 19 1.37× 10−12 2.05× 10−11

TRAP1 3.76× 10−14 50 3.34× 10−11 5.35× 10−10

UBE2MP1 6.51× 10−14 62 5.44× 10−11 9.24× 10−10

KNDC1 6.99× 10−14 128 5.52× 10−11 9.93× 10−10

GNMT 9.66× 10−14 37 7.22× 10−11 1.37× 10−9

DCGs Correlation Distribution
We considered it interesting to analyze the patterns of
expression-methylation correlation of the DCGs as a function
of their distance to the closest TSS in normal and neoplastic
breast tissues. GAM regression of the DCGs more positively

TABLE 4 | Top 20 genes in the list of DCGs with higher correlation in

normal cancer.

Gene names Stouffer’s Number of FDR Bonferroni

P-value CpGs

NR2F2 0 163 0 0

SMOC2 0 179 0 0

SIM1 0 94 0 0

TNFRSF25 0 30 0 0

CXXC1 0 21 0 0

RASA3 0 329 0 0

MIR153-2 0 316 0 0

TBX5 0 53 0 0

PCDH8 0 36 0 0

TMEM132D 0 38 0 0

PADI2 0 13 0 0

RASSF1 0 55 0 0

PCDHB4 0 21 0 0

ALPI 0 22 0 0

SCAF1 0 12 0 0

ERMAP 0 12 0 0

NUDT10 3.77× 10−15 42 3.15× 10−12 5.36× 10−11

CRABP2 4.55× 10−15 17 3.59× 10−12 6.47× 10−11

ADAMTS2 5.11× 10−15 52 3.63× 10−12 7.25× 10−11

correlated in cancer provided evidence for a general differ-
ence, which is more abrupt in the TSS region (Figure 4D,
Supplementary Figures 6, 7). A similar but opposite trend can
be observed in the model of the genes more negatively corre-
lated in cancer (Figure 4C, Supplementary Figures 8, 9). Thus,
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our pipeline efficiently identifies those genes whose correlation
patterns vary constantly at the gene level.

DCGs Methylation and Expression Patterns
In order to inspect possible differences in methylation and
expression between cancer and normal samples, we calculated
the mean and standard deviation for each CpG, with a special
focus on CpGs corresponding to DCGs. The mean methylation
intensity was significantly lower in normal samples (P-value <

2.2 × 10−16, 95% CI [−0.045, −0.0436]; Wilcoxon signed rank
test (a.k.a Wilcox)) and in DCGs (P-value < 2.2 × 10−16, 95%
CI [−0.063, −0.058]; Wilcox). Interestingly, the average methy-
lation intensity within DCGs was substantially higher compared
to the rest of the genome in both cancer (P-value < 2.2× 10−16,
95% CI [0.55, 0.60]; Wilcox) and normal tissues (P-value <

2.2 × 10−16, 95% CI [0.51, 0.56]; Wilcox). Standard deviation
was substantially higher inside DCGs compared to the rest of
the analyzed genome both in normal (P-value < 2.2 × 10−16,
95% CI [0.047, 0.050]; Wilcox) and in cancer tissues (P-value <

2.2 × 10−16, 95% CI [0.098, 0.104]; Wilcox). In order to com-
pare possible differences in variability of DCGs and background
genes we calculated the CVs on methylation β-values. The data
indicate significantly higher variability in cancer both at DCGs
and background genes (P-values<2.2×10−16), and although the
difference is higher amongDCGs, themedian difference in CVs is
only 2.1% higher (95%CI for DCGs [9.43, 9.67]; 95%CI for back-
ground genes [7.36, 7.45]; Wilcox). Thus, there is no clear reason
to believe that increased variability affects the determination of
DCGs.

To determine possible promoter-dependent differences in
methylation, we split the data into promoter-associated CpGs (at
less than 1 Kb from the TSS) and in non-promoter associated
CpGs. Average methylation of CpGs was found to be significantly
higher in promoter-associated CpGs of DCGs with respect to
their counterparts in the rest of the genome in both normal and
cancer data (Wilcox P-values< 2.2×10−16, 95%CI [0.404, 0.453]
and [0.462, 0.515], respectively), whilst average methylation was
lower in non-promoter CpGs compared with their genomic
homologs in both cases (Wilcox P-values < 2.2× 10−16; 95% CI
[−0.158, −0.099] and [−0.154, −0.097], respectively). Interest-
ingly, promoter associated and non-promoter associated CpGs
were significantly hypomethylated in normal compared to cancer
breast (P-value< 2.2×10−16;Wilcox). Using SAM we identified a
general trend of DCGs promoter hypermethylation in cancer and
138 genes whose average promoter methylation was significantly
higher in cancer at a 5% FDR (Supplementary Figure 10A). Sim-
ilarly, average methylation at non promoter-associated regions
showed a trend toward hypermethylation in 112 DCGs (5%
FDR), but no significant differences were associated with the
remaining 93% of the DCGs (Supplementary Figure 10B). Nev-
ertheless, using the Wilcoxon Signed Rank Test we could not
identify a single gene whose average methylation at its promoter
or outside it was statistically significant at a 10% FDR. Similarly,
we found no CpGs that did so individually, although 61% of the
location parameter estimates were preferentially biased toward a
higher methylation in the cancer group. Finally, promoter asso-
ciated and non-promoter associated CpGs were more variable

in DCGs than in the rest of the genome both in normal and in
cancer (P-values < 2.2× 10−16; Wilcox).

Average gene expression was significantly higher in cancer
genome-wide and in DCGs (Wilcox P-values = 1.75 × 10−53

and 3.445 × 10−5, respectively). However, among all the DCGs
no significant difference in expression could be observed at a 5%
FDR using SAM; and only 50 genes ranked significant at a 10%
FDR, with a clear trend of these to be more expressed in nor-
mal breast (Supplementary Figure 10C). The average expression
of DCGs was significantly higher compared to the rest of the
analyzed genome in normal and cancer tissues (Wilcox P-value
= 2.39 × 10−7 and 1.21 × 10−6, respectively; 95% CI [0.131,
0.291] and [0.116, 0.276], respectively). Nevertheless, the expres-
sion of DCGs is not significantly more variable than the rest of
the genome neither among normal samples (Wilcox P-value =

0.173) nor among cancer tissues (Wilcox P-value= 0.106).

Separate Analysis of DCGs Methylation and

Expression Patterns by Correlation Difference Sign
Since the 1662 DCGs contain genes that vary in different direc-
tions we analyzed those genes whose correlation was more neg-
ative in cancer (1001 in total) separately from the rest (661
genes). By comparing the average methylation for each CpG, we
observed that both groups were hypermethylated with respect to
the rest of the genome in normal and cancer tissues (P-values <

2.2 × 10−16; Wilcox). Although CpG average methylation was
greater in cancer in both groups of DCGs (P-values< 2.2×10−16;
Wilcox), this measure was more significant in those genes with
more positive correlations in cancer than in those with more neg-
ative correlations in cancer (Wilcox P-values= 3.85× 10−10 and
2.30×10−7 in cancer and normal samples, respectively). Average
expression was greater among genes with significantly higher cor-
relation values in cancer than in the rest of the genome (Wilcox
P-values = 0.0025 and 0.0027 for normal and cancer, respec-
tively), but no difference was observed for those genes with lower
correlation in cancer (Wilcox P-values = 0.204 and 0.263 for
normal and cancer groups, respectively). However, no significant
difference in expression was detected for both groups of DCGs
between cancer and normal breast tissue (Wilcox P-values =

0.857 and 0.912 for genes with higher and lower correlations in
cancer, respectively).

Gene Ontology and Pathways Analysis of DCGs
We searched for the enrichment of the DCGs in gene ontology
terms (Supplementary Figure 11). DCGs are notably enriched
in various biological processes, with a special emphasis in “cell
differentiation” (Q-value = 5.09 × 10−11), “system development”
(Q-value = 9.24 × 10−11), “regulation of cell proliferation”
(Q-value = 1.92 × 10−5), “organ morphogenesis” (Q-value =

3.36 × 10−6), “neuron development” (Q-value = 6.62 × 10−6),
and “embryonic skeletal systemmorphogenesis” (Q-value= 3.12×
10−5). Similarly, DCGs were enriched in “phospholipid bind-
ing” (Q-value = 3.35 × 10−2), “HMG box domain binding”
(Q-value = 4.79 × 10−2), “neurotrophin receptor binding” (Q-
value = 1.89 ×10−2), “regulatory region DNA binding” (Q-
value = 1.90 ×10−3), “sequence-specific DNA binding” (Q-value
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= 2.55 ×10−10), “nucleic acid binding transcription factor activ-
ity” (Q-value = 1.18 ×10−5), and in “transmembrane signal-
ing receptor activity” (Q-value = 6.80 ×10−3). DCGs are also
enriched in proteins located at the extracellular region (Q-
value = 8.00 ×10−3) and in the plasma membrane (Q-value =
6.5× 10−3). Fifty-five DCGs contain Homeobox domains, which
implies a highly significant enrichment (Q-value= 7.85× 10−8);
and 44 genes contain Pleckstrin homology domains (Q-value =

0.048, hyper; Supplementary Table 3). Chromosome Xq was
the only genomic region enriched in DCGs at a 5% FDR (Q-
value = 2.9 × 10−3) (Supplementary Table 4). Another two
cytobands were significantly enriched at a 10% FDR (namely
5q34 and 18q23). We also searched for pathway enrichments
in the Pathways Commons database, which retrieved a list of
51 significantly enriched pathways (5% FDR, hypergeometric,
Supplementary Table 5). These were “PAR1-mediated thrombin
signaling events,” “Integrin family cell surface interactions,” “Class
I PI3K signaling events mediated by Akt,” “ErbB1 downstream
signaling,” “Arf6 signaling events,” “EGFR-dependent Endothelin
signaling events,” “Internalization of ErbB1,” “Signal Transduc-
tion,” “mTOR signaling pathway,” “VEGF and VEGFR signaling
network,” “Nectin adhesion pathway,” “CDC42 signaling events,”
“Glypican pathway,” “Proteoglycan syndecan-mediated signal-
ing events,” “Thrombin/protease-activated receptor (PAR) path-
way,” “EGF receptor (ErbB1) signaling pathway,” “Regulation of
CDC42 activity,” “IFN-γ pathway,” “Arf6 trafficking events,” “β1
integrin cell surface interactions,” “Urokinase-type plasminogen
activator (uPA) and uPAR-mediated signaling,” “ErbB receptor
signaling network,” “IL5-mediated signaling events,” “PDGFR-β
signaling pathway,” “Signaling events mediated by focal adhe-
sion kinase,” “S1P1 pathway,” “Hemostasis,” “Signaling events
mediated by VEGFR1 and VEGFR2,” “Insulin Pathway,” “Throm-
boxane A2 receptor signaling,” “PDGF receptor signaling network,”
“IL3-mediated signaling events,” “GMCSF-mediated signaling
events,” “Platelet activation, signaling and aggregation,” “Validated
transcriptional targets of AP1 family members Fra1 and Fra2,”
“Glypican 1 network,” “Class I PI3K signaling events,” “Trk recep-
tor signaling mediated by PI3K and PLC- γ,” “Arf6 downstream
pathway,” “LKB1 signaling events,” “Sphingosine 1-phosphate
(S1P) pathway,” “IGF1 pathway,” “Syndecan-1-mediated signaling
events,” “Signaling events mediated by Hepatocyte Growth Factor
Receptor (c-Met),” “Neurotrophic factor-mediated Trk receptor sig-
naling,” “Endothelins,” “α9β1 integrin signaling events,” “Signaling
by GPCR,” “TRAIL signaling pathway,” “Signaling events mediated
by PTP1B,” and “Plasma membrane estrogen receptor signaling.”

Enrichment in TFBS was significant for 62 TFs
(Supplementary Table 6). The two top findings were TCF3 and
LEF1 (Q-values = 1.38 × 10−4 and 5.53 × 10−4, respectively).
Similarly, we found a significant enrichment inmiR-574-5p,miR-
637, and miR-663 target genes (Q-values < 0.05). We searched
for enrichment of all significant miRNAs-target genes in KEGG
pathways (Supplementary Table 7). The resulting data indicates
that these miRNAs regulate the following pathways: “Biosynthesis
of unsaturated fatty acids” (Q-value = 2.12 ×10−13), “TGF-β
signaling pathway” (Q-value= 8.55×10−12), “p53 signaling path-
way” (Q-value = 4.76× 10−8), “Pathways in cancer” (Q-value =
6.41×10−8), “Renin-angiotensin system” (Q-value= 2.22×10−5),

“MAPK signaling pathway” (Q-value= 3.99×10−5), “GABAergic
synapse” (Q-value= 1.43× 10−4), “Sphingolipid metabolism” (Q-
value= 2.84× 10−4), “Prostate cancer” (Q-value= 4.81× 10−4),
“Renal cell carcinoma” (Q-value = 7.38 × 10−4), “PI3K-Akt
signaling pathway” (Q-value = 1.04 × 10−3), “Focal adhesion”
(Q-value = 1.60× 10−3), “Adipocytokine signaling pathway” (Q-
value = 2.09 × 10−3), “Transcriptional misregulation in cancer”
(Q-value = 4.02 × 10−3), “Maturity onset diabetes of the young”
(Q-value = 8.54 × 10−3), “Small cell lung cancer” (Q-value =

8.54 × 10−3), “Ubiquitin mediated proteolysis” (Q-value =

1.57 × 10−3), “Circadian rhythm” (Q-value = 1.57 × 10−2),
“mTOR signaling pathway” (Q-value = 2.20 × 10−2), “Hedgehog
signaling pathway” (Q-value = 2.20 × 10−2), “Neurotrophin
signaling pathway” (Q-value = 2.64 × 10−2), “Acute Myeloid
Leukemia” (Q-value = 3.68 × 10−2), and “Lysine degradation”
(Q-value= 4.23× 10−2).

DCGs Enrichment in Transcription Factor (TF) Peaks,

Chromatin Modifications, and Chromatin State in

Model Cell Lines
By comparing uniformly processed genomic tracks for a prefer-
ential overlap of DCGs in various TF peaks we found marked
enrichments (P-value < 9.9 × 10−4) in EZH2 in four cell
lines, namely Gm12878, H1hESC, HEPG2, and HMEC. Noto-
riously, the cell line that presented more significant overlaps
was H1hESC, in which 11 TF tracks ranked significant (Q-
value< 0.05). These were BCL11A, CTBP2, CTCF, EGR1, EZH2,
GABPA, NANOG, RAD21, SUZ12, TCF2, and ZNF143. Only
one track was available for SUZ12, but the enrichment was
highly significant (P-value < 9.9 × 10−4), which along with the
EZH2 tracks makes plausible a preferential binding of PRC2
in these genomic regions. Twenty-seven tracks were available
for H1hESC, HEPG2, and Gm12787 cell lines. Stouffer’s cor-
rected values revealed significant overlaps of DCGs with CTCF
and EZH2 tracks (Q-values = 1.69 × 10−4 and 1.17 × 10−6,
respectively). H1hESC were also enriched in H2A.Z, H3K27me3,
H3K4me1, andH3K4me2 tracks. Stouffermerged P-values across
Gm12878, HMEC, HEPG2, and H1hESC revealed significant
enrichments in H3K27me3 and H3K9me3 chromatin marks
(Q-values = 6.81 × 10−9 and 0.027, respectively). A similar
procedure was followed with Chromatin State Segmentation
tracks, which revealed significant enrichments in “Repressed” (Q-
value= 1.80×10−8), “Heterochromatin” (Q-value= 1.80×10−8),
“Poised Promoter” (Q-value = 4.77 × 10−9), and “Insulator” (Q-
value= 0.024) chromatin domains. Finally, DNA Hypersensibil-
ity regions preferentially overlapped with DCGs in H1hESC and
HMEC cell lines (P-values= 9.9× 10−4 and 0.002, respectively),
but not in Gm12878 and HEPG2. Results of these experiments
can be consulted in Supplementary Table 8.

Enrichment of DCGs in Partially Methylated Domains,

Epigenetic Islands, Lamina-Associated Domains,

Imprinted Genes, HOTAIR Target Genes and Somatic

Copy Number Aberrations
Since hypermethylation of promoters and hypomethylation of
non-promoter associated regions is a common feature of Partially
Methylated Domains (PMDs Hon et al., 2012), we tested whether
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the overlap between DCGs with previously defined PMDs and
heavily methylated domains (HMDs) (Schroeder et al., 2011) was
higher than the overlap of background genes. Note that these
PMDs andHMDswere common to placenta, neurons and fibrob-
lasts. We found strong evidence supporting an enrichment in
PMDs (P-value= 2.04×10−6, hypergeometric) but no significant
overlap was observed with HMDs (P-value= 1, hypergeometric).
The average expression of those DCGs overlapping with known
PMDs was nearly significantly lower than the rest of the DCGs
in normal breast (P-value = 0.0527, Wilcox), but not in breast
cancer (P-value = 0.1904, Wilcox). DCGs overlapping known
PMDs are hypermethylated compared with non-overlapping
DCGs in normal and cancerous breast (P-values < 2.2 × 10−16;
Wilcox). Indeed, PMD-overlapping DCGs tend to be hyperme-
thylated in cancer compared with normal breast (P-value =

5.46 × 10−150; Wilcox). Although non-PMD DCGs are also
hypermethylated in cancer, PMD-overlapping DCGs are more
strongly methylated than non-PMD DCGs (PMD DCGs 95% CI
[−0.266, −0.233]; non-PMD DCGs 95% CI [−0.044, −0.042];
Wilcox).

Similarly, we obtained a list of 93 imprinted human genes
from the geneimprint database (Jirtle, 1997), of which 53 were
among the list of genes in this study. We discovered a marked
enrichment of DCGs in imprinted genes (P-value= 1.06× 10−9;
hypergeometric). Feinberg et al. (Wen et al., 2012) described
the existence of euchromatin islands (EIs) within heterochro-
matin domains, and since these were enriched in CTCF bind-
ing and DNAse I hypersensitivity regions, we decided to test for
significant overlaps between our DCGs coordinates, their back-
ground regions and all the EI coordinates found in 5 different
cell lines. Once again, we observed a mildly significant enrich-
ment among DCGs (P-value = 0.017). DCGs are enriched in
Homeobox genes and HOTAIR is a non-coding RNA derived
from a HOX gene and involved in the aberrant gene target-
ing of PRC2 during cancer progression (Gupta et al., 2010). By
comparing background genes and DCGs with a list of genes
bound to PRC2 after HOTAIR induction in breast cancer cells
(Gupta et al., 2010), we observed a significant enrichment of
these genes on the DCG category (P-value = 6.35 × 10−5;
hypergeometric).

Finally, DCGs are also enriched in CpG islands and GC con-
tent compared with their background genes (P-value = 9.99 ×

10−5 and 2.2 × 10−16, Wilcox). Due to the fact that DNA G
Quadruplexes (a.k.a. G4) are known to influence DNA methy-
lation (Halder et al., 2010) and gene expression (Agarwal et al.,
2014), we analyzed the overlap between DNAG4motif sequences
reported by Balasubramanian et al. (Huppert and Balasubrama-
nian, 2007) and DCGs, observing a very significant enrichment
(P-value < 9.99 × 10−4). Nevertheless, this can be a statisti-
cal artifact due to the enrichment of DCGs in GC content and
must be interpreted with caution. Finally, we also compared
DCGs loci with regions of focal Somatic Copy Number Aberra-
tions (SCNAs) enriched in cancer. These SCNAs were discovered
after analyzing 3131 and 1480 cancer and normal tissue samples,
respectively (Beroukhim et al., 2010). DCGs were found to be
mildly enriched in cancer-specific SCNA coordinates (P-value =
0.0128).

Discussion

The effect of DNA methylation on gene expression is widely
known to depend on its relative location with respect to the TSS
of each gene (Brenet et al., 2011; Lou et al., 2014). Normally,
gene body methylation correlates positively with gene expres-
sion, whilst methylation at the TSS does the opposite (Lou et al.,
2014). Although the existence of different correlations has been
described elsewhere, systematic genome-wide differential trends
in correlations between groups have not been systematically
described until now. The aim of this study is to help in moving
from the idea that “DNA methylation restricts expression” to one
more elaborate like “DNAmethylation, which is a repressive mark,
has varying effects on gene expression as a result of the interaction
with many other factors. It is necessary for science to study and
quantify these phenomena in order to better understand human
biology and health.” In this article we have described intriguing
differences between cancer and normal samples genome-wide.
Although the functional consequences of these findings are still
obscure, an important point to consider is that DNA methyla-
tion can drive alternative promoter use and the production of
different transcript isoforms (Wang et al., 2011). It has also been
suggested that intragenic methylation suppresses intragenic ini-
tiation of transcription, thereby limiting the expression of inter-
fering RNAs transcribed within larger genes (Jjingo et al., 2012).
Both mechanisms can have an effect on tumor biology, and they
may help to explain the observed differences that we report. Sim-
ilarly, spurious effects of SCNAs in methylation arrays have been
described (Houseman et al., 2009). For example, haploid and ane-
uploid regions affect the methylation estimates. Thus, the pres-
ence of SCNAs in cancer samples can influence the variability
observed in correlations. Indeed, we found significant enrich-
ments of breast DCGs in Xq, 5q34, and 18q23 chromosomal
regions, which are frequenctly deleted in various types of breast
cancer (Huang et al., 1995; Yu et al., 2009). These are probably
indicating SCNAs, and although they probably affect a minority
of the detected DCGs, future studies should address these effects.

We detected the presence of DCGs in lung adenocarcinoma
and HNSCC. In the case of HNSCC, we found 15 DCGs at a 10%
FDR. The top genes were IL12RB2, PTHLH, and SCL7A11, which
are all involved in cancer biology (Liu et al., 2013; Suzuki et al.,
2013; Urosevic et al., 2014). CD40 and CEACAM5 were the top
DCGs in the lung adenocarcinoma group, and both play impor-
tant roles in cancer biology (Blumenthal et al., 2005; Govindan
et al., 2009; Zheng et al., 2011; Rakhmilevich et al., 2012; Creelan
et al., 2013; Moran et al., 2013). By focusing our research on the
case of breast cancer, we discovered the existence of 1662 DCGs,
which are enriched in cancer and differentiation-related path-
ways. The subtle hypermethylation observed in breast DCGs pro-
moters, along with the hypomethylation status outside it, resem-
bles PMDs. Consistently, a significant enrichment of DCGs in
previously defined PMDs was observed (Schroeder et al., 2011).
PMDs have been described in MCF-7 breast cancer cell lines,
where large regions of hypomethylation exist (Shann et al., 2008).
Ren et al. (Hon et al., 2012) demonstrated (1) that PMDs in breast
cancer are associated with hypomethylated gene bodies and lower
transcript abundance; and (2) that PMD-hypomethylated gene
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bodies overlap with repressive chromatin marks (H3K27me3
and H3K9me3) independently of the methylation status of their
promoters. Since breast DCGs are enriched in cancer and cell
differentiation pathways, as well as in bivalent and heterochro-
matic genomic domains, it is tempting to speculate that a PMD
reorganization process occurs frequently at DCGs loci during
carcinogenesis which mediates subtle regulation of cancer gene
expression.

Nevertheless, the proportion of DCGs known to be PMDs
is quite small (<10%). We also observed that DCGs are signif-
icantly enriched in EZH2 and SUZ12 binding in different cell
lines, along with significant enrichments in repressive and biva-
lent chromatin marks. EZH2 and SUZ12 are the major com-
ponents of the Polycomb Repressive Complex 2 (PRC2), which
mediates transcriptional repression partially through histone
methylation (Morey and Helin, 2010). Curiously, DNA methy-
lation and PRC2-depedent histone methylation are mechanisti-
cally linked. For example, EZH2 recruits DNAmethyltransferases
to Polycomb-silenced genes inducing de novo DNA methyla-
tion patterns, a fact which is especially important in stable gene
silencing of cancer cells (Morey and Helin, 2010). However, addi-
tional gene silencing mediated by Polycomb can occur in the
absence of DNA methylation (Gieni and Hendzel, 2009). For
example, PRC2 and H3K27me3 are known to cooperate with
H3K9 methylation to maintain gene silencing by a mechanism
that involves HP1α anchorage at chromatin (Boros et al., 2014).
Furthermore, although EZH2 methylates H3K27 and is asso-
ciated with breast cancer progression, the disposition of both
factors occurs independently in mammary neoplasia (Bae et al.,
2014). This is in line with the activating effect that EZH2 induces
on the NOTCH1 gene (Gonzalez et al., 2014), which triggers the
expansion of cancer stem cells through a repressive-independent
mechanism. Moreover, EZH2 is also involved in the regulation
of HOX genes (Wu et al., 2008), which are very enriched within
breast DCGs. A relevant effect of EZH2 on DNA methylation
was observed precisely at the HOX loci in mantle cell lym-
phoma (MCL) and chronic lymphocytic leukemia (CLL) (Kan-
duri et al., 2013). EZH2 was observed to trigger H3K27 methy-
lation in both tumoral samples, but a hypermethylation event
that led to long-term repression occurred specifically in MCL
after EZH2 over-expression. Finally, an important gene at the
HOXC locus involved in PRC2-mediated repression is HOTAIR,
which encodes a large intervening noncoding RNA (lincRNA)
associated with breast cancer prognosis (Sørensen et al., 2013).
HOTAIR targets PRC2 to hundreds of genes involved in the inhi-
bition of cancer progression (Gupta et al., 2010), and its deple-
tion abrogates the capacity of EZH2 to induce cancer matrix
invasion (Gupta et al., 2010). DCGs are enriched in PRC2 and
HOTAIR target genes, but not in differentially expressed genes.
Since a trend of promoter hypermethylation in DCGs exists, it is
likely that PRC2 mediates DCG allele-specific long-term repres-
sion through DNA methylation-dependent and independent
mechanisms.

Another seemingly important factor in DCG events is CTCF,
which is a major chromatin “architect.” Notably, CTCF haploin-
sufficient mice are predisposed to cancer and show and increased
variability in CpG methylation genome wide (Kemp et al., 2014).

CTCF is involved in imprinting regulation through high-order
chromatin loops in their insulator regions (Guibert et al., 2012;
Liu et al., 2014). Loss of genomic imprinting (LOI) constitutes
a hallmark of many cancers and it is an oncogenic mechanism
itself (Holm et al., 2005; Gieni and Hendzel, 2009). Particularly,
LOI at the IGF2 locus involves demethylation of both alleles
and depletion of PRC2 and CTCF binding (Li et al., 2014). An
important role of CTCF at imprinted genes is to mediate intra-
chromosomal looping, which permits PRC2 binding and het-
erochromatin formation (Zhang et al., 2011). Since DCGs are
enriched in CTCF peaks and in imprinted genes, it is reasonable
to think that local and large chromatin reorganization patterns
are involved in the epigenetic regulation of DCGs during car-
cinogenesis, with a special emphasis on regions of allele specific
expression.

Finally, this study uses public retrospective data, and it has
limitations and concerns inherent to the study design, the het-
erogeneity of the platforms and the availability of the data. Five
datasets were analyzed, one of whichwas tumor-normalmatched.
We observed discordant correlation results in this latter case,
which can be related to confounding factors or, more probably,
to an epigenetic effect on the non-tumoral adjacent microen-
vironment. The original study didn’t find batch effects due to
separate plates or chips, and the methylation levels of normal
and cancerous lung samples didn’t change substantially between
smokers and non-smokers at any locus (Selamat et al., 2012).
This dataset is composed of approximately equal parts of smok-
ers and non-smokers, but different proportion of tumor stages
(58% Stage I, 19% Stage II, 21% Stage III, and 2% Stage IV), eth-
nicities and sexes exist. Using Combat (Johnson et al., 2007) to
adjust the variability associated with these traits lead to exactly
the same results. Similarly, we replicated the same observations
in the breast cancer cohort after removing the variability asso-
ciated with age and ethnicity (Pearson’s correlations > 0.99;
slope≈ 1), the clearest potential confounders. Although the pos-
sible effect of these seems to be minimal, future studies should
be carried on data from very homogeneous cohorts in order to
validate the formulated hypotheses. For this reason, we propose
to develop a new study to corroborate our findings. This pro-
posal would test the correlation changes that exist between cancer
tissues and normal-adjacent and non-adjacent ones, along with
the chromatin changes accompanying them. The study expects
to use sequencing technology instead of arrays in order to inspect
events at a base resolution, and it would be accompanied by high-
resolution cytogenetic information to detect regions of SCNA.
Finally, the proposed study would also try to address the role that
CTCF and PRC2 play at DCGs, and the possibility of modulating
correlations according to their binding kinetics.

Conclusion

This study provides proof-of-concept for the implication of dif-
ferential expression-methylation correlation in cancer biology.
We have demonstrated general trends of differential expression-
methylation in cancer compared with normal tissues, and we
identified a group of genes with striking and significant corre-
lation differences in breast cancer, known as DCGs. Breast DCGs
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FIGURE 5 | A model of the differential epigenetic regulation that

occurs at DCGs during carcinogenesis is proposed. This model

postulates that PRC2-repressive complexes, CTCF-mediated chromatin

loops and G Quadruplex structures cooperate to modulate the

chromatin structure toward any of the following three: (A) Euchromatin,

(B) Poised chromatin, or (C) Heterochromatin. Note that the potential

implication of G4 structures must be interpreted with great caution,

since it might be an artifact of the increased GC content found in

DCGs. Due to the high enrichment of DCGs in heterochromatin and

poised chromatin in model cell lines, these are the most likely states.

Indeed, since most of the genes do not show differential expression

trends, it is likely that DCGs preferentially indicate bivalent chromatin

regions where monoallelic expression switches between cancer and

normal cells.

were enriched in cell differentiation and cancer-related pathways,
with a special emphasis on the family of Homeobox transcription
factors. DCGs indicate hotspots of epigenetic reprogramming
in cancer, where other epigenetic or genomic factors exceed or
modify the effect of DNA methylation. By integrating DCG data
with previous epigenomics studies, we discovered that DCGs are
markedly enriched in repressive and bivalent chromatin features.
Our data supports a model where DCGs undergo epigenetic
reprogramming during carcinogenesis triggered by PRC2 redis-
tribution; which involves large and local chromatin reorganiza-
tion through CTCF (Figure 5). These locations are likely to be
prone to chromosomal instability and loss of imprinting, which
can be a consequence of epigenetic aberrations in rapidly prolif-
erating cells. Since cancer cells can spontaneously transform into
a stem cell-like phenotype modulated by genes within bivalent
chromatin regions (Chaffer et al., 2013), it is tempting to specu-
late that DCGs undergo an epigenetic reprogramming that facili-
tates monoallelic gene expression and stemness. Moreover, since
breast DCGs were neither substantially differentially expressed
nor differentially methylated, this suggests that a greater under-
standing of biological variability can be achieved by integrating
expression and methylation data. Thus, it is relevant to corrobo-
rate these findings and to expand our knowledge about the mech-
anisms behind this phenomenon and its functional role in cancer
biology.
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Supplementary Figure 1 | Gene Ontology hierarchical diagram that shows

significant enrichments of DCGs in lung adenocarcinoma and HNSCC

colored in red (5% FDR). Scatter plots of expression vs. methylation in cancer

and normal samples are reported for the top two genes (for reasons of brevity).
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Supplementary Figure 2 | Diagnostic plots of the GAM regression of

Z-score Spearman’s correlations in normal breast as a function of

absolute distance to the closest TSS. K’, EDF, K-index, and P-values can be

consulted in the top of the image. The plots correspond to theoretical quantiles vs.

deviance residuals (upper-left plot), residuals vs. frequency (lower-left plot), linear

predictor vs. residuals (upper-right plot), and fitted values vs. response (lower-right

plot).

Supplementary Figure 3 | Same as Supplementary Figure 2 for Z-score

Speraman’s correlations in breast cancer.

Supplementary Figure 4 | Same as Supplementary Figure 2 but focused on

the CpGs falling within a 5000bp range from the closest TSS.

Supplementary Figure 5 | Same as Supplementary Figure 3 but focused on

the CpGs falling within a 5000bp range from the closest TSS.

Supplementary Figure 6 | DCGs can be more positively or negatively

correlated in cancer with respect to normal breast tissues. We performed

GAM regression of the correlations in DCGs separately for both groups. Here we

report the diagnostic plots of GAM regression in cancer samples of DCGs with

higher correlations in breast cancer than in normal breast. Once again, absolute

distance to the closest TSS was the independent variable. Plots follow the same

order as those listed in Supplementary Figure 2.

Supplementary Figure 7 | DCGs can be more positively or negatively

correlated in cancer with respect to normal breast tissues. We performed

GAM regression of the correlations in DCGs separately for both groups. Here we

report the diagnostic plots of GAM regression in normal breast samples of DCGs

with higher correlations in breast cancer than in normal breast. Once again,

absolute distance to the closest TSS was the independent variable. Plots follow

the same order as those listed in Supplementary Figure 2.

Supplementary Figure 8 | DCGs can be more positively or negatively

correlated in cancer with respect to normal breast tissues. We performed

GAM regression of the correlations in DCGs separately for both groups. Here we

report the diagnostic plots of GAM regression in cancer samples of DCGs with

higher correlations in normal tissues than in breast cancer. Once again, absolute

distance to the closest TSS was the independent variable. Plots follow the same

order as those listed in Supplementary Figure 2.

Supplementary Figure 9 | DCGs can be more positively or negatively

correlated in cancer with respect to normal breast tissues. We performed

GAM regression of the correlations in DCGs separately for both groups. Here we

report the diagnostic plots of GAM regression in normal samples of DCGs with

higher correlations in normal tissues than in breast cancer. Once again, absolute

distance to the closest TSS was the independent variable. Plots follow the same

order as those listed in Supplementary Figure 2.

Supplementary Figure 10 | (A) DCG promoters’ differential methylation results.

Average promoter methylation was calculated for each DCG and differential

methylation was studied using the SAM algorithm. The black dots indicate

differences in methylation values between cancer and normal, and the red dots

indicate genes whose promoters are significantly hypermethylated in cancer

compared with normal breast (5% FDR). Note the clear tendency for almost all

promoters to be more methylated in cancer than in normal breast (black dots

above the expected black line). (B) DCG non-promoter regions’ differential

methylation results. The differences between cancer and normal breast samples

are less obvious than in the previous case, but a group of DCGs are

hypermethylated in cancer at a 5% FDR (red dots). Note that in this case, DCGs

do not show a general tendency to be hypermethylated in cancer. (C) SAM results

for DCGs’ differential expression. Note that although most genes do not show

differential expression patterns at a 5% FDR, a small group is down-regulated in

cancer (green dots).

Supplementary Figure 11 | Gene Ontology hierarchical diagram that shows

significant enrichments of DCGs in breast cancer colored in red (5% FDR).

Supplementary Table 1 | DCG list in HNSCC and Lung Adenocarcinoma.

The list of all the genes included in the analysis is also reported.

Supplementary Table 2 | Lists of DCGs in breast cancer. Two lists are

reported since Stouffer’s test must be performed on one-sided P-values.

Supplementary Table 3 | Enrichment of breast DCGs in InterPro domains.

Data was analyzed in GeneCodis.

Supplementary Table 4 | Enrichment of breast DCGs in chromosomal

regions. Data was analyzed in Web Gestalt.

Supplementary Table 5 | Enrichment of breast DCGs in pathways of the

Pathways Commons database. Data was analyzed in Web Gestalt.

Supplementary Table 6 | Enrichment of breast DCGs in conserved TFBS.

Data was analyzed in GeneCodis.

Supplementary Table 7 | Enrichment of breast DCGs-related miRNA target

genes in KEGG pathways. Data was analyzed in Diana Tools.

Supplementary Table 8 | Enrichment of breast DCGs in (1) TF peaks in

three difference cell lines; (2) Meta-analysis of the TF tracks present in all

three cell lines; (3) chromatin marks across four model cell lines; and (4)

chromatin state segmentation across four model cell lines.
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